首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reliability of a levee system is a crucial factor in flood risk management. In this study we present a probabilistic methodology to assess the effects of levee cover strength on levee failure probability, triggering time, flood propagation and consequent impacts on population and assets. A method for determining fragility curves is used in combination with the results of a one-dimensional hydrodynamic model to estimate the conditional probability of levee failure in each river section. Then, a levee breach model is applied to calculate the possible flood hydrographs, and for each breach scenario a two-dimensional hydrodynamic model is used to estimate flood hazard (flood extent and timing, maximum water depths) and flood impacts (economic damage and affected population) in the areas at risk along the river reach. We show an application for levee overtopping and different flood scenarios for a 98 km reach of the lower Po River in Italy. The results show how different design solutions for the levee cover can influence the probability of levee failure and the consequent flood scenarios. In particular, good grass cover strength can significantly delay levee failure and reduce maximum flood depths in the flood-prone areas, thus helping the implementation of flood risk management actions.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Viglione  相似文献   

2.
很多河流的堤防工程修建在人口密集地区,失事后往往会造成严重后果,尤其是细粒土填筑而成的堤防,在地震作用下存在液化破坏的可能。采用合理方法对堤防进行液化判别,确定其在地震作用下的动力稳定性十分必要。针对某实际堤防工程,进行五种拟用筑堤土料动力特性试验研究,并基于试验成果,采用能够考虑地基-堤身相互作用的非线性剪切梁方法,对堤防的液化可能性进行判别。研究表明:提出的非线性剪切梁方法能够考虑地基和堤身间的相互作用,且简单实用、可操作性强;土体的相对密度、空隙比和颗粒粒径大小及其他粒分布特性对其抗地震液化能力影响较大;在设定运行工况下,Ⅷ度地震时除拟选粉质壤土外,其他四种土筑堤均有发生液化的可能,选用粉质壤土筑堤较合适。  相似文献   

3.
基于渗流-应力耦合分析的野鸡尾尾矿坝稳定性研究   总被引:1,自引:0,他引:1  
基于渗流场与应力场耦合机理,对柿竹园野鸡尾尾矿坝进行稳定性研究。研究渗流-应力的耦合效应,提出了渗流-应力耦合以及渗流体积力计算的实施方案;建立二维的有限元渗流-应力耦合计算模型,分析了考虑耦合效应时的尾矿坝渗流场、位移场、应力场;最终分析了不同耦合关系对于渗流量、位移场、等效渗透集中力以及应力场的影响。研究结果表明:当前水力条件下,尾矿坝稳定性良好;尾矿坝主要受水平渗透力作用,初期坝坝顶、坝脚以及坝底等处应力集中;尾矿坝的渗流-应力作用不容忽视,不同的耦合关系对于x方向位移、渗透力的预测影响巨大;考虑渗流-应力耦合关系得到的主应力、剪应力以及竖向位移,比不考虑耦合效应时大。  相似文献   

4.
研制可合理模拟预测基坑降水过程中引起地面沉降的计算机程序,并提出最优化降水方案。基于三维全耦合数值模型,笔者开发了GWS软件。GWS软件是以比奥固结理论为基础,将土体的非线性特征及土的渗透性随应力状态的动态变化考虑进去,通过耦合地下水渗流场和土体应力场进行模拟预测基坑降水过程中渗流场及地面沉降的变化。以一个实际基坑降水工程为例,经GWS软件计算得出5口井联合抽水方案,后续工程证明此方案正确、可靠。以三维全耦合数值理论为基础的GWS软件,可以为基坑降水工程引起的地下水渗流场变化及地面沉降量提供可靠的预测。  相似文献   

