首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This paper considers the influence of volcanic eruptions on the variation in the characteristics of the runoff of the suspended river load (suspended sediment concentration, discharge, rate of runoff, and grain-size distribution) on a variety of space–time scales (daily, seasonal, and long-term). The main factors that affect the yield of suspended load in rivers that flow in volcanic areas include the water runoff, drainage area, and the abundance of unconsolidated volcanic deposits. The areas of recent volcanism in Kamchatka are characterized by the maximum values of potential scour of particles, the mean long-term suspended sediment concentration, and specific suspended sediment yield. The largest increment in the transport of suspended river load in areas of volcanic activity is observed after major eruptions. The daily variations in the transport of suspended load are controlled by the water regime of rivers on the slopes of active volcanoes, namely, periodic cessations of surface runoff because of filtering into volcanic deposits.  相似文献   

2.
Abstract

Analyses of data from reservoir surveys and sediment rating curves are compared to predict sediment yield in three large reservoir watershed areas in Turkey. Sediment yield data were derived from reservoir sedimentation rates and suspended sediment measurements at gauging stations. The survey data were analysed to provide the volume estimates of sediment, the time-averaged sediment deposition rates, the long-term average annual loss rates in the reservoir storage capacity, and the long-term sediment yield of the corresponding watershed areas. Four regression methods, including linear and nonlinear cases, were applied to rating curves obtained from gauging stations. Application of the efficiency test to a power function form of a rating curve with nonlinear regression yielded the highest efficiency values. Based on the analysis of the sediment rating curves, sediment load fluxes were calculated by using average daily discharge data at each gauging station. Comparison of these two sediment yield values for each reservoir showed that the sediment yields from the suspended sediment measurements, SYGS, are 0.99 to 3.54 times less than those obtained from the reservoir surveys, SYRS. The results from the reservoir surveys indicate that all three reservoirs investigated have lost significant storage capacity due to high sedimentation rates.  相似文献   

3.
River sediment produced through weathering is one of the principal landscape modification processes on earth.Rivers are an integral part of the hydrologic cycle and are the major geologic agents that erode the continents and transport water and sediments to the oceans.Estimation of suspended sediment yield is always a key parameter for planning and management of any river system.It is always challenging to model sediment yield using traditional mathematical models because they are incapable of handling the complex non-linearity and non-stationarity.The suspended sediment modeling of the river depends on the number of factors such as rock type,relief,rainfall,temperature,water discharge and catchment area.In this study,we proposed a hybrid genetic algorithm-based multi-objective optimization with artificial neural network(GA-MOO-ANN)with automated parameter tuning model using these factors to estimate the suspended sediment yield in the entire Mahanadi River basin.The model was validated by comparing statistically with other models,and it appeared that the GA-MOO-ANN model has the lowest root mean squared error(0.009)and highest coefficient of correlation(0.885)values among all comparative models(traditional neural network,multiple linear regression,and sediment rating curve)for all stations.It was also observed that the proposed model is the least biased(0.001)model.Thus,the proposed GA-MOOANN is the most capable model,compared to other studied models,for estimating the suspended sediment yield in the entire Mahanadi river basin,India.The results also suggested that the proposed GA-MOO-ANN model is unable to estimate suspended sediment yield satisfactorily at gauge stations having very small catchment areas whereas performing satisfactorily on locations having moderate to the large catchment area.The models provide the best result at Tikarapara,the gauge station location in the extreme downstream,having the largest catchment area.  相似文献   

