首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
This work develops a top‐down modelling approach for storm‐event rainfall–runoff model calibration at unmeasured sites in Taiwan. Twenty‐six storm events occurring in seven sub‐catchments in the Kao‐Ping River provided the analytical data set. Regional formulas for three important features of a streamflow hydrograph, i.e. time to peak, peak flow, and total runoff volume, were developed via the characteristics of storm event and catchment using multivariate regression analysis. Validation of the regional formulas demonstrates that they reasonably predict the three features of a streamflow hydrograph at ungauged sites. All of the sub‐catchments in the study area were then adopted as ungauged areas, and the three streamflow hydrograph features were calculated by the regional formulas and substituted into the fuzzy multi‐objective function for rainfall–runoff model calibration. Calibration results show that the proposed approach can effectively simulate the streamflow hydrographs at the ungauged sites. The simulated hydrographs more closely resemble observed hydrographs than hydrographs synthesized using the Soil Conservation Service (SCS) dimensionless unit hydrograph method, a conventional method for hydrograph estimation at ungauged sites in Taiwan. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
水文资料匮乏流域的洪水预报(PUBs)是水文科学与工程中一个尚未解决的重大挑战.中国湿润山区中小流域大多是水文资料匮乏的流域,在此地区进行洪水预报的重要手段之一就是水文模型参数的估计.对基于参数物理意义的估算方法(以下简称物理估算法)及两种区域化方法进行了研究,将其用于新安江模型参数的估算及移植.皖南山区的29个中小流域被选作水文资料丰富的测量流域,鄂西山区的3个中小流域被视为水文资料匮乏的目标流域,目的是研究目标流域与测量流域空间位置较远但物理条件相似时,区域化等方法是否可以有效估计模型参数.结果表明,即使目标流域与测量流域空间距离较远,区域化及物理估算法也能一定程度上减少参数估计导致的模型效率损失,且在研究区的最优参数估计方案为单流域物理相似法结合回归法及物理估算法.为长江中下游资料匮乏的山区中小流域提出了可行的新安江模型参数估计方案,为该地区的洪水预报提供指导.  相似文献   

3.
4.
5.
In single‐event deterministic design flood estimation methods, estimates of the peak discharge are based on a single and representative catchment response time parameter. In small catchments, a simplified convolution process between a single‐observed hyetograph and hydrograph is generally used to estimate time parameters such as the time to peak (TP), time of concentration (TC), and lag time (TL) to reflect the “observed” catchment response time. However, such simplification is neither practical nor applicable in medium to large heterogeneous catchments, where antecedent moisture from previous rainfall events and spatially non‐uniform rainfall hyetographs can result in multi‐peaked hydrographs. In addition, the paucity of rainfall data at sub‐daily timescales further limits the reliable estimation of catchment responses using observed hyetographs and hydrographs at these catchment scales. This paper presents the development of a new and consistent approach to estimate catchment response times, expressed as the time to peak (TPx) obtained directly from observed streamflow data. The relationships between catchment response time parameters and conceptualised triangular‐shaped hydrograph approximations and linear catchment response functions are investigated in four climatologically regions of South Africa. Flood event characteristics using primary streamflow data from 74 flow‐gauging stations were extracted and analysed to derive unique relationships between peak discharge, baseflow, direct runoff, and catchment response time in terms of TPx. The TPx parameters are estimated from observed streamflow data using three different methods: (a) duration of total net rise of a multipeaked hydrograph, (b) triangular‐shaped direct runoff hydrograph approximations, and (c) linear catchment response functions. The results show that for design hydrology and for the derivation of empirical equations to estimate catchment response times in ungauged catchments, the catchment TPx should be estimated from both the use of an average catchment TPx value computed using either Methods (a) or (b) and a linear catchment response function as used in Method (c). The use of the different methods in combination is not only practical but is also objective and has consistent results.  相似文献   

6.
In this study, a quantitative assessment of uncertainty was made in connection with the calibration of Australian Water Balance Model (AWBM) for both gauged and ungauged catchment cases. For the gauged catchment, five different rainfall data sets, 23 different calibration data lengths and eight different optimization techniques were adopted. For the ungauged catchment case, the optimum parameter sets obtained from the nearest gauged catchment were transposed to the ungauged catchments, and two regional prediction equations were used to estimate runoff. Uncertainties were ascertained by comparing the observed and modelled runoffs by the AWBM on the basis of different combinations of methods, model parameters and input data. The main finding from this study was that the uncertainties in the AWBM modelling outputs could vary from ?1.3% to 70% owing to different input rainfall data, ?5.7% to 11% owing to different calibration data lengths and ?6% to 0.2% owing to different optimization techniques adopted in the calibration of the AWBM. The performance of the AWBM model was found to be dominated mainly by the selection of appropriate rainfall data followed by the selection of an appropriate calibration data length and optimization algorithm. Use of relatively short data length (e.g. 3 to 6 years) in the calibration was found to generate relatively poor results. Effects of different optimization techniques on the calibration were found to be minimal. The uncertainties reported here in relation to the calibration and runoff estimation by the AWBM model are relevant to the selected study catchments, which are likely to differ for other catchments. The methodology presented in this paper can be applied to other catchments in Australia and other countries using AWBM and similar rainfall–runoff models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
《水文科学杂志》2012,57(1):127-137
ABSTRACT

