首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two CCD spectra of the star BM Ori were obtained with the echelle spectrograph of the 6-m telescope. In one of the spectra, a large proportion of lines are distorted by emission. The emission component is blueshifted by 50 km s?1, suggesting hot-gas outflow from the atmosphere. The equivalent-width ratio of measured lines in the spectra outside and during eclipse is consistent with the assumption that ~2/3 of the primary star’s area is obscured during eclipse, as follows from light curves. Measured line equivalent widths were used to estimate atmospheric parameters of the secondary star, T eff=7300 K, log g=5.2, and microturbulence ξt=6 km s?1, and to determine its chemical composition. The C, Na, Al, Si, S, Ca, Fe, Ni, and Zn abundances are solar, within the error limits. Li, Sc, Ti, V, Cr, Mn, Co, and Y are overabundant, while Mg, Cu, and Ba are underabundant. In general, the secondary is similar in chemical composition to the star V 1016 Ori. Based on the secondary’s mass determined by solving the radial-velocity curve and on log g estimated spectroscopically from iron ionization equilibrium, we calculated its photospheric radius, R 2 = 0.5R . However, the spectroscopic log g=5.2 disagrees with log g=3.5 calculated from the luminosity and effective temperature and with log g=3.0 calculated from light and radial-velocity curves. If the secondary’s photospheric radius is indeed small; this argues for the hypothesis that the eclipsing body is a dust envelope. The radial velocities measured from the two spectra are systematically higher than those calculated from the radial-velocity curve by +34 and +24 km s?1. It is likely that the secondary’s atmosphere occasionally shrinks.  相似文献   

2.
Published photoelectric measurements over a wide wavelength range (0.36–18 µm) are used to study the continuum spectrum of the star Θ1 Ori C. The model that assumes the following three radiation sources is consistent with observations: (1) a zero-age main-sequence O7 star (object 1) of mass M 1=20M , radius R 1=7.4R , effective temperature T 2=37 000 K, and absolute bolometric magnitude $M\mathop {bol}\limits^1 = - 7\mathop .\limits^m 7$ ; (2) object 2 with M 2=15M , R 2=16.2R , T 2=4000 K, and $M\mathop {bol}\limits^2 = - 5\mathop .\limits^m 1$ ; and (3) object 3 with R 310 700 R , T 3=190 K, and $M\mathop {bol}\limits^3 = - 0\mathop .\limits^m 6$ . The visual absorption toward the system is $A_V = 0\mathop .\limits^m 95$ and obeys a normal law. The nature of objects 2 and 3 has not been elucidated. It can only be assumed that object 2 is a companion of the primary star, its spectral type is K7, and it is in the stage of gravitational contraction. Object 3 can be a cocoon star and a member of the system, but can also be a dust envelope surrounding the system as a whole.  相似文献   

3.
The results of a non-LTE analysis of a number of spectral lines formed in the accreting envelopes of UX Ori stars are given. The accretion rate is estimated from an analysis of the first three lines of the Balmer series: M a = 10?8 ?10?9 M The gas temperature in this region is about 10,000 K. In the immediate vicinity of the star there is a hotter region, with T > 15,000 K, in which the 5876 Å line of neutral helium, observed in the spectra of these stars, is formed. The region of formation of this line has a small geometrical thickness, covers a small fraction of the star’s visible disk, and evidently consists of the site of contact of the accreting gas with the stellar surface. The low gas rotation rates in this region (150–200 km/sec) may mean that rapid rotation of the accreting gas is damped by the star’s magnetic field, which is strong enough to affect the gas stream. We estimate the magnetic field strength in this region to be about 150 G.  相似文献   