4.
The dynamics of suspended sediment transport were monitored continuously in a large agricultural catchment in southwest France from January 2007 to March 2009. The objective of this paper is to analyse the temporal variability in suspended sediment transport and yield in that catchment. Analyses were also undertaken to assess the relationships between precipitation, discharge and suspended sediment transport, and to interpret sediment delivery processes using suspended sediment‐discharge hysteresis patterns. During the study period, we analysed 17 flood events, with high resolution suspended sediment data derived from continuous turbidity and automatic sampling. The results revealed strong seasonal, annual and inter‐annual variability in suspended sediment transport. Sediment was strongly transported during spring, when frequent flood events of high magnitude and intensity occurred. Annual sediment transport in 2007 yielded 16 614 tonnes, representing 15 t km?2 (85% of annual load transport during floods for 16% of annual duration), while the 2008 sediment yield was 77 960 tonnes, representing 70 t km?2 (95% of annual load transport during floods for 20% of annual duration). Analysis of the relationships between precipitation, discharge and suspended sediment transport showed that there were significant correlations between total precipitation, peak discharge, total water yield, flood intensity and sediment variables during the flood events, but no relationship with antecedent conditions. Flood events were classified in relation to suspended sediment concentration (SSC)–discharge hysteretic loops, complemented with temporal dynamics of SSC–discharge ranges during rising and falling flow. The hysteretic shapes obtained for all flood events reflected the distribution of probable sediment sources throughout the catchment. Regarding the sediment transport during all flood events, clockwise hysteretic loops represented 68% from river deposited sediments and nearby source areas, anticlockwise 29% from distant source areas, and simultaneity of SSC and discharge 3%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The suspended sediment response of a small catchment subjected to farmland abandonment and subsequent plant recolonization was studied in relation to its hydrological functioning. The analysis of data over a seven‐year period demonstrated that suspended sediment yield was greatly influenced by the occurrence of intense, low‐frequency events. Greater amounts of suspended sediment were exported during spring, when the catchment was hydrologically more active. Rainfall intensity and baseflow at the start of a flood event had a strong influence on the sediment response, suggesting that several hydrological processes were active within the catchment. SSC (suspended sediment concentration)‐Q hysteretic loop analysis at the event scale aided understanding of the sedimentological and hydrological behaviour of the catchment. During the study period the SSC‐Q loops showed a high degree of seasonality and two main patterns strongly related to catchment wetness were distinguished. When the catchment was dry (mainly during summer and the beginning of autumn) the predominant process was infiltration excess runoff over sparsely vegetated areas close to the main channel. Under these conditions, floods exhibited a counter‐clockwise hysteretic loop and were characterized by a small streamflow response, short duration and high SSC. Under wet conditions (mainly during winter and spring), saturation excess runoff was increasingly dominant over vegetated areas. Under these conditions, floods exhibited a clockwise hysteretic loop, and were characterized by a larger streamflow response, longer duration and higher suspended sediment yield. The lower SSC during the falling stage of the hydrograph is likely to be due to dilution effects related to the contribution of clean water resulting from enlargement of the saturated areas, together with an increase in the baseflow discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
《水文科学杂志》2013,58(6):899-915
Abstract

The results are described of 16 years operation of a measuring station for the automatic recording of water discharge, bed load and suspended sediment transport in the Rio Cordon catchment, a small alpine basin (5 km2) located in northeastern Italy. Hillslope erosion processes were investigated by surveying individual sediment sources repeatedly. Annual and seasonal variations of suspended sediment load during the period 1986–2001 are analysed along with their contribution to the total sediment yield. The results show that suspended load accounted for 76% of total load and that most of the suspended sediment transport occurred during two flood events: an extreme summer flash flood in September 1994 (27% of the 16-years total suspended load) and a snowmelt-induced event in May 2001 accompanied by a mud flow which fed the stream with sediments. The role of active sediment source areas is discussed in relation to the changes in flood peak—suspended load trends which became apparent after both the 1994 and the 2001 events.  相似文献   

