首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remotely sensed (RS) data can add value to a hydrological model calibration. Among this, RS soil moisture (SM) data have mostly been assimilated into conceptual hydrological models using various transformed variable or indices. In this study, raw RS surface SM is used as a calibration variable in the Soil and Water Assessment Tool model. This means the SM values were not transformed into another variable (e.g., soil water index and root zone SM index). Using a nested catchment, calibration based only on RS SM and optimizing model parameters sensitive to SM using particle swarm optimization improved variations in streamflow predictions at some of the gauging stations compared to the uncalibrated model. This highlighted part of the catchments where the SM signal directly influenced the flow distribution. Additionally, highlighted high and low flow signals were mostly influenced. The seasonal breakdown indicates that the SM signal is more useful for calibrating in wetter seasons and in areas with higher variations in elevation. The results identified that calibration only on RS SM improved the general rainfall–runoff response simulation by introducing delays but cannot correct the overall routing effect. Furthermore, catchment characteristics (e.g., land use, elevation, soil types, and precipitation) regulating SM variation in different seasons highlighted by the model calibration are identified. This provides further opportunities to improve model parameterization.  相似文献   

2.
《水文科学杂志》2013,58(4):613-625
Abstract

Estimates of rainfall elasticity of streamflow in 219 catchments across Australia are presented. The rainfall elasticity of streamflow is defined here as the proportional change in mean annual streamflow divided by the proportional change in mean annual rainfall. The elasticity is therefore a simple estimate of the sensitivity of long-term streamflow to changes in long-term rainfall, and is particularly useful as an initial estimate of climate change impact in land and water resources projects. The rainfall elasticity of streamflow is estimated here using a hydrological modelling approach and a nonparametric estimator. The results indicate that the rainfall elasticity of streamflow (? P ) in Australia is about 2.0–3.5 (observed in about 70% of the catchments), that is, a 1% change in mean annual rainfall results in a 2.0–3.5% change in mean annual streamflow. The rainfall elasticity of streamflow is strongly correlated to runoff coefficient and mean annual rainfall and streamflow, where streamflow is more sensitive to rainfall in drier catchments, and those with low runoff coefficients. There is a clear relation-ship between the ? P values estimated using the hydrological modelling approach and those estimated using the nonparametric estimator for the 219 catchments, although the values estimated by the hydrological modelling approach are, on average, slightly higher. The modelling approach is useful where a detailed study is required and where there are sufficient data to reliably develop and calibrate a hydrological model. The nonparametric estimator is useful where consistent estimates of the sensitivity of long-term streamflow to climate are required, because it is simple to use and estimates the elasticity directly from the historical data. The nonparametric method, being model independent, can also be easily applied in comparative studies to data sets from many catchments across large regions.  相似文献   

3.
Abstract

Spatial error regression is employed to regionalize the parameters of a rainfall–runoff model. The approach combines regression on physiographic watershed characteristics with a spatial proximity technique that describes the spatial dependence of model parameters. The methodology is tested for the monthly abcd model at a network of gauges in southeast United States and compared against simpler regression and spatial proximity approaches. Unlike other comparative regionalization studies that only evaluate the skill of regionalized streamflow predictions in ungauged catchments, this study also examines the fit between regionalized parameters and their optimal (i.e. calibrated) values. Interestingly, the spatial error model produces parameter estimates that better resemble the optimal parameters than either of the simpler methods, but the spatial proximity method still yields better hydrologic simulations. The analysis suggests that the superior streamflow predictions of spatial proximity result from its ability to better preserve correlations between compensatory hydrological parameters.
Editor D. Koutsoyiannis; Associate editor Y. Gyasi-Agyei  相似文献   