Determining the catchment design peak flow is crucial in hydrological practice. In this paper, the conceptual rainfall–runoff model EBA4SUB (Event-Based Approach for Small and Ungauged Basins) was applied in six catchments in Iran. The aims were to test EBA4SUB in reconstructing runoff hydrographs for the investigated case studies and to provide a suitable alternative for the review and updating of design peak flow estimation in Iran. The EBA4SUB output was compared with previous studies on selected catchments. The results show, for all case studies, a large variability in the peak flow values; the EBA4SUB model gave flow values similar to the other methodologies. The EBA4SUB model can be recommended for the following reasons: (i) it minimizes the subjectivity of the modeller. (ii) its modules are based on state-of-the-art procedures, which have been appropriately optimized for ungauged basins; and (iii) it furnishes the whole design flood hydrograph.  相似文献   

8.
Abstract

Flood frequency estimation is crucial in both engineering practice and hydrological research. Regional analysis of flood peak discharges is used for more accurate estimates of flood quantiles in ungauged or poorly gauged catchments. This is based on the identification of homogeneous zones, where the probability distribution of annual maximum peak flows is invariant, except for a scale factor represented by an index flood. The numerous applications of this method have highlighted obtaining accurate estimates of index flood as a critical step, especially in ungauged or poorly gauged sections, where direct estimation by sample mean of annual flood series (AFS) is not possible, or inaccurate. Therein indirect methods have to be used. Most indirect methods are based upon empirical relationships that link index flood to hydrological, climatological and morphological catchment characteristics, developed by means of multi-regression analysis, or simplified lumped representation of rainfall–runoff processes. The limits of these approaches are increasingly evident as the size and spatial variability of the catchment increases. In these cases, the use of a spatially-distributed, physically-based hydrological model, and time continuous simulation of discharge can improve estimation of the index flood. This work presents an application of the FEST-WB model for the reconstruction of 29 years of hourly streamflows for an Alpine snow-fed catchment in northern Italy, to be used for index flood estimation. To extend the length of the simulated discharge time series, meteorological forcings given by daily precipitation and temperature at ground automatic weather stations are disaggregated hourly, and then fed to FEST-WB. The accuracy of the method in estimating index flood depending upon length of the simulated series is discussed, and suggestions for use of the methodology provided.
Editor D. Koutsoyiannis  相似文献   

9.
The proper assessment of design hydrographs and their main properties (peak, volume and duration) in small and ungauged basins is a key point of many hydrological applications. In general, two types of methods can be used to evaluate the design hydrograph: one approach is based on the statistics of storm events, while the other relies on continuously simulating rainfall‐runoff time series. In the first class of methods, the design hydrograph is obtained by applying a rainfall‐runoff model to a design hyetograph that synthesises the storm event. In the second approach, the design hydrograph is quantified by analysing long synthetic runoff time series that are obtained by transforming synthetic rainfall sequences through a rainfall‐runoff model. These simulation‐based procedures overcome some of the unrealistic hypotheses which characterize the event‐based approaches. In this paper, a simulation experiment is carried out to examine the differences between the two types of methods in terms of the design hydrograph's peak, volume and duration. The results conclude that the continuous simulation methods are preferable because the event‐based approaches tend to underestimate the hydrograph's volume and duration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
《水文科学杂志》2013,58(1):86-87
  相似文献   

