首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the geostatistical analysis of regionalized data, the practitioner may not be interested in mapping the unsampled values of the variable that has been monitored, but in assessing the risk that these values exceed or fall short of a regulatory threshold. This kind of concern is part of the more general problem of estimating a transfer function of the variable under study. In this paper, we focus on the multigaussian model, for which the regionalized variable can be represented (up to a nonlinear transformation) by a Gaussian random field. Two cases are analyzed, depending on whether the mean of this Gaussian field is considered known or not, which lead to the simple and ordinary multigaussian kriging estimators respectively. Although both of these estimators are theoretically unbiased, the latter may be preferred to the former for practical applications since it is robust to a misspecification of the mean value over the domain of interest and also to local fluctuations around this mean value. An advantage of multigaussian kriging over other nonlinear geostatistical methods such as indicator and disjunctive kriging is that it makes use of the multivariate distribution of the available data and does not produce order relation violations. The use of expansions into Hermite polynomials provides three additional results: first, an expression of the multigaussian kriging estimators in terms of series that can be calculated without numerical integration; second, an expression of the associated estimation variances; third, the derivation of a disjunctive-type estimator that minimizes the variance of the error when the mean is unknown.  相似文献   

2.
A regression model is used to study spatiotemporal distributions of solute content ion concentration data (calcium, chloride and nitrate), which provide important water contamination indicators. The model consists of three random and one deterministic components. The random space/time component is assumed to be homogeneous/stationary and to have a separable covariance. The purely spatial and the purely temporal random components are assumed to have homogenous and stationary increments, respectively. The deterministic component represents the space/time mean function. Inferences of the random components involve maximum likelihood and semi-parametric methods under some restrictions on the data configuration. Computational advantages and modelling limitations of the assumptions underlying the regression model are discussed. The regression model leads to simplifications in the space/time kriging and cokriging systems used to obtain space/time estimates at unobservable locations/instants. The application of the regression model in the study of the solute content ions was done at a global scale that covers the entire region of interest. The variability analysis focuses on the calculation of the spatial direct and cross-variograms and the evaluation of correlations between the three solute content ions. The space/time kriging system is developed in terms of the space direct and cross-variograms, and allows the separate estimation of the regression model components. Maps of these components are then obtained for each one of the three ions. Using the estimates of the purely spatial component, spatial dependencies between the ions are studied. Physical causes and consequences of the space/time variability are discussed, and comparisons are made with previous analyses of the solute content dataset.  相似文献   

3.
Interpolation techniques for spatial data have been applied frequently in various fields of geosciences. Although most conventional interpolation methods assume that it is sufficient to use first- and second-order statistics to characterize random fields, researchers have now realized that these methods cannot always provide reliable interpolation results, since geological and environmental phenomena tend to be very complex, presenting non-Gaussian distribution and/or non-linear inter-variable relationship. This paper proposes a new approach to the interpolation of spatial data, which can be applied with great flexibility. Suitable cross-variable higher-order spatial statistics are developed to measure the spatial relationship between the random variable at an unsampled location and those in its neighbourhood. Given the computed cross-variable higher-order spatial statistics, the conditional probability density function is approximated via polynomial expansions, which is then utilized to determine the interpolated value at the unsampled location as an expectation. In addition, the uncertainty associated with the interpolation is quantified by constructing prediction intervals of interpolated values. The proposed method is applied to a mineral deposit dataset, and the results demonstrate that it outperforms kriging methods in uncertainty quantification. The introduction of the cross-variable higher-order spatial statistics noticeably improves the quality of the interpolation since it enriches the information that can be extracted from the observed data, and this benefit is substantial when working with data that are sparse or have non-trivial dependence structures.  相似文献   