4.
We present the results of our spectroscopic observations of the eclipsing binary SZ Cam performed with the 1-m (Zeiss-1000) and 6-m (BTA) telescopes at the Special Astrophysical Observatory of the Russian Academy of Sciences in 2000 and 2003. Based on our results and published data, we have calculated new values for the component mass ratio, q = 0.72 ± 0.02, the radial velocity of SZ Cam relative to the Solar system barycenter, V 0 =?10.6 ± 2.0 km s?1, and the semi-amplitudes of the radial velocity curves for both components, K 1 = 192.0 ± 2.6 and K 2 = 266.4 ± 2.5 km s?1. The orbital semimajor axes and masses of the components have been determined: α1 = 10.4R , α2 = 14.5R , M 1 = 16.7M , M 2 = 12.0M . New light elements and parameters of the radial velocity curve for the third body have been obtained. The mass of the secondary component of the third body M 2 3b is discussed. Its lower limit is estimated to be M 2 3b = 1.4M .  相似文献   

5.
We measured the radial velocity of the star θ1 Ori D from IUE spectra and used published observations. Based on these data, we determined the period of its radial-velocity variations, P=20.2675±0.0010 days, constructed the phase radial-velocity curve, and solved it by least squares. The spectroscopic orbital elements were found to be the following: the epoch of periastron passage Ep=JD 2430826.6±0.1, the system's center-of-mass velocity /Gg=32.4±1.0 km s?1, K=14.3±1.5 km s?1, Ω=3.3±0.1 rad, e=0.68±0.09, a1 sin i = 3 × 1010 km, and f1 = 0.0025M. Twice the period, P=40.528±0.002 days, is also consistent with the observations.  相似文献   

6.
We present photoelectric and spectroscopic observations of the protoplanetary object V 1853 Cyg, a B supergiant with an IR excess. Over two years of its observations, the star exhibited rapid irregular light variations with amplitudes $\Delta V = 0\mathop .\limits^m 3$ , $\Delta B = 0\mathop .\limits^m 3$ , $\Delta U = 0\mathop .\limits^m 4$ and no correlation between color and magnitude. Its mean magnitude has not changed since the first UBV observations in 1973 (Drilling 1975). Low-resolution spectroscopic observations show that the spectrum of V 1853 Cyg in 2000 corresponded to that of a B1–B2 star with T eff ~ 20000 K. High-resolution spectroscopic observations confirm the conclusion that the profiles of absorption and emission lines are variable. We identified the star’s spectral lines and measured the equivalent widths of more than 40 lines. The star’s radial velocity is 〈V r 〉= ?49 × 5 km s?1, as measured from absorption lines, and ranges from–50 to–85 km s–1 for different lines, as measured from shell emission lines. The velocity of the dust clouds on the line of sight determined from diffuse interstellar bands (DIBs) and from interstellar Na I lines is 〈V r 〉= ?16 × 5 km s?1. The P Cyg profiles of the He I λ5876 Å and λ6678 Å lines suggest an ongoing mass loss by the star. An analysis of the observational data confirms the conclusion that the star belongs to the class of intermediatemass protoplanetary objects.  相似文献   

7.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

8.
We analyze ultraviolet spectra of DF Tau, a binary system whose primary component is a classical T Tauri star. The spectra were obtained from the Hubble Space Telescope and the IUE satellite. The stellar emission in the wavelength range covered is shown to originate in an accretion shock wave. The gas infall velocity is ~250 km s?1. The accreted-gas density is typically N 0≤1011 cm?3, but it can occasionally be higher by one and a half orders of magnitude. The continuum intensity near λ=1900 Å was found to be virtually constant for such a significant change in N 0. The star’s photometric variability is probably attributable to variations in accreted-gas density and velocity, as well as to variations in the area of a hot spot on the stellar surface and in its orientation relative to the observer. The mean accretion rate is $\dot M \sim 3 \times 10^{ - 9} M_ \odot yr^{ - 1}$ . The interstellar extinction for DF Tau is $A_V \simeq 0\mathop .\limits^m 5$ , the stellar radius is ≤2R , and the luminosity of the primary component is most likely no higher than 0.3 L . We argue that the distance to DF Tau is about 70 pc. Upper limits are placed on the primary’s coronal emission measure: EM(T=107 K)<3×1054 cm?3 and EM(T=1.3×106 K)<3×1055 cm?3. Absorption lines originating in the stellar wind were detected in the star’s spectrum. Molecular hydrogen lines have essentially the same radial velocity as the star, but their full width at half maximum is FWHM ?50 km s?1. We failed to explain why the intensity ratio of the C IV λ1550 doublet components exceeds 2.  相似文献   