11.
Regionalization of model parameters by developing appropriate functional relationship between the parameters and basin characteristics is one of the potential approaches to employ hydrological models in ungauged basins. While this is a widely accepted procedure, the uniqueness of the watersheds and the equifinality of parameters bring lot of uncertainty in the simulations in ungauged basins. This study proposes a method of regionalization based on the probability distribution function of model parameters, which accounts the variability in the catchment characteristics. It is envisaged that the probability distribution function represents the characteristics of the model parameter, and when regionalized the earlier concerns can be addressed appropriately. The method employs probability distribution of parameters, derived from gauged basins, to regionalize by regressing them against the catchment attributes. These regional functions are used to develop the parameter characteristics in ungauged basins based on the catchment attributes. The proposed method is illustrated using soil water assessment tool model for an ungauged basin prediction. For this numerical exercise, eight different watersheds spanning across different climatic settings in the USA are considered. While all the basins considered in this study were gauged, one of them was assumed to be ungauged (pseudo-ungauged) in order to evaluate the effectiveness of the proposed methodology in ungauged basin simulation. The process was repeated by considering representative basins from different climatic and landuse scenarios as pseudo-ungauged. The results of the study indicated that the ensemble simulations in the ungauged basins were closely matching with the observed streamflow. The simulation efficiency varied between 57 and 61 % in ungauged basins. The regional function was able to generate the parameter characteristics that were closely matching with the original probability distribution derived from observed streamflow data.  相似文献   

12.
One of the most important functions of catchments is the storage of water. Catchment storage buffers meteorological extremes and interannual streamflow variability, controls the partitioning between evaporation and runoff, and influences transit times of water. Hydrogeological data to estimate storage are usually scarce and seldom available for a larger set of catchments. This study focused on storage in prealpine and alpine catchments, using a set of 21 Swiss catchments comprising different elevation ranges. Catchment storage comparisons depend on storage definitions. This study defines different types of storage including definitions of dynamic and mobile catchment storage. We then estimated dynamic storage using four methods, water balance analysis, streamflow recession analysis, calibration of a bucket‐type hydrological model Hydrologiska Byråns Vattenbalansavdelning model (HBV), and calibration of a transfer function hydrograph separation model using stable isotope observations. The HBV model allowed quantifying the contributions of snow, soil and groundwater storages compared to the dynamic catchment storage. With the transfer function hydrograph separation model both dynamic and mobile storage was estimated. Dynamic storage of one catchment estimated by the four methods differed up to one order of magnitude. Nevertheless, the storage estimates ranked similarly among the 21 catchments. The largest dynamic and mobile storage estimates were found in high‐elevation catchments. Besides snow, groundwater contributed considerably to this larger storage. Generally, we found that with increasing elevation the relative contribution to the dynamic catchment storage increased for snow, decreased for soil, but remained similar for groundwater storage.  相似文献   

13.
A method to build synthetic hydrographs is introduced, based on 1300 gauging stations in France and Switzerland, covering a wide range of size and climatology. For each station, an average of two floods per year are selected by a peak-over-threshold method, providing about 69?000 hydrographs. For a given catchment, some “donor stations” are selected with criteria of proximity in space, size and runoff production. These donors provide hundreds of hydrographs which can complement the ones recorded locally, or replace them if no hydrograph is available. With this subset of hydrographs, one can estimate the catchment’s average peak-to-volume ratio of floods, and build the corresponding median hydrograph. Another application is, for a given daily discharge sequence (being observed or simulated), to generate a relevant synthetic hydrograph by combining appropriate hydrographs of the subset. These methods are assessed by performing a jack-knife validation on a wide dataset of stations.  相似文献   

14.
Catchments in many parts of the world are either ungauged or poorly gauged, and the dominant processes governing their streamflow response are still poorly understood. The analysis of runoff coefficients provides essential insight into catchment response, particularly if both range of catchments and a range of events are compared. This paper investigates how well the hydrological runoff of 11 small, poorly gauged catchments with ephemeral streams (0·1‐0·6 km2) can be compared using estimated runoff with the associated uncertainty. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008‐2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was estimated using Manning's equation and channel cross‐section measurements. Innovative work has been performed under controlled experimental conditions to estimate Manning's coefficient values for the different cover types observed in studied streams: non‐aquatic vegetations (giant reed, bramble and thistle), grass and coarse granular deposits. The results show that estimates derived using roughness coefficients differ from those previously established for larger streams with aquatic vegetation. Catchment runoff was compared at both the event and the annual scale. The results indicate significant variability between the catchment's responses. This variability allows for classification in spite of all the uncertainty associated with runoff estimation. This study highlights the potential of using a network of poorly gauged catch ments. From almost no catchment understanding the proposed methodology allows to compare poorly gauged catchments and highlights similarity/dissimilarity between catchment responses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

We present a procedure for estimating Q95 low flows in both gauged and ungauged catchments where Q95 is the flow that is exceeded 95% of the time. For each step of the estimation procedure, a number of alternative methods was tested on the Austrian data set by leave-one-out cross-validation, and the method that performed best was used in the final procedure. To maximise the accuracy of the estimates, we combined relevant sources of information including long streamflow records, short streamflow records, and catchment characteristics, according to data availability. Rather than deriving a single low flow estimate for each catchment, we estimated lower and upper confidence limits to allow local information to be incorporated in a practical application of the procedure. The components of the procedure consist of temporal (climate) adjustments for short records; grouping catchments into eight seasonality-based regions; regional regressions of low flows with catchment characteristics; spatial adjustments for exploiting local streamflow data; and uncertainty assessment. The results are maps of lower and upper confidence limits of low flow discharges for 21 000 sub-catchments in Austria.  相似文献   