4.
ABSTRACT

The paper presents the observed effects on the streamflow of changing a tropical forest in the high rainfall belt of Zambia to agricultural use based on traditional farming methods. Hydrological observations were carried out on four small catchments under their natural conditions first, and later two of them under agricultural use with accompanying deforestation. Simple linear regression analysis of both monthly and annual runoff from the treated catchments on the monthly and annual runoff from undisturbed catchments showed that there was an increase in streamflow as a result of deforestation and subsistence agriculture. It is also shown that the shape of the flood hydrograph was changed as a result of changes in land use.  相似文献   

5.
Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.  相似文献   

6.
This work develops a top‐down modelling approach for storm‐event rainfall–runoff model calibration at unmeasured sites in Taiwan. Twenty‐six storm events occurring in seven sub‐catchments in the Kao‐Ping River provided the analytical data set. Regional formulas for three important features of a streamflow hydrograph, i.e. time to peak, peak flow, and total runoff volume, were developed via the characteristics of storm event and catchment using multivariate regression analysis. Validation of the regional formulas demonstrates that they reasonably predict the three features of a streamflow hydrograph at ungauged sites. All of the sub‐catchments in the study area were then adopted as ungauged areas, and the three streamflow hydrograph features were calculated by the regional formulas and substituted into the fuzzy multi‐objective function for rainfall–runoff model calibration. Calibration results show that the proposed approach can effectively simulate the streamflow hydrographs at the ungauged sites. The simulated hydrographs more closely resemble observed hydrographs than hydrographs synthesized using the Soil Conservation Service (SCS) dimensionless unit hydrograph method, a conventional method for hydrograph estimation at ungauged sites in Taiwan. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Sixteen small catchments in the Maroondah region of Victoria, Australia were analysed using rainfall, temperature and streamflow time series with a rainfall–runoff model whose parameters efficiently characterize the hydrological response of a catchment. A set of catchment attributes for each of these catchments was then compared with the associated set of hydrological response characteristics of the catchments as estimated by the model. The time constant governing quickflow recession of streamflow (τq) was related to the drainage network and catchment area. The time constant governing slowflow recession of streamflow (τs) was related to the slope and shape of the catchment. The parameter governing evapotranspirative losses ( f ) was related to catchment gradient and vegetative water use. Forestry activities in the catchments changed evapotranspirative losses and thus total volume of streamflow, but did not affect the rate of streamflow recession.  相似文献   

8.
Rainfall–runoff modelling at ungauged catchments often involves the transfer of calibrated model parameters from ‘donor’ gauged catchments. However, in any rainfall–runoff model, some parameters tend to be more sensitive to the objective function, whereas others are insensitive over their entire feasible range. In this paper, we analyse the effect of selectively transferring sensitive versus insensitive parameters on streamflow predictability at ungauged catchments. We develop a simple daily time‐step rainfall–runoff model [exponential bucket hydrologic model (EXP‐HYDRO)] and calibrate it at 756 catchments within the continental USA. Nash–Sutcliffe efficiency of (NS) is used as the objective function. The model simulates satisfactorily at 323 catchments (NS > 0.6), most of which are located in the eastern part of the USA, along the Rocky Mountain Range, and near the western Pacific coast. Of the six calibration parameters, only three parameters are found to be sensitive to NS. Two of these parameters control the hydrograph recession behaviour of a catchment, and the third parameter controls the snowmelt rate. We find that when only sensitive parameters are transferred, model performance at ungauged catchments is almost at par with that of transferring all six parameters. Conversely, the transfer of only insensitive parameters results in a significant deterioration in model performance. Results suggest that streamflow predictability at ungauged catchments using rainfall–runoff models is largely dependent on the transfer of a small subset of parameters. We recommend that, in any modelling framework, such parameters should be identified and further characterized to better understand the information controlling streamflow predictability at ungauged catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

