首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In the past decade, a consensus has emerged regarding the nature of classical Be stars: They are very rapidly rotating main sequence B stars, which, through a still unknown, but increasingly constrained process, form an outwardly diffusing gaseous, dust-free Keplerian disk. In this work, first the definition of Be stars is contrasted to similar classes, and common observables obtained for Be stars are introduced and the respective formation mechanisms explained. We then review the current state of knowledge concerning the central stars as non-radially pulsating objects and non-magnetic stars, as far as it concerns large-scale, i.e., mostly dipolar, global fields. Localized, weak magnetic fields remain possible, but are as of yet unproven. The Be-phenomenon, linked with one or more mass-ejection processes, acts on top of a rotation rate of about 75 % of critical or above. The properties of the process can be well constrained, leaving only few options, most importantly, but not exclusively, non-radial pulsation and small-scale magnetic fields. Of these, it is well possible that all are realized: In different stars, different processes may be acting. Once the material has been lifted into Keplerian orbit, memory of the details of the ejection process is lost, and the material is governed by viscosity. The disks are fairly well understood in the theoretical framework of the viscous decretion disk model. This is not only true for the disk structure, but as well for its variability, both cyclic and secular. Be binaries are reviewed under the aspect of the various types of interactions a companion can have with the circumstellar disk. Finally, extragalactic Be stars, at lower metallicities, seem more common and more rapidly rotating.  相似文献   

2.
The radii of several Ap and Am stars have been compared with those of the normal A stars of the Main Sequence. Though the brighter Ap stars have a little larger radii than the Main-Sequence stars, they may not be much different from those of the slightly evolved normal A stars. The Am stars have radii with which they appear to be merging with those of the cooler A stars of the Main Sequence. The Ap stars have radii predominantly in the range of 1.8 to 3.4R , while the Am stars are mainly concentrated between 1.8 and 2.2R .  相似文献   

3.
The paper presents a modified genetic algorithm called adapted genetic algorithm with adjusting population size (AGA-POP) for precise determination the orbital elements of binary stars. The proposed approach is a simple, robust way that can be considered to be a new member in the class of self organizing genetic algorithms. The proposed AGA-POP is applied on the star η Bootis of MK type G0 IV to find a set of optimal orbital elements. This leads to obtain the best fitting of Keplerian and phase curves. The modified method is compared with other different methods such as standard genetic algorithm, adapted genetic algorithm (AGA) and least square methods. Simulation results show the effectiveness of using AGA-POP compared with other different classic genetic algorithms in reducing the computation time. Also, better performances have been achieved when using the proposed technique.  相似文献   

4.
Symbiotic stars     
I review our current knowledge of symbiotic stars. A great many papers have graced the literature in the fifty years of their study, and many data are available on the spectral variations at optical wavelengths these stars undergo. I do not give extensive references to those data, for previous reviews have done so quite adequately. Rather, I concentrate on the extensive widening of the wavebands within which symbiotic stars have been studied over the past few years, and attempt to synthesise the data into a coherent picture.Symbiotic stars are most readily explained as interacting binaries, though single star models may still be tenable for some systems. They are made much more complex than most other interacting binaries by the variety of accreting stars, and because gas flows may be highly structured. Moreover, their study is more difficult than that of dwarf novae because the orbital periods are long compared to the activity cycles of the accretion phenomena.Our data base has expanded enormously with our present spectral catholicism. But there remains much valuable work to be done with even simple equipment on small telescopes. I suggest in a final section areas for future work.Invited paper presented at the Lembang-Bamberg IAU Colloquium No. 80 on Double Stars: Physical Properties and Generic Relations, held at Bandung, Indonesia 3–7 June, 1983.  相似文献   

5.
High-resolution near-infrared spectroscopy of CO overtone emission bands has provided some of the best kinematic evidence for the existence of circumstellar disks around young stars. The CO emission flux and the detailed shape of the overtone bands are well matched by simple Keplerian disk models. A brief overview of the use of infrared CO emission as a diagnostic of the kinematics and conditions of gas in the inner disks of young stars is presented.  相似文献   

6.
We critically re-examine the available data on the spectral types, masses and radii of the secondary stars in cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs), using the new catalogue of Ritter &38; Kolb as a starting point. We find there are 55 reliable spectral type determinations and only 14 reliable mass determinations of CV secondary stars (10 and 5, respectively, in the case of LMXBs). We derive new spectral type–period, mass–radius, mass–period and radius–period relations, and compare them with theoretical predictions. We find that CV secondary stars with orbital periods shorter than 7–8 h are, as a group, indistinguishable from main-sequence stars in detached binaries. We find that it is not valid, however, to estimate the mass from the spectral type of the secondary star in CVs or LMXBs. We find that LMXB secondary stars show some evidence for evolution, with secondary stars which are slightly too large for their mass. We show how the masses and radii of the secondary stars in CVs can be used to test the validity of the disrupted magnetic braking model of CV evolution, but we find that the currently available data are not sufficiently accurate or numerous to allow such an analysis. As well as considering secondary star masses, we also discuss the masses of the white dwarfs in CVs, and find mean values of M  = 0.69 ± 0.13 M below the period gap, and M  = 0.80 ± 0.22 M above the period gap.  相似文献   