5.
Groundwater seepage can lead to the erosion and failure of streambanks and hillslopes. Two groundwater instability mechanisms include (i) tension failure due to the seepage force exceeding the soil shear strength or (ii) undercutting by seepage erosion and eventual mass failure. Previous research on these mechanisms has been limited to non‐cohesive and low cohesion soils. This study utilized a constant‐head, seepage soil box packed with more cohesive (6% and 15% clay) sandy loam soils at prescribed bulk densities (1.30 to 1.70 Mg m?3) and with a bank angle of 90° to investigate the controls on failure mechanisms due to seepage forces. A dimensionless seepage mechanism (SM) number was derived and evaluated based on the ratio of resistive cohesion forces to the driving forces leading to instability including seepage gradients with an assumed steady‐state seepage angle. Tension failures and undercutting were both observed dependent primarily on the saturated hydraulic conductivity, effective cohesion, and seepage gradient. Also, shapes of seepage undercuts for these more cohesive soils were wider and less deep compared to undercuts in sand and loamy sand soils. Direct shear tests were used to quantify the geotechnical properties of the soils packed at the various bulk densities. The SM number reasonably predicted the seepage failure mechanism (tension failure versus undercutting) based on the geotechnical properties and assumed steady‐state seepage gradients of the physical‐scale laboratory experiments, with some uncertainty due to measurement of geotechnical parameters, assumed seepage gradient direction, and the expected width of the failure block. It is hypothesized that the SM number can be used to evaluate seepage failure mechanisms when a streambank or hillslope experiences steady‐state seepage forces. When prevalent, seepage gradient forces should be considered when analyzing bank stability, and therefore should be incorporated into commonly used stability models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
如何选取非岩性地基的处理方案对于不满足抗震适应性要求的核岛厂房地基而言具有重要的工程实用价值。结合国内某内陆核电不符合抗震适应性要求的实际厂址条件,给出地基处理方案评价的数值计算模型及分析过程。首先针对该核电工程实际项目,提出嵌岩桩、CFG桩及水泥土搅拌桩三种地基预处理方案,并以规范法验证处理后地基的承载力要求;进而通过建立非岩性地基条件下的桩-土-结构动力相互作用计算模型来综合考虑各方案对核岛厂房的地震响应影响,其中通过引入黏性人工边界和能量传递边界模拟无限地基辐射阻尼效应,采用等效线性法描述近场地基非线性特征,并基于上述有限元模型以全耦合方式考虑群桩效应的影响;最后从满足厂址地基适应性和经济效益两方面进行综合评价,给出针对本工程的最佳设计方案。该分析方法及研究成果可为类似条件下的核岛厂房非岩性地基处理方案的比选问题提供借鉴与参考。  相似文献   

7.
Riverbank erosion, associated sedimentation and land loss hazards are a land management problem of global significance and many attempts to predict the onset of riverbank instability have been made. Recently, Osman and Thorne (1988) have presented a Culmann-type analysis of the stability of steep, cohesive riverbanks; this has the potential to be a considerable improvement over previous bank stability theories, which do not account for bank geometry changes due to toe scour and lateral erosion. However, in this paper it is shown that the existing Osman-Thorne model does not properly incorporate the influence of tension cracking on bank stability since the location of the tension crack on the floodplain is indirectly determined via calculation or arbitrary specification of the tension crack depth. Furthermore, accurate determination of tension crack location is essential to the calculation of the geometry of riverbank failure blocks and hence prediction of land loss and bank sediment yield associated with riverbank instability and channel widening. In this paper, a rational, physically based method to predict the location of tension cracks on the floodplain behind the eroding bank face is presented and tested. A case study is used to illustrate the computational procedure required to apply the model. Improved estimates of failure block geometry using the new method may potentially be applied to improve predictions of bank retreat and floodplain land loss along river channels destabilized as a result of environmental change.  相似文献   

8.
为研究地震时高路堑黄土边坡破坏的细观力学过程,以黄土地区某高速公路边坡为例,在野外工程地质勘察和室内试验基础上,用强度折减法对开挖后的高路堑黄土边坡的初始状态进行分析,进而对该高路堑边坡采用PFC2D建立数值计算模型,模拟边坡地震响应全过程;通过分析地震响应过程中颗粒的位移、配位数、孔隙率、应力和应变率等关键要素,从细...  相似文献   

9.
针对近年来我国西北黄土地区地下采煤诱发地表变形,从而导致地表黄土边坡失稳及滑坡问题,使用显式有限元、动力学大变形计算方法以及土动力学基本理论进行分析研究,并提出一种适用于地下动态扰动对地表边坡稳定性影响的分析方法。通过计算分析得知,地下采煤对地表边坡稳定性的影响是一个动态的过程,所提方法具有较高的计算效率,且能够分析边坡的渐进破坏过程。  相似文献   