9.
The photometric elements of the eclipsing binary NSV 18773 (HD 99898) have been determined for the first time by analyzing its V-and I-band light curves from the ASAS-2 and ASAS-3 catalogs. Based on these elements and using other published spectroscopic and photometric data, we constructed a consistent system of geometrical and physical parameters for the system that consists of two stars (M 1 = 20M , Sp1=B0V, R 1 = 5.0R and M 2 = 14M , Sp2 = B1V, R 2 = 6.5R ) in elliptical orbits (P = 5 . d 049, e = 0.365, a = 40.1R ). The distance to the system is d = 3.3 kpc, the interstellar extinction is A V = 2 . m 0, and the age is t = 2.8 × 106 yr. NSV 18773 is a visual binary with components V A = 9 . m 9 and V B = 10 . m 3 separated by 0 . " 8. The third light (L 3 = 0.61) that we found by analyzing the light curves shows that the eclipsing binary is the system’s fainter component B. We confirmed the rapid apsidal motion of the star detected by Otero and Wils (2006) and refined its observed period: U obs = 150 ± 6 yr. Our photometric elements and physical parameters allowed the apsidal parameter $\bar k_2^{obs} = 0.0135(14)$ , which reflects the density distribution along the radii of the component stars, to be determined. Within the error limits, the derived parameter agrees with its theoretically expected value, $\bar k_2^{th} = 0.0119(8)$ , from current evolutionary models of stars of the corresponding masses and ages.  相似文献   

10.
Thirteen high-dispersion spectrographs of the eclipsing binary star SZ Cam have been studied with a view of determining more accurate information on: (i) the spectral type and luminosity classifications, (ii) absolute parameters for the component stars, (iii) the stellar environment of SZ Cam. The main results in these categories are as follows: (i) O9.5 Vnk, (ii)m g=19±2M ,m s=6.5±1M ;r g=9.7±3.6R ,r s=4.8±1.7R ;T e~30000 K,T e~23000 K; (iii) there is a local concentration of absorbing material which may reach a density of 2M pc?3, and the distance of the star is found to be 600±150 pc. The determined overluminosity of the secondary star and the local concentration of absorbing material are two topics which provide the basis for a discussion section.  相似文献   

11.
The Hipparcos Space Astrometry Mission photometric observations of V398 Lac, led to the discovery of its variability, allowing to classify it as an eclipsing binary with an orbital period of about 5.4 days. This prompted us to acquire highresolution échelle spectra with the aim of performing accurate radial velocity measurements and to determine the main physical parameters of the system's components. We present, for the first time, a double‐lined radial velocity curve and determine the orbital and physical parameters of the two components, that can be classified both as late B‐type stars. In particular, we obtained an orbital inclination i ∼ 85°. With this value of the inclination, we deduced masses M1 = 3.83±0.35 M andM2 = 3.29±0.32 M, and radii R1 = 4.89±0.18 R and R2 = 2.45±0.11 R for the more massive and less massive components, respectively. Both components are well inside their own Roche lobes. The mass ratio is M2/M1 ∼ 0.86. We derived also the projected rotational velocities as v1 sin i = 79±2 km s–1 and v2 sin i = 19±2 km s–1. Our measurements indicate that the rotation of the primary star is essentially pseudo‐synchronized with the orbital velocity at the periastron, while the secondary appears to rotate very slowly and has not yet attained synchronization. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Based on published sources, we have created a kinematic database on 220 massive (> 10 M ) young Galactic star systems located within ≤3 kpc of the Sun. Out of them, ≈100 objects are spectroscopic binary and multiple star systems whose components are massive OB stars; the remaining objects are massive Hipparcos B stars with parallax errors of no more than 10%. Based on the entire sample, we have constructed the Galactic rotation curve, determined the circular rotation velocity of the solar neighborhood around the Galactic center at R 0 = 8kpc, V 0 = 259±16 km s?1, and obtained the following spiral density wave parameters: the amplitudes of the radial and azimuthal velocity perturbations f R = ?10.8 ± 1.2 km s?1 and f θ = 7.9 ± 1.3 km s?1, respectively; the pitch angle for a two-armed spiral pattern i = ?6.0° ± 0.4°, with the wavelength of the spiral density wave near the Sun being λ = 2.6 ± 0.2 kpc; and the radial phase of the Sun in χ = ?120° ± 4°. We show that such peculiarities of the Gould Belt as the local expansion of the system, the velocity ellipsoid vertex deviation, and the significant additional rotation can be explained in terms of the density wave theory. All these effects decrease noticeably once the influence of the spiral density wave on the velocities of nearby stars has been taken into account. The influence of Gould Belt stars on the Galactic parameter estimates has also been revealed. Eliminating them from the kinematic equations has led to the following new values of the spiral density wave parameters: f θ = 2.9 ± 2.1 km s?1 and χ = ?104° ± 6°.  相似文献   