7.
The Galactic orbits of 27 440 stars of all classes with accurate coordinates and parallaxes of more than 3 mas from the Hipparcos catalogue, proper motions from the Tycho-2 catalogue, and radial velocities from the Pulkovo Compilation of Radial Velocities (PCRV) are analyzed. The sample obtained is much more representative than the Geneva-Copenhagen survey and other studies of Galactic orbits in the solar neighborhood. An estimation of the influence of systematic errors in the velocities on orbital parameters shows that the errors of the proper motions due to the duplicity of stars are tangible only in the statistics of orbital parameters for very small samples, while the errors of the radial velocities are noticeable in the statistics of orbital parameters for halo stars. Therefore, previous studies of halo orbits may be erroneous. The distribution of stars in selection-free regions of the multidimensional space of orbital parameters, dereddened colors, and absolute magnitudes is considered. Owing to the large number of stars and the high accuracy of PCRV radial velocities, nonuniformities of this distribution (apart from the well-known dynamical streams) have been found. Stars with their peri- and apogalacticons in the disk, perigalacticons in the bulge and apogalacticons in the disk, perigalacticons in the bulge and apogalacticons in the halo, and perigalacticons in the disk and apogalacticons in the halo have been identified. Thus, the bulge and the halo are inhomogeneous structures, each consisting of at least two populations. The radius of the bulge has been determined: 2 kpc.  相似文献   

8.
The masses of a pair of stars in the visual binary system have been estimated. The angle between the orbital plane of the stars and the plane of the sky has been taken into account. Inclination of the major axes of the orbits of the stars with the line of interaction between the orbital plane and the plane of the sky has also been considered. These two inclinations are also computed in terms of the observed quantities. Major and minor axes of actual orbits of the stars are determined.  相似文献   

9.
Data from our compiled catalog of spectroscopically determined magnesium abundances in stars with accurate parallaxes are used to select thin-disk dwarfs and subgiants according to kinematic criteria. We analyze the relations between the relative magnesium abundances in stars, [Mg/Fe], and their metallicities, Galactic orbital elements, and ages. The [Mg/Fe] ratios in the thin disk at any metallicity in the range ?1.0 dex <[Fe/H] < ?0.4 dex are shown to be smaller than those in the thick disk, implying that the thin-disk stars are, on average, younger than the thick-disk stars. The relative magnesium abundances in such metal-poor thin-disk stars have been found to systematically decrease with increasing stellar orbital radii in such a way that magnesium overabundances ([Mg/Fe] > 0.2 dex) are essentially observed only in the stars whose orbits lie almost entirely within the solar circle. At the same time, the range of metallicities in magnesium-poor stars is displaced from ?0.5 dex < [Fe/H] < +0.3 dex to ?0.7 dex < [Fe/H] < +0.2 dex as their orbital radii increase. This behavior suggests that, first, the star formation rate decreases with increasing Galactocentric distance and, second, there was no star formation for some time outside the solar circle, while this process was continuous within the solar circle. The decrease in the star formation rate with increasing Galactocentric distance is responsible for the existence of a negative radial metallicity gradient (grad R[Fe/H] = ?0.05 ± 0.01 kpc?1) in the disk, which shows a tendency to increase with decreasing age. At the same time, the relative magnesium abundance exhibits no radial gradient. We have confirmed the existence of a steep negative vertical metallicity gradient (grad Z[Fe/H] = ?0.29 ± 0.06 kpc?1) and detected a significant positive vertical gradient in relative magnesium abundance (grad Z[Mg/Fe] = 0.13 ± 0.02 kpc?1); both gradients increase appreciably in absolute value with decreasing age. We have found that there is not only an age-metallicity relation, but also an age-magnesium abundance relation, in the thin disk. We surmise that the thin disk has a multicomponent structure, but the existence of a negative trend in the star formation rate along the Galactocentric radius does not allow the stars of its various components to be identified in the immediate solar neighborhood.  相似文献   

10.
Stars observed by the astrometry satellite Hipparcos may be unknown double stars. A subsample of those are dangerous for the extragalactic link of Hipparcos proper motions by long-term photographic proper motions, if the time base of Hipparcos is too short to detect the orbital motion. The probability of these cases and the typical size of the photocentric orbital motion are estimated by Monte Carlo simulations for the sample of 33 stars used in the Bonn extragalactic link. Both are found to be considerable: about 16% and 9 mas/yr respectively.  相似文献   

11.
The present paper is concerned with the spin-up of low-magnetic neutron stars by the accretion of matter onto the star. Calculations have been made for the evolution of the rotation of a neutron star and applied to different stellar models. It is shown that the existence of a millisecond pulsar imposes no restriction on any of the equations of state considered. However, constraints would arise with the possible discovery of third-octave pulsars (with frequencies in excess of 1000 Hz). Predictions are made as to the distribution of bursters over the orbital periods of neutron stars (about half of these having similar orbital periods). It is demonstrated that in the case of continued accretion onto a star, after it has acquired the critical angular frequency allowing no diviation from axial symmetry, specific accretion disks can be formed with a smooth transition into a star. The specific angular momentum is computed for a neutron star for the instant of the attainment of the Oppenheimer-Volkoff limit.  相似文献   