The capability of the Surface inFiltration Baseflow (SFB) conceptual rainfall-runoff model to simulate streamflow for three catchments selected from northern Iraq is investigated. These catchments differ in their climatic regimes and physical characteristics. Three versions of the model were tested: the original three-parameter model (SFB), the modified five-parameter model (SFB-5), and the modified six-parameter model (SFB-6). The available daily precipitation, potential evapotranspiration and runoff data were used in conjunction with a simulated annealing (SA) optimization technique to calibrate the various versions of the SFB model. A simple sensitivity analysis was then carried out to determine the relative importance of the model parameters. The study indicated that use of the original three parameter model was not adequate to simulate monthly streamflow in the selected catchments. The modified version (SFB-5) provided better runoff simulation than the original SFB model; overall a 19% increase was observed in the coefficient of determination (R2) between simulated and observed monthly runoff. The SFB-5 model performed with varying degrees of success among the catchments. The model performance in the validation stage was reasonable and comparable to that of the calibration stage. The sensitivity analysis of the SFB model for arid catchments revealed that the baseflow parameter (B) was the most sensitive one, while the S and F parameters were less sensitive than the B parameter.  相似文献   

10.
Better parameterization of a hydrological model can lead to improved streamflow prediction. This is particularly important for seasonal streamflow forecasting with the use of hydrological modelling. Considering the possible effects of hydrologic non‐stationarity, this paper examined ten parameterization schemes at 12 catchments located in three different climatic zones in east Australia. These schemes are grouped into four categories according to the period when the data are used for model calibration, i.e. calibration using data: (1) from a fixed period in the historical records; (2) from different lengths of historical records prior to prediction year; (3) from different climatic analogue years in the past; and (4) data from the individual months. Parameterization schemes were evaluated according to model efficiency in both the calibration and verification period. The results show that the calibration skill changes with the different historic periods when data are used at all catchments. Comparison of model performance between the calibration schemes indicates that it is worth calibrating the model with the use of data from each individual month for the purpose of seasonal streamflow forecasting. For the catchments in the winter‐dominant rainfall region of south‐east Australia, a more significant shift in rainfall‐runoff relationships at different periods was found. For those catchments, model calibration with the use of 20 years of data prior to the prediction year leads to a more consistent performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (Østlandet) Norway by applying the Mann–Kendall test and Theil–Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983–2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. Østlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in Østlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration.  相似文献   

12.
The curve number (CN) method is widely used for rainfall–runoff modelling in continuous hydrologic simulation models. A sound continuous soil moisture accounting procedure is necessary for models using the CN method. For shallow soils and soils with low storage, the existing methods have limitations in their ability to reproduce the observed runoff. Therefore, a simple one‐parameter model based on the Soil Conservation Society CN procedure is developed for use in continuous hydrologic simulation. The sensitivity of the model parameter to runoff predictions was also analysed. In addition, the behaviour of the procedure developed and the existing continuous soil moisture accounting procedure used in hydrologic models, in combination with Penman–Monteith and Hargreaves evapotranspiration (ET) methods was also analysed. The new CN methodology, its behaviour and the sensitivity of the depletion coefficient (model parameter) were tested in four United States Geological Survey defined eight‐digit watersheds in different water resources regions of the USA using the SWAT model. In addition to easy parameterization for calibration, the one‐parameter model developed performed adequately in predicting runoff. When tested for shallow soils, the parameter is found to be very sensitive to surface runoff and subsurface flow and less sensitive to ET. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A simple modelling framework for assessing the response of ungauged catchments to land use change in South‐Western Australia is presented. The framework uses knowledge of transpiration losses from native vegetation and pasture and then partitions the ‘excess’ water (resulting from reduced transpiration after land use change) between runoff and deep storage. The simple partitioning is achieved by using soft information (satellite imagery, previous mapping and field assessment) to delimit the spread of the permanently saturated area close to the stream. Runoff is then assumed to increase in proportion to the saturated area, with the residual difference going to deep storage. The model parameters to describe the annual water yield are obtained a priori and no calibration to streamflow is required. We tested the model using gauged records over 25 years from paired catchment experiments in South‐Western Australia. Very good estimates of runoff were obtained from high rainfall (>1100 mm yr−1) catchments (R2 > 0·9) and for low rainfall (<900 mm yr−1) catchments after clearing (R2 = 0·96) but results were poorer (R2 = 0·55) for an uncleared low rainfall catchment, although overall balances were reasonable. In the drier uncleared catchments, the within‐year distributions of rainfall may exert a substantial influence on runoff response that is not completely captured by the presented model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The response of intermittent catchments to rainfall is complex and difficult to model. This study uses the spatially distributed CATchment HYdrology (CATHY) model to explore how the frequency of daily rainfall (λ) can affect the hydrologic regime of intermittent catchments. After a multi-objective calibration and validation of CATHY against experimental measurements of streamflow and groundwater levels in a catchment used as a pasture, the role of λ in affecting streamflow characteristics was explored using different scenarios. With different values of λ for the dry and wet periods of the year, CATHY showed that a series of frequent rainfall events was often associated with incipient streamflow, independent of the season. Activation of streamflow during the wet season was related to multiple factors and was not often associated with the shallow groundwater levels near the outlet of the catchment. The interplay between rainfall depth and intensity acted as the most important factor for the generation of streamflow. Using the difference between accumulated rainfall and evapotranspiration as a measure of wetness, saturated subsurface flow mechanism generated streamflow in simulations with wetness at least three times larger than mean wetness of other simulations. Although groundwater uprise near the outlet did not effectively contribute to streamflow in the initial days of flow, it strongly correlated with the magnitude of the runoff coefficient. Values of λ close or equal to the maximum value in the wet season can sustain the connectivity between groundwater and streamflow in the riparian zone. This connectivity increases the catchment wetness, which consequently results in an increase of the generated streamflow. Our study showed that rainfall regimes characterized by different λ were able to identify distinct flow regimes typical of either intermittent, ephemeral, or nonflowing catchments. Decrease of λ in the wet season is likely associated with a reduction of streamflow, with a shift of flow regime from intermittent to ephemeral or no-flow.  相似文献   