10.
大气作用下膨胀土地基的水分迁移与胀缩变形分析   总被引:2,自引:0,他引:2  
运用土体渗流和蒸发理论,建立了大气-非饱和土相互作用模型;以现场观测的气象数据作为边界条件,进行了地基土中水分迁移的数值模拟,得到了大气作用下地基土体含水量的动态分布规律。计算结果表明,地基土中含水量变化幅度随深度增加而递减,3.5 m深度以下土体的体积含水量基本不变,从而确定了南宁地区膨胀土地基的大气影响层深度为3.5 m。在此基础上,结合已有膨胀土胀缩性指标的干湿循环效应研究成果,提出了一种同时考虑干湿循环效应和1.0 m深处含水量变化的膨胀土地基胀缩变形计算方法,通过算例将该法与传统方法进行比较,结果显示该法更加符合工程实际。  相似文献   

11.
Modeling of flooding events resulting from bank overflooding and levee breaching is of relevant social and environmental interest. Two-dimensional (2D) hydrodynamic models integrating the shallow water equations turn out to be very effective tools for the purpose at hand. Many of the available models also use 1D channel elements, fully coupled to the 2D model, to simulate the flow of small channels dissecting the urban and rural areas, and 1D elements, referred to as 1D-links, to efficiently model the flow over levees, road and rail embankments, bunds, the flow through control gates, either free or submerged, and the operation of other hydraulic structures. In this work we propose a physically-based 1D-link to model breach formation and evolution in fluvial levees, and levee failure due to either piping or overtopping. The proposed 1D-link is then embedded in a 1D–2D hydrodynamic model, thus accounting for critical feedbacks between breach formation and changes in the hydrodynamic flow field. The breach model also includes the possibility of simulating breach closure, an important feature particularly in the view of hydraulic risk assessment and management of the emergency. The model is applied to five different case studies and the results of the numerical simulations compare favorably with field observations displaying a good agreement in terms of urban and rural flooded areas, water levels within the channel, final breach widths, and water volumes flowed through the breach.  相似文献   

12.
Abstract

On the slopes of the embankment of the Al-Khod groundwater recharge–flood protection dam (Oman), a band of scrub vegetation community emerged after torrential rains and temporary filling of the dam reservoir. Species composition differs markedly on both sides of the embankment, with many exotics found on the reservoir side and more typical gravel-desert species on the outside. Hydro-ecologically, the vegetation is interpreted as the footprint of a temporary storage of water, which is a small-sized groundwater mound within the permeable shoulder of the levee. The levee, as an anthropogenic landform, induces a U-turn (gravitational slumping–lateral seepage–transpirational moisture ascent) topology of seepage. The Lembke method of successive variations of steady states is used in modelling the water table dynamics. In the early stage of the mound decay, outflow through a seepage face of the shoulder is modelled by the Barenblatt slumping parabola of the phreatic-zone part of the flow domain, which is perfectly matched with the Youngs exact solution for a purely horizontal flow through a porous wedge. At the stitching cross-section, the flow rates and saturated depths in the two zones coincide. The late stage of mound evolution is characterized by transpiration by the plant roots projected onto a shrinking free surface, with the Barenblatt and Youngs solutions conjugated but without the outcrop of the saturated mound on the levee slope. Ordinary differential equations for the sliding or descending locus of the intersection of the parabola and the triangle hypotenuse are integrated in a closed form or by the Runge-Kutta method. The dwindling saturated volume and the rate of drainage are obtained. They can be used in assessments of the hydro-ecological sustainability of slope-rooted shrubs (vegetation survival between rare rainfall episodes).
Editor D. Koutsoyiannis; Associate editor A. Porporato  相似文献   

13.
桩基础在水平荷载或地震作用下的承载力计算一直是工程界的一个研究难点,近年来随着建筑、桥梁桩基础的规模大幅增加,基于小规模、小比例尺群桩基础水平承载力试验得出来的结论和计算方法可能会不适应新的计算要求,相关的认识和计算方法需要重新论证和更新。本文针对大规模群桩基础水平承载力效应系数的计算问题,首先对国内外研究进展进行调研,发现现有的规范计算方法可能会高估群桩基础的水平承载力。针对这些问题,对大规模群桩基础的水平承载力效应系数进行有限元数值计算分析,探讨水平承载力效应系数的规律,给出相应的计算方法,并与规范计算方法结果进行对比。本文的研究结果可为相应的工程设计问题提供依据,结果的适用性需要今后进一步的检验。  相似文献   