13.
Two spectra of the star BM Ori were obtained with the 2.6-m Crimean Astrophysical Observatory telescope near its maximum eclipse phase. The light detector was a CCD array. The wavelength range 5305–5373 Å was chosen in such a way that it contained no strong primary lines. Optimum filtration of the spectra yielded a signal-to-noise ratio of ~300. Eighteen secondary lines are seen in the spectrum. Atmospheric parameters of the secondary star were determined: T eff=5740 K and logg=3.0; the secondary was classified by these parameters as being of spectral type G2 III. The best agreement between observed and synthetic spectra is achieved for metallicity [M/H]=?0.5 and microturbulence ξt=0 km s?1. The projected rotational velocity is Vsini=60 km s?, in agreement with the synchronous velocity in the hypothesis that assumes a total eclipse by the secondary star. Atmospheric elemental abundances in the secondary are estimated. Nickel, chromium, and iron exhibit an underabundance of ~1 dex.  相似文献   

14.
We succeeded in separating the absorption lines of both the primary C1 and the secondary C2 component in the spectra of the young massive binary θ 1 OriC (O6Vp + B0V, mass sum 44 ± 7M ), obtained during the period from November 1995 to February 2013 with different telescopes. These observations allowed us to derive, for the first time, the radial velocities of both components. The orbitalmotion of the secondary star is traced through its weak (the line depth is approximately 0.01–0.02) absorption lines of CII, NII, OII, Si III, which are broadened by fast rotation of the star. Silicon absorptions Si III λλ 4553, 4568, and 4575 are better suited for radial velocity measurements than the other lines. From the velocity curves, we obtained the systemic velocity of the system, γ = 31 ±2 kms?1, and semi-amplitudes of the C1 and C2 velocities: K 1 = 15 ± 2 kms?1, K 2 = 43 ± 3 kms?1. This leads to individual component masses of M 1 = 33 ± 5 M and M 2 = 11 ± 5 M , based on the adopted mass sum. At present, the combined spectroscopic-interferometric orbital solution cannot be obtained because of the large scatter of velocity measurements caused by chaotic line shifts in the spectrum of the primary star and by the weakness of wide absorptions from the secondary. New spectroscopy with a resolution of R ≥ 30000 and S/N ratio over 200 performed in the period close to the periastron passage in the second half of 2013, as well as additional long-baseline interferometry, will be decisive in refining the parameters of θ 1 OriC. We expect that as a result of this campaign, masses and luminosities of the components will be determined with an accuracy of 2–3%.  相似文献   