15.
Abstract

The Hydrological Recursive Model (HRM), a conceptual rainfall-runoff model, was applied for local and regional simulation of hourly discharges in the transnational Alzette River basin (Luxembourg-France-Belgium). The model was calibrated for a range of various sub-basins with a view to analysing its ability to reproduce the variability of basin responses during flood generation. The regionalization of the model parameters was obtained by fitting simultaneously the runoff series of calibration sub-basins after their spatial discretization in lithological contrasting isochronal zones. The runoff simulations of the model agreed well with the recorded runoff series. Significant correlations with some basin characteristics and, noticeably, the permeability of geological formations, could be found for two of the four free model parameters. The goodness of fit for runoff predictions using the derived regional parameter set was generally satisfactory, particularly for the statistical characteristics of streamflow. A more physically-based modelling approach, or at least an explicit treatment of quick surface runoff, is expected to give better results for high peak discharge.  相似文献   

16.
Understanding hydrological processes at catchment scale through the use of hydrological model parameters is essential for enhancing water resource management. Given the difficulty of using lump parameters to calibrate distributed catchment hydrological models in spatially heterogeneous catchments, a multiple calibration technique was adopted to enhance model calibration in this study. Different calibration techniques were used to calibrate the Soil and Water Assessment Tool (SWAT) model at different locations along the Logone river channel. These were: single-site calibration (SSC); sequential calibration (SC); and simultaneous multi-site calibration (SMSC). Results indicate that it is possible to reveal differences in hydrological behavior between the upstream and downstream parts of the catchment using different parameter values. Using all calibration techniques, model performance indicators were mostly above the minimum threshold of 0.60 and 0.65 for Nash Sutcliff Efficiency (NSE) and coefficient of determination (R 2) respectively, at both daily and monthly time-steps. Model uncertainty analysis showed that more than 60% of observed streamflow values were bracketed within the 95% prediction uncertainty (95PPU) band after calibration and validation. Furthermore, results indicated that the SC technique out-performed the other two methods (SSC and SMSC). It was also observed that although the SMSC technique uses streamflow data from all gauging stations during calibration and validation, thereby taking into account the catchment spatial variability, the choice of each calibration method will depend on the application and spatial scale of implementation of the modelling results in the catchment.  相似文献   