4.
Compositional Bayesian indicator estimation   总被引:1,自引:1,他引:0  
Indicator kriging is widely used for mapping spatial binary variables and for estimating the global and local spatial distributions of variables in geosciences. For continuous random variables, indicator kriging gives an estimate of the cumulative distribution function, for a given threshold, which is then the estimate of a probability. Like any other kriging procedure, indicator kriging provides an estimation variance that, although not often used in applications, should be taken into account as it assesses the uncertainty of the estimate. An alternative approach to indicator estimation is proposed in this paper. In this alternative approach the complete probability density function of the indicator estimate is evaluated. The procedure is described in a Bayesian framework, using a multivariate Gaussian likelihood and an a priori distribution which are both combined according to Bayes theorem in order to obtain a posterior distribution for the indicator estimate. From this posterior distribution, point estimates, interval estimates and uncertainty measures can be obtained. Among the point estimates, the median of the posterior distribution is the maximum entropy estimate because there is a fifty-fifty chance of the unknown value of the estimate being larger or smaller than the median; that is, there is maximum uncertainty in the choice between two alternatives. Thus in some sense, the latter is an indicator estimator, alternative to the kriging estimator, that includes its own uncertainty. On the other hand, the mode of the posterior distribution estimator, assuming a uniform prior, is coincidental with the simple kriging estimator. Additionally, because the indicator estimate can be considered as a two-part composition which domain of definition is the simplex, the method is extended to compositional Bayesian indicator estimation. Bayesian indicator estimation and compositional Bayesian indicator estimation are illustrated with an environmental case study in which the probability of the content of a geochemical element in soil being over a particular threshold is of interest. The computer codes and its user guides are public domain and freely available.  相似文献   

5.
The estimation of overburden sediment thickness is important in hydrogeology, geotechnics and geophysics. Usually, thickness is known precisely at a few sparse borehole data. To improve precision of estimation, one useful complementary information is the known position of outcrops. One intuitive approach is to code the outcrops as zero thickness data. A problem with this approach is that the outcrops are preferentially observed compared to other thickness information. This introduces a strong bias in the thickness estimation that kriging is not able to remove. We consider a new approach to incorporate point or surface outcrop information based on the use of a non-stationary covariance model in kriging. The non-stationary model is defined so as to restrict the distance of influence of the outcrops. Within this distance of influence, covariance parameters are assumed simple regular functions of the distance to the nearest outcrop. Outside the distance of influence of the outcrops, the thickness covariance is assumed stationary. The distance of influence is obtained thru a cross-validation. Compared to kriging based on a stationary model with or without zero thickness at outcrop locations, the non-stationary model provides more precise estimation, especially at points close to an outcrop. Moreover, the thickness map obtained with the non-stationary covariance model is more realistic since it forces the estimates to zero close to outcrops without the bias incurred when outcrops are simply treated as zero thickness in a stationary model.  相似文献   

6.
This paper introduces an extension of the traditional stationary linear coregionalization model to handle the lack of stationarity. Under the proposed model, coregionalization matrices are spatially dependent, and basic univariate spatial dependence structures are non-stationary. A parameter estimation procedure of the proposed non-stationary linear coregionalization model is developed under the local stationarity framework. The proposed estimation procedure is based on the method of moments and involves a matrix-valued local stationary variogram kernel estimator, a weighted local least squares method in combination with a kernel smoothing technique. Local parameter estimates are knitted together for prediction and simulation purposes. The proposed non-stationary multivariate spatial modeling approach is illustrated using two real bivariate data examples. Prediction performance comparison is carried out with the classical stationary multivariate spatial modeling approach. According to several criteria, the prediction performance of the proposed non-stationary multivariate spatial modeling approach appears to be significantly better.  相似文献   

7.
In this paper we compare two estimation methods to deal with samples of different support: (1) the indirect approach using accumulation and (2) kriging with samples of different support. These two methods were tested in a simple example. The estimates of the two methods were compared against a benchmark scenario. The benchmark consisted of kriging using a complete set of samples on the same support. The effects of the nugget effect, variogram range and type on the weight of long samples, the estimate, and the error variance were assessed. Kriging with samples of different support led to lower error variance and to estimates closer to the estimates of the benchmark scenario. Furthermore, in the case of spatially continuous attributes (low nugget effect), the indirect approach assigns greater weight to long samples than kriging with samples of different support. A cross validation study comparing the two methods with a database from a bauxite deposit was performed. The results of the cross validation study showed that kriging with samples of different support resulted in more precise estimates.  相似文献   

8.
 This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method – wavelet analysis residual kriging (WARK) – is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.  相似文献   