15.
We report the physical and orbital parameters of the visible component of the spectroscopic binary HD37737 (m V = 8.03). The observations were performed with the 1.2-m telescope of the Kourovka Astronomical Observatory of the Ural Federal University in 2012 and the 6-m BTA telescope of the SAO RAS in 2007 and 2009. Radial velocities were measured separately from each spectral line of the list by the cross-correlation method with a synthetic spectrum. The latter was calculated using the grids of non-LTE model atmospheres with solar chemical compositions. A significant difference in the epochs of observations (2005–2012) allowed to refine the orbital period of the star (7 · d 84705) and the orbital elements of the binary system. We obtained an estimate of the mass function f(m) = 0.23 ± 0.02M . The best agreement between the synthetic and observed spectra is achieved at T eff = 30 000 K and log g = 3.50 according to the observations on both instruments. The obtained parameters correspond to a star of spectral type O9.5 III, with mass estimated at 26 ± 2M . The minimum mass estimate of the secondary component of the binary is 6.2 ± 0.5M . We have discovered a fact that the velocities, obtained from different spectral lines, differ, which is typical for giant stars. Engaging additional spectra, obtained in 2005 with the 2.1-m KPNO telescope, we investigated the effect of this fact on the estimate of the speed of the system’s center of mass. The difference in the velocities of various lines is approximately the same in the spectra, obtained at all the three instruments. The obtained ratios suggest that the deeper layers of the atmosphere of the star are moving with a greater velocity than the outer layers. Depending on the line, the estimate of the heliocentric velocity of the binary’s center of mass varies in the range from ?11 to 1 km/s.  相似文献   

16.
Open star clusters from the MWSC (Milky Way Star Clusters) catalogue have been used to determine the Galactic rotation parameters. The circular rotation velocity of the solar neighborhood around the Galactic center has been found from data on more than 2000 clusters of various ages to be V 0 = 236 ± 6 km s?1 for the adopted Galactocentric distance of the Sun R 0 = 8.3 ± 0.2 kpc. The derived angular velocity parameters are Ω 0 = 28.48 ± 0.36 km s?1 kpc?1, Ω0 = ?3.50 ± 0.08 km s?1 kpc?2, and Ω0 = 0.331 ± 0.037 km s?1 kpc?3. The influence of the spiral density wave has been detected only in the sample of clusters younger than 50 Myr. For these clusters the amplitudes of the tangential and radial velocity perturbations are f θ = 5.6 ± 1.6 km s?1 and f R = 7.7 ± 1.4 km s?1, respectively; the perturbation wavelengths are λ θ = 2.6 ± 0.5 kpc (i θ = ?11? ± 2?) and λ R = 2.1 ± 0.5 kpc (i R = ?9? ± 2?) for the adopted four-armed model (m = 4). The Sun’s phase in the spiral density wave is (χ)θ = ?62? ± 9? and (χ)R = ?85? ± 10? from the residual tangential and radial velocities, respectively.  相似文献   

17.
We consider an equation of state that leads to a first-order phase transition from the nucleon state to the quark state with a transition parameter λ>3/2 (λ=ρQ/(ρN+P0/c2)) in superdense nuclear matter. Our calculations of integrated parameters for superdense stars using this equation of state show that on the stable branch of the dependence of stellar mass on central pressure dM/dPc>0) in the range of low masses, a new local maximum with Mmax=0.082 and R=1251 km appears after the formation of a toothlike kink (M=0.08M, R=205 km) attributable to quark production. For such a star, the mass and radius of the quark core are Mcore=0.005M and Rcore=1.73 km, respectively. In the model under consideration, mass accretion can result in two successive transitions to a quark-core neutron star with energy release similar to a supernova explosion: initially, a low-mass star with a quark core is formed; the subsequent accretion leads to configurations with a radius of ~1000 km; and, finally, the second catastrophic restructuring gives rise to a star with a radius of ~100 km.  相似文献   