17.
A lumped parameter dynamic rainfall-runoff model, IHACRES, is applied to the large upland area (more than 4500 km2) of the Goulburn Valley Basin, Victoria, Australia to predict streamflow under different climatic conditions. This paper presents the first evaluation of a rainfall–runoff model at large catchment scale, which is comprehensive in terms of the number of catchments investigated and the number of calibration and simulation periods used. The basin is subdivided into 12 catchments (from 100 to 700 km2), each of which is calibrated separately. High values of model efficiency and low bias are consistently obtained for different calibration sub-periods for all catchments in the basin. Simulation or so-called validation tests are used to select the best models for each catchment. This allows simulation of the water regime during long historical (approximately 90 year) periods when only climatological (rainfall and temperature) data were available. This procedure is extremely important for the estimation of the effect of climate variability and of the possible impact of climate change on the hydrological regime in the region and, in particular, for supporting irrigation management of the basin. Analysis of a composite catchment (2417 km2) and its five separate subcatchments indicates that the information content in the rainfall–streamflow data is independent of catchment size. Dynamic modelling of the daily water balance at the macroscale is limited principally by the adequacy of the precipitation gauging network. When a good estimate of areal precipitation is available for a catchment, it is not necessary to consider subcatchment-scale variability for modelling if the only interest is the daily discharge and evaporation losses from the catchment.  相似文献   

18.
Streamflow variability in space and time critically affects anthropic water uses and ecosystem services. Unfortunately, spatiotemporal patterns of flow regimes are often unknown, as discharge measurements are usually recorded at a limited number of hydrometric stations unevenly distributed along river networks. Advances in understanding the physical processes that control the spatial patterns of river flows are therefore necessary to predict water availability at ungauged locations or to extrapolate pointwise streamflow observations. This work explores the use of the spatial correlation of river flows as a metric to quantify the similarity between hydrological responses of two catchments. Following a stochastic framework, 340,000 cross‐correlations between pairs of daily streamflows time series are predicted at a seasonal timescale across the contiguous United States using 413 catchments of the MOPEX dataset. Model predictions of streamflow correlation obtained in absence of run‐off information are successfully used to identify catchment outlets sharing similar discharge dynamics and flow regimes across a broad range of geomorphoclimatic conditions, without relying on calibration. The selection of reference streamgauges based on predicted streamflow correlation generally outperforms the selection based on spatial proximity, especially as the density of available gauged sections decreases. Interestingly, correlated outlets share a broad spectrum of hydrological signatures (mean discharge, flow variability, and recession properties), suggesting that catchments forced by analogous frequency and intensity of effective rainfall events might exhibit common geomorphoecological traits leading to similar hydrological responses. The proposed framework provides a physical basis to assist the regionalization of flow dynamics and to interpret the spatial variability of flow regimes along stream networks.  相似文献   

19.
20.
Using hydro-meteorological time series of 50 years and in situ measurements, the dominant runoff processes in perennial Andean headwater catchments in Chile were determined using the hydrological model HBV light. First, cluster analysis was used to identify dry, wet and intermediate years. From these, sub-periods were identified with contrasting seasonal climatic influences on streamflow. By calibrating the model across different periods, impacts on model performance, parameter sensitivity and identifiability were investigated, providing insights into differences in hydrological processes. The modelling approach suggested that, independently of a dry or wet period of calibration, the streamflow response is mostly consistent with flux from groundwater storage, while only a small fraction comes from direct routing of snowmelt. The variation of model parameters, such as the groundwater rate coefficient, was found to be consistent with differing recharge in wet and dry years. The resulting snowmelt–groundwater model is a realistic hypothesis of the hydrological operation of such complex, data scarce and semi-arid Andean catchments. This model may also be a useful tool for predictions of seasonal water availability and a basis for further field studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号