7.
Terrestrial sediment yield – often measured as suspended sediment load in stream channels – commonly scales with drainage area within homogeneous land surface regions. But the effect of drainage area has not usually been recognized in comparative sediment yield analyses, rendering most comparisons of sediment yield from disparate source areas invalid. The procedure to discount scale differences for comparative purposes is presented. Mathematical scaling varies according to landscape condition and provides a physical interpretation of that condition. The results open the way for rational construction of a ‘sediment delivery ratio’. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Hugh G. Smith 《水文研究》2008,22(16):3135-3148
Historically upland headwater catchments in south‐eastern Australia have undergone extensive gully erosion that has removed large amounts of sediment to lowlands. Recent research suggests these upland areas may continue to dominate fine sediment loads in lowland rivers. Improved understanding of sediment transfer through upland headwater catchments may have implications for interpreting downstream sediment supply. In this study a nested catchment design was utilized to examine suspended sediment yields and delivery from a small tributary sub‐catchment (1·64 km2) to the study catchment outlet (53·5 km2). Monitoring of suspended sediment concentration and discharge was undertaken for a period of nearly two years and used to estimate suspended sediment loads. Estimated total suspended sediment exports over the period of monitoring were 24·16 t from the sub‐catchment and 550·3 t from the catchment, which are generally less than previous reported small catchment yields in south‐eastern Australia. The extent of sediment delivery was examined using between‐site ratios of specific sediment yield per unit area and incised channel length. Sediment delivery was high under average rainfall conditions, but seasonally dependent. Both suspended sediment yields and the extent of delivery peaked over spring months, supplemented by remobilization of sediment stored during summer months in the main catchment channel. The findings of this study suggest much of the suspended sediment exported from small incised upland sub‐catchments (1–2 km2) may be delivered to downstream reaches under average rainfall conditions, which, in conjunction with the findings of previous research supports the potential importance of contributions from these areas to suspended sediment loads in lowland rivers during high flow periods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The variation of mechanical and chemical denudation is investigated using discharge and sediment yield data from the Upper Colorado River System. Annual precipitation ranges from approximately 150 mm to 1500 mm. Mean specific yield ranges from 0-2 1/s km2 ( = 6 mm p a) to 151/s km2 ( = 475 mm p a). The hydrological-geomorphological system adjusts itself to these varying climatic conditions; in some areas, however, the effects of lithology or land use seem to override the climatic controls. It is demonstrated that the increase in the absolute and particularly the relative amount of suspended sediment is closely related to a decrease in annual runoff and to an increase in the importance of high magnitude/low frequency events. This indicates that in areas of low annual runoff and high runoff variability, soluble rocks are more resistant than in more humid areas. During high magnitude/low frequency events, suspended sediment concentrations and loads are very high in semiarid areas due to sparse vegetation cover and dominance of direct runoff. Events of moderate magnitude and frequency, which in more humid areas transport most of the dissolved load, seldom occur. The trend towards increasing mechanical denudation is even observed in areas of very low runoff (0-221/s km2 = 7 mm p a). The peak of sediment yield in dry areas seems to approximate the point of no runoff very closely. Mechanical and chemical denudation are of equal importance at a runoff of about 300 mm per year.  相似文献   

10.
lINTRoDUCTIoNDifferencesintheprevailinglanduseandmanagementofaridandsemiaridareasaredeterminedinlargepartbyclimate.AridareasgenerallyreceivetoolittleprecipitationtosupportdrylandagricultureordomesticlivestockgrazingalthoughtheyaregrazedbywildIife,andattimes,bydomesticlivestock.Incontrast,insemiaridareasadequatemoistureisusuallyavaiIableatsometimeduringtheyeartoproduceforageforlivestockandwildlife,andtherearesomeyearswhendrylandcropproductionissuccessful.However,bothclimatesarecharacterize…  相似文献   

11.
LINTRODUCTIONThetributariesofmiddleYellowRiverarefamousintheworldforthehighestsuspendedsedimentconcentrationandsedimentyield.Forexample,atWenjiachuanstationofKuyeheRiverthemeasuredhighestsuspendedconcentrationis1700kg/m',andthemeanannualsedimentyieldis25000t/(kln'.a).Theformationofhyperconcentratedflowsandtheirinfluenceonerosionprocessesareofgreatimportancenotonlyfromatheoreticalpointofviewbutalsoforpracticalpurposes.Therefore,scientistsfromChinaandallovertheworldhavedrawntheirintensio…  相似文献   