14.
The majority of sediment leaving catchments may be from streambank failure. Seepage erosion of unconsolidated sand above a restrictive layer is an important erosion process in incised streams that leads to streambank failure by undercutting banks. The objective of this study was to determine the impact of soil properties on seepage erosion and the resulting streambank failure. Seepage flow and sediment concentrations were measured in situ at eight locations along the banks of a deeply incised stream in northern Mississippi. Using field observations as a guide, the soil profile conditions of a shallow (45 cm) streambank, consisting of 30 cm of topsoil, a 10 cm conductive layer, and a 5 cm restrictive layer, were mimicked in laboratory lysimeter experiments to quantify the hydrologic properties controlling seepage erosion and bank failure under a 40 cm head. The time to flow initiation and the flow rate were linearly related to the slope of the restrictive layer. Seepage erosion began within minutes of flow initiation and resulted in substantial (3 to 34 cm) undercutting of the bank. Sediment concentrations of seeps were as high as 660 g l?1 in situ and 4500 g l?1 in the lysimeters. Sediment concentrations were related to the layer slope, thereby indicating the importance of detailed site characterization. The USDA‐ARS Streambank Stability model demonstrated the increase in instability of banks due to undercutting by seepage erosion, but failed to account for the sediment loss due to sapping for stable banks and overestimated the sediment loads for failed banks. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

15.
2022年1月8日在青海门源县发生MS6.9地震,基于震中300 km范围内地电场近5年观测资料,综合分析选取9个观测站,根据大地电场岩体裂隙水(电荷)渗流(移动)模型计算其优势方位角,并尝试以地电场为响应量,通过库仑应力触发模型的加卸载响应比(LURR)计算方法,计算地电场LURR值。结果显示:(1)两种不同方法计算的地电场异常站在空间分布上具有一致性,其中古丰、黄羊川、寺滩和兰州站地电场优势方位角、LURR在震前皆出现异常变化,而山丹等其他站方位角、LURR均看不出明显的异常变化。(2)兰州和寺滩站两种计算方法的结果时序变化较为吻合,表现出准同步性。进一步结合震源机制解对异常观测站优势方位与区域主压应力P走向的关联进行分析,结果表明基本符合岩石物理学理论,这在一定程度上可增强地电场优势方位角方法在分析地震前兆异常中的可信度。地电场优势方位角以及LURR值两种计算方法在机理上具有关联性,综合分析其异常演化特征可能有助于进一步认知地震孕育的物理过程。  相似文献   

16.
持续降雨是边坡发生失稳破坏的主要诱因之一,基于饱和—非饱和渗流理论,对梅州市大埔县某边坡的渗流场进行模拟,研究在不同降雨工况下该边坡土体体积含水率的时空变化规律。研究结果表明:相同条件下,降雨强度越大(降雨历时越长),边坡表层土体体积含水率变化越大;降雨强度60 mm/d历时1 d的暴雨对边坡表层土体体积含水率的增幅作用存在着一定的滞后性,其余工况未表现出滞后现象;降雨强度为120mm/d和300 mm/d的两种工况各研究点任意时段体积含水率较为接近;当降雨强度达到60 mm/d以上时,边坡内部体积含水率空间变化主要受降雨历时影响,降雨历时越长,降雨入渗深度和体积含水率变化越大。  相似文献   