9.
Forecasting of space–time groundwater level is important for sparsely monitored regions. Time series analysis using soft computing tools is powerful in temporal data analysis. Classical geostatistical methods provide the best estimates of spatial data. In the present work a hybrid framework for space–time groundwater level forecasting is proposed by combining a soft computing tool and a geostatistical model. Three time series forecasting models: artificial neural network, least square support vector machine and genetic programming (GP), are individually combined with the geostatistical ordinary kriging model. The experimental variogram thus obtained fits a linear combination of a nugget effect model and a power model. The efficacy of the space–time models was decided on both visual interpretation (spatial maps) and calculated error statistics. It was found that the GP–kriging space–time model gave the most satisfactory results in terms of average absolute relative error, root mean square error, normalized mean bias error and normalized root mean square error.  相似文献   

10.
Indicator cokriging (Journel 1983) is examined as a tool for real-time estimation of rainfall from rain gage measurements. The approach proposed in this work obviates real-time estimation of real-time statistics of rainfall by using ensemble or climatological statistics exclusively, and reduces computational requirements attendant to indicator cokriging by employing only a few auxiliary cutoffs in estimation of conditional probabilities. Due to unavailability of suitable rain gage measurements, hourly radar rain fall data were used for both indicator covariance estimation and a comparative evaluation. Preliminary results suggest that the indicator cokriging approach is clearly superior to its ordinary kriging counterpart, whereas the indicator kriging approach is not. The improvement is most significant in estimation of light rainfall, but drops off significantly for heavy rainfall. The lack of predictability in spatial estimation of heavy rainfall is borne out in the integral scale of indicator correlation: peaking to its maximum for cutoffs near the median, indicator correlation scale becomes increasingly smaller for larger cutoffs of rainfall depth. A derived-distribution analysis, based on the assumption that radar rainfall is a linear sum of ground-truth and a random error, suggests that, at low cutoffs, indicator correlation scale of ground-truth can significantly differ from that of radar rainfall, and points toward inclusion of rainfall intermittency, for example, within the framework proposed in this work.  相似文献   

11.
Compared to other estimation techniques, one advantage of geostatistical techniques is that they provide an index of the estimation accuracy of the variable of interest with the kriging estimation standard deviation (ESD). In the context of radar–raingauge quantitative precipitation estimation (QPE), we address in this article the question of how the kriging ESD can be transformed into a local spread of error by using the dependency of radar errors to the rain amount analyzed in previous work. The proposed approach is implemented for the most significant rain events observed in 2008 in the Cévennes-Vivarais region, France, by considering both the kriging with external drift (KED) and the ordinary kriging (OK) methods. A two-step procedure is implemented for estimating the rain estimation accuracy: (i) first kriging normalized ESDs are computed by using normalized variograms (sill equal to 1) to account for the observation system configuration and the spatial structure of the variable of interest (rainfall amount, residuals to the drift); (ii) based on the assumption of a linear relationship between the standard deviation and the mean of the variable of interest, a denormalization of the kriging ESDs is performed globally for a given rain event by using a cross-validation procedure. Despite the fact that the KED normalized ESDs are usually greater than the OK ones (due to an additional constraint in the kriging system and a weaker spatial structure of the residuals to the drift), the KED denormalized ESDs are generally smaller the OK ones, a result consistent with the better performance observed for the KED technique. The evolution of the mean and the standard deviation of the rainfall-scaled ESDs over a range of spatial (5–300 km2) and temporal (1–6 h) scales demonstrates that there is clear added value of the radar with respect to the raingauge network for the shortest scales, which are those of interest for flash-flood prediction in the considered region.  相似文献   

12.
Rainfall data in continuous space provide an essential input for most hydrological and water resources planning studies. Spatial distribution of rainfall is usually estimated using ground‐based point rainfall data from sparsely positioned rain‐gauge stations in a rain‐gauge network. Kriging has become a widely used interpolation method to estimate the spatial distribution of climate variables including rainfall. The objective of this study is to evaluate three geostatistical (ordinary kriging [OK], ordinary cokriging [OCK], kriging with an external drift [KED]), and two deterministic (inverse distance weighting, radial basis function) interpolation methods for enhanced spatial interpolation of monthly rainfall in the Middle Yarra River catchment and the Ovens River catchment in Victoria, Australia. Historical rainfall records from existing rain‐gauge stations of the catchments during 1980–2012 period are used for the analysis. A digital elevation model of each catchment is used as the supplementary information in addition to rainfall for the OCK and kriging with an external drift methods. The prediction performance of the adopted interpolation methods is assessed through cross‐validation. Results indicate that the geostatistical methods outperform the deterministic methods for spatial interpolation of rainfall. Results also indicate that among the geostatistical methods, the OCK method is found to be the best interpolator for estimating spatial rainfall distribution in both the catchments with the lowest prediction error between the observed and estimated monthly rainfall. Thus, this study demonstrates that the use of elevation as an auxiliary variable in addition to rainfall data in the geostatistical framework can significantly enhance the estimation of rainfall over a catchment.  相似文献   