12.
A general method is proposed which measures the increase in uncertainty when sampling effort is reduced in sediment fingerprinting. The method gives quantitative measures of how reduced sampling of material in one of the source areas, and/or of suspended sediment in streams, increases the uncertainties in the proportions of sediment contributed from the sources. Because the proportions of sediment contributed by the source areas must add to one, standard errors of the estimated proportions cannot be used as the usual measures of uncertainty: the paper uses instead the volume of the joint 95% confidence region for the estimated proportions. The paper shows how the uncertainty in this volume changes as numbers of suspended sediment samples, and the numbers of samples collected from cropped fields, are reduced by successive steps from 24 (20, in the case of cropped fields) to 16, 12, 8, 4 and 2 samples. As expected, uncertainty increases rapidly as the number of samples – whether of suspended sediment or from cropped fields – is reduced drastically. The pattern of increasing uncertainty is similar both for reductions in suspended sediment sampling, and for reduced sampling from cropped areas. When the number of suspended sediment samples, and the number of samples from cropped fields, are reduced to the same values, the increase in uncertainty from fewer suspended sediment samples was always slightly greater than the increased uncertainty from the reduced sampling of cropped areas, although this finding took no account of differences in the costs of field sampling and laboratory analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Interannual variations in seasonal sediment transfer in two High Arctic non‐glacial watersheds were evaluated through three summers of field observations (2003–2005). Total seasonal discharge, controlled by initial watershed snow water equivalence (SWE) was the most important factor in total seasonal suspended sediment transfer. Secondary factors included melt energy, snow distribution and sediment supply. The largest pre‐melt SWE of the three years studied (2004) generated the largest seasonal runoff and disproportionately greater suspended sediment yield than the other years. In contrast, 2003 and 2005 had similar SWE and total runoff, but reduced runoff intensity resulted in lower suspended sediment concentrations and lower total suspended sediment yield in 2005. Lower air temperatures at the beginning of the snowmelt period in 2003 prolonged the melt period and increased meltwater storage within the snowpack. Subsequently, peak discharge and instantaneous suspended sediment concentrations were more intense than in the otherwise warmer 2005 season. The results for this study will aid in model development for sediment yield estimation from cold regions and will contribute to the interpretation of paleoenvironmental records obtained from sedimentary deposits in lakes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
1 INTRODUCTION Sediment and nutrients from a watershed may adversely affect a downstream reservoir by reducing its capacity or degrading water quality. Among the output nutrients, phosphorus is often a growth-limiting element for aquatic organisms and pla…  相似文献   