18.
We present the first ever study of the bright star HD 1. The star was chosen arbitrarily just because of its outstanding Henry Draper number. Surprisingly, almost nothing is known about this bright 7.m4 star. Our observations were performed as part of the commissioning of the robotic telescope facility STELLA and its fiber‐fed high‐resolution optical echelle spectrograph SES in the years 2007–2010. We found long‐term radial velocity variations with a full amplitude of 9 km s–1 with an average velocity of –29.8 km s–1 and suggest the star to be a hitherto unknown single‐lined spectroscopic binary. A preliminary orbit with a period of 6.2 years (2279±69 days) and an eccentricity of 0.50±0.01 is given. Its rms uncertainty is just 73 m s–1. HD 1 appears to be a G9‐K0 giant of luminosity class IIIa with Teff = 4850±100 K, logg = 2.0±0.2, L ≈ 155 L, a mass of 3.0±0.3 M, a radius of 17.7 R, and an age of ≈350 Myr. A relative abundance analysis led to a metallicity of [Fe/H] = –0.12 ± 0.09. The α ‐element silicon may indicate an overabundance of +0.13 though. The low strengths of some s‐process lines and a lower limit for the 12C/13C isotope ratio of ≥16 indicate that HD 1 is on the first ascend of the RGB. The absorption spectral lines appear rotationally broadened with a v sin i of 5.5±1.2 km s–1 but no chromospheric activity is evident. We also present photometric monitoring BV (RI)C data taken in parallel with STELLA. The star is likely a small‐amplitude (<10 mmag) photometric variable although no periodicity was found (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Speckle interferometric binary system HD375; Is it a sub-giant binary?   总被引:1,自引:0,他引:1  
Atmospheric modeling is used to build synthetic spectral energy distributions (SEDs) for the individual components of the speckle interferometric binary system HD375. These synthetic SEDs are combined together for the entire system and compared with its observed SED in an iterative procedure to achieve the best fit. Kurucz blanketed models and the measurements of magnitude differences were used to build these SEDs. The input physical parameters for building these best fitted synthetic SEDs represent adequately enough properties of the system. These parameters are: T eff a = 6100 ± 50 K, T eff b = 5940 ± 50 K, log g a = 4.01 ± 0.10, log g b = 3.98 ± 0.10, R a = 1.93 ± 0.20R , R b = 1.83 ± 0.20R , M v a = 3 · m 26 ± 0.40, M v b = 3 · m 51 ± 0.50, L a = 4.63 ± 0.80 L , and L b = 3.74 ± 0.70 L , in accordance with the new estimated parallax π = 12.02 ± 0.60 mas. A modified orbit of the system is built and compared with earlier orbits, and the masses of the two components are calculated as M a = 1.35M and M b = 1.25M . Based on the estimated physical and geometrical parameters of the system, which are confirmed by synthetic photometry, we suggest that the two components are evolved subgiant (F8.5 IV and G0 IV) stars with the age of 3.5 Gyr, formed by fragmentation.  相似文献   

20.
The main results of a study of a catalogue of physical parameters of 1041 spectroscopic binaries are presented. The distribution of spectroscopic binaries over all main parametersM 1, a, e, M1/M2, P, and certain dependencies between some of them have been found.
  1. It appears that among bright (m v?3 m –5 m ) stars withM?1M , about 40% are apparently spectroscopic binaries with comparable masses of components.
  2. The majority of spectroscopic binaries with the ratio of the large semiaxis of the orbit to the radius of the primarya/R 1?20, have eccentricities close to zero. This is probably a consequence of the tidal circularization of orbits of close binaries by viscous friction.
  3. The discovery of duplicity of double-line spectroscopic binaries is possible only if the semiamplitude of radial velocityK 1 is almost 10 times higher than the semiamplitude of the radial velocity of a single-line spectroscopic binary of the same mass.
  4. Double-line spectroscopic binaries witha/R ?6(M 1/M )1/3,M 1M 2?1.5M are almost almost absent, and the number of stars witha/R ?6(M 1/M )1/3,M 1≈1.5M is relatively low.
  5. The distribution of unevolved SB stars over the large semiaxis may be described by the expression d(N d/Nt)≈0.2 d loga for 6(M 1/M )1/3?a/R ?100.
  6. The intial mass-function for primaries of spectroscopic binaries is the same Salpeter function dN d≈M 1 ?2.35 dM 1 for 1?M 1/M ?30.
  7. It is possible to explain the observed ratio of the number of single-line spectroscopic binaries to the number of double-line binaries if one assumes that the average initial mass ratio is close to 1 and that the mass of the postmass-exchange remnant of the primary exceeds the theoretical one and/or that half of the angular momentum of the system is lost during mass-exchange.
  8. The above-mentioned distributions ofM 1 anda and assumptions on the mass of remnant and/or momentum loss also allow us to explain the observed shapes of dN/dM, dN/dq, and dN/da distributions after some selection effects are taken into account.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号