13.
This paper reports the results of an investigation into flood simulation by areal rainfall estimated from the combination of gauged and radar rainfalls and a rainfall–runoff model on the Anseong‐cheon basin in the southern part of Korea. The spatial and temporal characteristics and behaviour of rainfall are analysed using various approaches combining radar and rain gauges: (1) using kriging of the rain gauge alone; (2) using radar data alone; (3) using mean field bias (MFB) of both radar and rain gauges; and (4) using conditional merging technique (CM) of both radar and rain gauges. To evaluate these methods, statistics and hyetograph for rain gauges and radar rainfalls were compared using hourly radar rainfall data from the Imjin‐river, Gangwha, rainfall radar site, Korea. Then, in order to evaluate the performance of flood estimates using different rainfall estimation methods, rainfall–runoff simulation was conducted using the physics‐based distributed hydrologic model, Vflo?. The flood runoff hydrograph was used to compare the calculated hydrographs with the observed one. Results show that the rainfall field estimated by CM methods improved flood estimates, because it optimally combines rainfall fields representing actual spatial and temporal characteristics of rainfall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Space deformation modelling and estimation techniques based on Multidimensional Scaling (MDS) methods play an important role in nonparametric approaches to the covariance structure analysis of the spatiotemporal processes underlying environmental studies. Since any related procedure depends on the planar MDS representation, the stability of the estimated dispersion, together with the determination of the most influential stations in the estimation of the dispersion space, are important issues that must be analysed before performing the final mapping. In this paper, stability analysis, both in terms of the MDS model and of the variogram function, as well as concerning the derivation of kriging interpolation estimates, is addressed using a special analytical jackknife procedure. Furthermore, the influence of each station in the solution given is assessed, thus providing relevant information regarding not only the MDS procedure but also the interpolation process and the variogram estimation of the spatial dispersion.  相似文献   

15.
It is common in geostatistics to use the variogram to describe the spatial dependence structure and to use kriging as the spatial prediction methodology. Both methods are sensitive to outlying observations and are strongly influenced by the marginal distribution of the underlying random field. Hence, they lead to unreliable results when applied to extreme value or multimodal data. As an alternative to traditional spatial modeling and interpolation we consider the use of copula functions. This paper extends existing copula-based geostatistical models. We show how location dependent covariates e.g. a spatial trend can be accounted for in spatial copula models. Furthermore, we introduce geostatistical copula-based models that are able to deal with random fields having discrete marginal distributions. We propose three different copula-based spatial interpolation methods. By exploiting the relationship between bivariate copulas and indicator covariances, we present indicator kriging and disjunctive kriging. As a second method we present simple kriging of the rank-transformed data. The third method is a plug-in prediction and generalizes the frequently applied trans-Gaussian kriging. Finally, we report on the results obtained for the so-called Helicopter data set which contains extreme radioactivity measurements.  相似文献   

16.
In a spatial property modeling context, the variables of interest to be modeled often display complex nonlinear features. Techniques to incorporate these nonlinear features, such as multiple point statistics or cummulants, are often complex with input parameters that are difficult to infer. The methodology proposed in this paper uses a classical vector-based definition of locally varying anisotropy to characterize nonlinear features and incorporate locally varying anisotropy into numerical property models. The required input is an exhaustive field of anisotropy orientation and magnitude. The methodology consists of (1) using the shortest path distance between locations to define the covariance between points in space (2) multidimensional scaling of the domain to ensure positive definite kriging equations and (3) estimation or simulation with kriging or sequential Gaussian simulation. The only additional parameter required when kriging or simulating with locally varying anisotropy is the number of dimensions to retain in multidimensional scaling. The methodology is demonstrated on a CO2 emissions data set for the United States in 2002 and shows an improvement in cross validation results as well as a visual reproduction of nonlinear features.  相似文献   

17.
Abstract

The present research study investigates the application of nonlinear normalizing data transformations in conjunction with ordinary kriging (OK) for the accurate prediction of groundwater level spatial variability in a sparsely-gauged basin. We investigate three established normalizing methods, Gaussian anamorphosis, trans-Gaussian kriging and the Box-Cox method to improve the estimation accuracy. The first two are applied for the first time to groundwater level data. All three methods improve the mean absolute prediction error compared to the application of OK to the non-transformed data. In addition, a modified Box-Cox transformation is proposed and applied to normalize the hydraulic heads. The modified Box-Cox transformation in conjunction with OK is found to be the optimal spatial model based on leave-one-out cross-validation. The recently established Spartan semivariogram family provides the optimal model fit to the transformed data. Finally, we present maps of the groundwater level and the kriging variance based on the optimal spatial model.