17.
Several mechanisms contribute to streambank failure including fluvial toe undercutting, reduced soil shear strength by increased soil pore‐water pressure, and seepage erosion. Recent research has suggested that seepage erosion of noncohesive soil layers undercutting the banks may play an equivalent role in streambank failure to increased soil pore‐water pressure. However, this past research has primarily been limited to laboratory studies of non‐vegetated banks. The objective of this research was to utilize the Bank Stability and Toe Erosion Model (BSTEM) in order to determine the importance of seepage undercutting relative to bank shear strength, bank angle, soil pore‐water pressure, and root reinforcement. The BSTEM simulated two streambanks: Little Topashaw Creek and Goodwin Creek in northern Mississippi. Simulations included three bank angles (70° to 90°), four pore‐water pressure distributions (unsaturated, two partially saturated cases, and fully saturated), six distances of undercutting (0 to 40 cm), and 13 different vegetation conditions (root cohesions from 0·0 to 15·0 kPa). A relative sensitivity analysis suggested that BSTEM was approximately three to four times more sensitive to water table position than root cohesion or depth of seepage undercutting. Seepage undercutting becomes a prominent bank failure mechanism on unsaturated to partially saturated streambanks with root reinforcement, even with undercutting distances as small as 20 cm. Consideration of seepage undercutting is less important under conditions of partially to fully saturated soil pore‐water conditions. The distance at which instability by undercutting became equivalent to instability by increased soil pore‐water pressure decreased as root reinforcement increased, with values typically ranging between 20 and 40 cm at Little Topashaw Creek and between 20 and 55 cm at Goodwin Creek. This research depicts the baseline conditions at which seepage undercutting of vegetated streambanks needs to be considered for bank stability analyses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
对于微地震正演模拟,本文以射线追踪的原理为基础,对两点间的射线追踪问题进行了研究,应用二分算法、改进二分算法和微变网格算法对水平层状匀速模型、弯曲层状匀速模型和复杂地质模型进行射线追踪,使得计算效率和适用范围都得到了很大的改善.文中对每种算法误差范围和计算效率进行了对比验证,对于不同的地质模型,选用合适的算法才能在计算速度和精度上得到双重保证,最后正演模拟了多波三分量记录.在模型建立上引入了超薄层概念,并在前人模拟的直达波、透射波、反射波基础上拟了折射波,使正演模拟的多波场信息更丰富.文中的应用实例及模型结果表明:与二分法相比,改进二分法能够对弯曲界面进行射线追踪,并能保证结果的精度.弯曲层状模型中,改进二分法与微变网格法相比计算速度有显著提高,能够应用到资料的反演中.  相似文献   

19.
河水径向渗流会对河岸基坑稳定性及支护结构内力产生显著影响。以某深基坑工程为背景进行了三维流固耦合数值模拟分析,研究了渗流对深基坑土体及支护结构受力与变形的作用规律。研究结果表明:1初始水位时,渗流作用对土体水平应力与土体剪应力的影响较小,但水位上升后,坑底处土体水平应力明显增大,在坑壁拐角处应力集中现象突出,土体剪应力在开挖面以下的底脚处最大;2土体水平位移与竖向位移均在水位上升时呈递增趋势;3桩身弯矩与剪力在水位上升初期有较大增加,之后增长速度减小;4上层、下层锚杆的自由段和锚固段轴力在水位上升初期均有明显增加,但之后增加幅度很小;5安全系数在水位上升初期降低较多,之后以较小速度呈线性减小。  相似文献   

20.
In flood risk management, the divergent concept of resilience of a flood defense system cannot be fully defined quantitatively by one indicator and multiple indicators need to be considered simultaneously. In this paper, a multi-objective optimization (MOO) design framework is developed to determine the optimal protection level of a levee system based on different resilience indicators that depend on the probabilistic features of the flood damage cost arising under the uncertain nature of rainfalls. An evolutionary-based MOO algorithm is used to find a set of non-dominated solutions, known as Pareto optimal solutions for the optimal protection level. The objective functions, specifically resilience indicators of severity, variability and graduality, that account for the uncertainty of rainfall can be evaluated by stochastic sampling of rainfall amount together with the model simulations of incurred flood damage estimation for the levee system. However, these model simulations which usually require detailed flood inundation simulation are computationally demanding. This hinders the wide application of MOO in flood risk management and is circumvented here via a surrogate flood damage modeling technique that is integrated into the MOO algorithm. The proposed optimal design framework is applied to a levee system in a central basin of flood-prone Jakarta, Indonesia. The results suggest that the proposed framework enables the application of MOO with resilience objectives for flood defense system design under uncertainty and solves the decision making problems efficiently by drastically reducing the required computational time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号