15.
Alpine glacial basins are a significant source and storage area for sediment exposed by glacial retreat. Recent research has indicated that short‐term storage and release of sediment in proglacial channels may control the pattern of suspended sediment transfer from these basins. Custom‐built continuously recording turbidimeters installed on a network of nine gauging sites were used to characterize spatial and temporal variability in suspended sediment transfer patterns for the entire proglacial area at Small River Glacier, British Columbia, Canada. Discharge and suspended sediment concentration were measured at 5 min intervals over the ablation season of 2000. Differences in suspended sediment transfer patterns were then extracted using multivariate statistics (principal component and cluster analysis). Results showed that each gauging station was dominated c. 80% of days by diurnal sediment transfer patterns and ‘low’ suspended sediment concentrations. ‘Irregular’ transfer patterns were generally associated with ‘high’ sediment concentrations during snowmelt and rainfall events, resulting in the transfer of up to 70% of the total seasonal suspended sediment load at some gauging stations. Suspended sediment enrichment of up to 600% from channel storage release and extrachannel inputs occurred between the glacial front and distal proglacial boundary. However, these patterns differed significantly between gauging stations as determined by the location of the gauging station within the catchment and meteorological conditions. Overall, the proglacial area was the source for up to 80% of the total suspended sediment yield transferred from the Small River Glacier basin. These results confirmed that sediment stored and released in the proglacial area, in particular from proglacial channels, was controlling suspended sediment transfer patterns. To characterize this control accurately requires multiple gauging stations with high frequency monitoring of suspended sediment concentration. Accurate characterization of this proglacial control on suspended sediment transfer may therefore aid interpretation of suspended sediment yield patterns from glacierized basins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Rivers display temporal dependence in suspended sediment–water discharge relationships. Although most work has focused on multi‐decadal trends, river sediment behavior often displays sub‐decadal scale fluctuations that have received little attention. The objectives of this study were to identify inter‐annual to decadal scale fluctuations in the suspended sediment–discharge relationship of a dry‐summer subtropical river, infer the mechanisms behind these fluctuations, and examine the role of El Niño Southern Oscillation climate cycles. The Salinas River (California) is a moderate sized (11 000 km2), coastal dry‐summer subtropical catchment with a mean discharge (Qmean) of 11.6 m3 s?1. This watershed is located at the northern most extent of the Pacific coastal North America region that experiences increased storm frequency during El Niño years. Event to inter‐annual scale suspended sediment behavior in this system was known to be influenced by antecedent hydrologic conditions, whereby previous hydrologic activity regulates the suspended sediment concentration–water discharge relationship. Fine and sand suspended sediment in the lower Salinas River exhibited persistent, decadal scale periods of positive and negative discharge corrected concentrations. The decadal scale variability in suspended sediment behavior was influenced by inter‐annual to decadal scale fluctuations in hydrologic characteristics, including: elapsed time since small (~0.1 × Qmean), and moderate (~10 × Qmean) threshold discharge values, the number of preceding days that low/no flow occurred, and annual water yield. El Niño climatic activity was found to have little effect on decadal‐scale fluctuations in the fine suspended sediment–discharge relationship due to low or no effect on the frequency of moderate to low discharge magnitudes, annual precipitation, and water yield. However, sand concentrations generally increased in El Niño years due to the increased frequency of moderate to high magnitude discharge events, which generally increase sand supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The hydroclimatic conditions of water runoff formation and the hydrography of Parana and Uruguay river basins in the South America are considered. A survey of the recent studies of the hydrological regime of these rivers is given. Observation data are used to evaluate the long-term average values of water runoff and suspended sediment yield in the Parana and Uruguay and their variations along the rivers. Characteristics of many-year runoff variations in the rivers were evaluated. A climate-induced increase was identified in the Parana and Uruguay water runoff, and the corresponding present-day trends in river runoff variations in both rivers were evaluated. The total water runoff and suspended sediment yield of the Parana and Uruguay into La Plata estuary were calculated. Water balance of the drainage basin of La Plata estuary was characterized.  相似文献   

18.
A system has been installed to automatically monitor rainfall, streamflow, bedload discharge and suspended sediment concentration in the arid to hyper‐arid setting of Nahal Rahaf, Southern Judean Desert in Israel. The Rahaf gauging station is located in a relatively steep, wide channel with an unsteady bed driven by flash floods. It is an attempt to deploy modern automatic equipment for continuous sediment transport monitoring in harsh, arid fluvial environments. Unit bedload discharges are the highest recorded hitherto, suggesting they may represent an upper end member in the worldwide climate–bedload discharge relationship. Suspended sediment concentration is much higher than is typical of perennial fluvial humid environments. There is high correlation between suspended sediment concentration and water discharge on an event scale, with diverse intra‐event relations. The sediment yield of individual events is large, but the small number of floods limits the mean annual sediment yield to low values in this arid environment. This also has environmental implications, as large‐scale quarrying requires a long period of self‐restoration in such an arid fluvial setting. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Understanding spatio-temporal suspended sediment dynamics is more important in large watersheds due to the decisive role of local source apportionment in sediment transport and yield. The Talar River with a large mountainous watershed in northern Iran, which plays a vital role in water supply for agriculture and drinking, recently has faced quality degradation. The current study explores the relative contribution of suspended sediment sources using geochemical tracers and fingerprinting techniqu...  相似文献   

20.
A study was carried out on a rural catchment located in northwest Spain to examine the sediment yield from the catchment by measuring suspended sediments during rainfall events. Within the catchment regular surveys were conducted to obtain data on the suspended sediment sources. Important variations in sediment load were detected at event scale (0·3–21·0 Mg); some of these can be explained in terms of event size, antecedent conditions, rainfall distribution and soil surface erosion. To study the variables controlling suspended sediment yield during the events in the catchment, several event and pre‐event variables were calculated for all events. The sediment load is strongly influenced by discharge variables. During the events discharge–suspended sediments were also analysed. When the soil surface was unprotected, the formation of rills and ephemeral gullies on agricultural land at the catchment head was an important source of suspended sediments in the catchment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号