Editor D. Koutsoyiannis; Associate editor A. Montanari

Citation Varouchakis, E.A., Hristopoulos, D.T., and Karatzas, G.P., 2012. Improving kriging of groundwater level data using nonlinear normalizing transformations—a field application. Hydrological Sciences Journal, 57 (7), 1404–1419.  相似文献   

18.
Simulation of multigaussian stochastic fields can be made after a Karhunen-Loéve expansion of a given covariance function. This method is also called simulation by Empirical Orthogonal Functions. The simulations are made by drawing stochastic coefficients from a random generator. These numbers are multiplied with eigenfunctions and eigenvalues derived from the predefined covariance model. The number of eigenfunctions necessary to reproduce the stochastic process within a predefined variance error, turns out to be a cardinal question. Some ordinary analytical covariance functions are used to evaluate how quickly the series of eigenfunctions can be truncated. This analysis demonstrates extremely quick convergence to 99.5% of total variance for the 2nd order exponential (‘gaussian’) covariance function, while the opposite is true for the 1st order exponential covariance function. Due to these convergence characteristics, the Karhunen-Loéve method is most suitable for simulating smooth fields with ‘gaussian’ shaped covariance functions. Practical applications of Karhunen-Loéve simulations can be improved by spatial interpolation of the eigenfunctions. In this paper, we suggest interpolation by kriging and limits for reproduction of the predefined covariance functions are evaluated.  相似文献   

19.
Simulation of multigaussian stochastic fields can be made after a Karhunen-Loéve expansion of a given covariance function. This method is also called simulation by Empirical Orthogonal Functions. The simulations are made by drawing stochastic coefficients from a random generator. These numbers are multiplied with eigenfunctions and eigenvalues derived from the predefined covariance model. The number of eigenfunctions necessary to reproduce the stochastic process within a predefined variance error, turns out to be a cardinal question. Some ordinary analytical covariance functions are used to evaluate how quickly the series of eigenfunctions can be truncated. This analysis demonstrates extremely quick convergence to 99.5% of total variance for the 2nd order exponential (‘gaussian’) covariance function, while the opposite is true for the 1st order exponential covariance function. Due to these convergence characteristics, the Karhunen-Loéve method is most suitable for simulating smooth fields with ‘gaussian’ shaped covariance functions. Practical applications of Karhunen-Loéve simulations can be improved by spatial interpolation of the eigenfunctions. In this paper, we suggest interpolation by kriging and limits for reproduction of the predefined covariance functions are evaluated.  相似文献   

20.
There are many situations in the mining industry where grade estimation of multiple correlated variables is required. The resulting model is expected to reproduce the data correlation, but there is no guarantee that the correlation observed among data will be reproduced by the model if the variables are independently estimated by kriging, and the correlation is not explicitly taken into account. The best geostatistical approach to address this estimation problem is to use co-kriging, which requires both cross and direct covariance modeling of all variables. However, the co-kriging method is labor-intensive when the problem involves more than three attributes. An alternative is to decorrelate the variables and estimate each one independently, using, for instance, the minimum/maximum autocorrelation factors (MAF) approach. This method involves the application of a linear transformation to the correlated variables, transforming the original data into a space where they are uncorrelated. The resulting transformed data can be individually estimated using kriging, avoiding the use of the linear model of coregionalization. Once the kriging has been performed, the MAF estimates are back-transformed to the original data space, re-establishing their correlation.The methodology is illustrated in a case study where there are two variables with correlation coefficient, ρ = ?0.98. The MAF transformation was applied in combination with ordinary kriging (herein denoted as KMAF). Co-kriging was performed to provide a benchmark for comparing the results obtained through KMAF. The results obtained by co-kriging and KMAF showed less than 1 % average deviation between the two block models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号