16.
Hydrological models used for flood prediction in ungauged catchments are commonly fitted to regionally transferred data. The key issue of this procedure is to identify hydrologically similar catchments. Therefore, the dominant controls for the process of interest have to be known. In this study, we applied a new machine learning based approach to identify the catchment characteristics that can be used to identify the active processes controlling runoff dynamics. A random forest (RF) regressor has been trained to estimate the drainage velocity parameters of a geomorphologic instantaneous unit hydrograph (GIUH) in ungauged catchments, based on regionally available data. We analyzed the learning procedure of the algorithm and identified preferred donor catchments for each ungauged catchment. Based on the obtained machine learning results from catchment grouping, a classification scheme for drainage network characteristics has been derived. This classification scheme has been applied in a flood forecasting case study. The results demonstrate that the RF could be trained properly with the selected donor catchments to successfully estimate the required GIUH parameters. Moreover, our results showed that drainage network characteristics can be used to identify the influence of geomorphological dispersion on the dynamics of catchment response.  相似文献   

17.
Geomorphological evidence and recent trash lines were used as stage indicators in a step-backwater computer model of high discharges through an ungauged bedrock channel. The simulation indicated that the peak discharge from the 26.7 m2 catchment was close to 150m3s?1 during the passage of Hurricane Charlie in August 1986. This estimate can be compared with an estimate of 130–160 m3s?1 obtained using the Flood Studies Report (FSR) unit hydrograph methodology. Other palaeostage marks indicate that higher stages have occurred at an earlier time associated with a discharge of 200 m3s?1. However, consideration of both the geometry of a plunge pool and transport criteria for bedrock blocks in the channel indicates that floods since 1986 have not exceeded 150 m3s?1. Given that the estimated probable maximum flood (PMF) calculated from revised FSR procedure is at least 240 m3s?1, it is concluded that compelling evidence for floods equal to the PMF is lacking. Taking into consideration the uncertainty of the discharge estimation, the 1986 flood computed using field evidence has a minimum return period of 100 years using the FSR procedure. This may be compared with a return period for the same event in the neighbouring gauged River Greta of > 100 years and a rainfall return period of 190 years. In as much as discharges of similar order to FSR estimates are indicated, it is concluded (a) that regional geomorphological evidence and flood simulation within ungauged catchments may be useful as a verification for hydrological estimates of recent widespread flood magnitude and (b) that palaeohydraulic computation can be useful in determining the magnitude of the local maximum [historic] flood when determining design discharges for hydraulic structures within specific catchments.  相似文献   

18.
《水文科学杂志》2013,58(2):401-408
Abstract

Knowledge of peak discharge is essential for safe and economical planning and design of hydraulic structures. In India, as in most developing countries, the majority of river basins are either sparsely gauged or not gauged at all. The gauged records are also of short length (generally 15–30 years), therefore development of robust models is necessary for estimation of streamflows. Various studies reveal that flood estimation through channel geometry is an alternative method for ungauged catchments. It is appropriate for use where flow characteristics are poorly related to catchment area and other catchment characteristics. In the present study, stream geometry parameters for 42 river sites in central-south India were used; calibration equations were developed with data for 35 stations and tested on data for the remaining seven stations. The relationships developed between mean discharge and channel geometry parameters provide an alternative technique for estimation of mean annual channel discharge.  相似文献   

19.
A geomorphological instantaneous unit hydrograph (GIUH) is derived from the geomorphological characteristics of a catchment and it is related to the parameters of the Clark instantaneous unit hydrograph (IUH) model as well as the Nash IUH model for deriving its complete shape. The developed GIUH based Clark and Nash models are applied for simulation of the direct surface run‐off (DSRO) hydrographs for ten rainfall‐runoff events of the Ajay catchment up to the Sarath gauging site of eastern India. The geomorphological characteristics of the Ajay catchment are evaluated using the GIS package, Integrated Land and Water Information System (ILWIS). The performances of the GIUH based Clark and Nash models in simulating the DSRO hydrographs are compared with the Clark IUH model option of HEC‐1 package and the Nash IUH model, using some commonly used objective functions. The DSRO hydrographs are computed with reasonable accuracy by the GIUH based Clark and Nash models, which simulate the DSRO hydrographs of the catchment considering it to be ungauged. Inter comparison of the performances of the GIUH based Clark and Nash models shows that the DSRO hydrographs are estimated with comparable accuracy by both the models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号