12.
Data from our compiled catalog of spectroscopically determined magnesium abundances in dwarfs and subgiants with accurate parallaxes are used to select Galactic halo stars according to kinematic criteria and to identify presumably accreted stars among them. Accreted stars are shown to constitute the majority in the Galactic halo. They came into the Galaxy from disrupted dwarf satellite galaxies. We analyze the relations between the relative magnesium abundances, metallicities, and Galactic orbital elements for protodisk and accreted halo stars. We show that the relative magnesium abundances in protodisk halo stars are virtually independent of metallicity and lie within a fairly narrow range, while presumably accreted stars demonstrate a large spread in relative magnesium abundances up to negative [Mg/Fe]. This behavior of protodisk halo stars suggests that the interstellar matter in the early Galaxy mixed well at the halo formation phase. The mean metallicity of magnesium-poor ([Mg/Fe] < 0.2 dex) accreted stars has been found to be displaced toward the negative values when passing from stars with low azimuthal velocities (|Θ| < 50 km s?1) to those with high ones at Δ[Fe/H] ≈ ?0.5 dex. The mean apogalactic radii and inclinations of the orbits also increase with increasing absolute value of |Θ|, while their eccentricities decrease. As a result, negative radial and vertical gradients in relative magnesium abundances are observed in the accreted halo in the absence of correlations between the [Mg/Fe] ratios and other orbital elements, while these correlations are found at a high significance level for genetically related Galactic stars. Based on the above properties of accreted stars and our additional arguments, we surmise that as the masses of dwarf galaxies decrease, the maximum SN II masses and, hence, the yield of α-elements in them also decrease. In this case, the relation between the [Mg/Fe] ratios and the inclinations and sizes of the orbits of accreted stars is in complete agreement with numerical simulations of dynamical processes during the interaction of galaxies. Thus, the behavior of the magnesium abundance in accreted stars suggests that the satellite galaxies are disrupted and lose their stars en masse only after dynamical friction reduces significantly the sizes of their orbits and drags them into the Galactic plane. Less massive satellite galaxies are disrupted even before their orbits change appreciably under tidal forces.  相似文献   

13.
I examine the implications of the recently found extrasolar planets on the planet-induced axisymmetric mass-loss model for the formation of elliptical planetary nebulae (PNe). This model attributes the low departure from spherical mass-loss of upper asymptotic giant branch (AGB) stars to envelope rotation which results from deposition of orbital angular momentum of the planets. Since about half of all PNe are elliptical, i.e., have low equatorial to polar density contrast, it was predicted that about 50 per cent of all Sun-like stars have Jupiter-like planets around them, i.e., a mass about equal to that of Jupiter, M J, or more massive. In the light of the new findings that only 5 per cent of Sun-like stars have such planets, and a newly proposed mechanism for axisymmetric mass-loss, the cool magnetic spots model, I revise this prediction. I predict that indeed ∼50 per cent of PN progenitors do have close planets around them, but the planets can have much lower masses, as low as ∼0.01 M J, in order to spin-up the envelopes of AGB stars efficiently. To support this claim, I follow the angular momentum evolution of single stars with main-sequence mass in the range of 1.3–2.4 M , as they evolve to the post-AGB phase. I find that single stars rotate much too slowly to possess any significant non-spherical mass-loss as they reach the upper AGB. It seems, therefore, that planets, in some cases even Earth-like planets, are sufficient to spin-up the envelope of these AGB stars for them to form elliptical PNe. The prediction that on average several such planets orbit each star, as in the Solar system, still holds.  相似文献   

14.
Based on the spectral observations of the LAMOST (DR2) survey, the radii, masses, and luminosities of 700 481 stars were estimated. These stars belong to spectral types A, F, G, and K, and have metallicities between ?0.845 and 0.0. To determine the properties of the stars, we used up-to-date models of the stellar interior structure, computed with account for the stellar evolution rate and the initial mass function. The use of evolutionary estimates for two types of stars—with and without rotation—allowed us to account for the uncertainty associated with the lack of data on the rotation velocity of the stars under consideration. The obtained stellar radii, together with the photometric estimates of interstellar extinction and angular diameters can be used to study the dependence of interstellar extinction on distance as well as to estimate the stellar distances.  相似文献   

15.
A new model of the internal structure of certain types of celestial bodies is proposed. It is based on the concept that some neutron stars might have been formed earlier than all other type of stars, at an early stage of expansion of the universe, directly from continuous cosmic matter. Under such conditions, a neutron star after forming becomes an efficient center for the accretion of cosmic plasma. The plasma streams falling onto the neutron star carry magnetic fields with them that are created in the process (by thermoelectric currents and the dynamo process) and pack the fields tightly around the star. After a certain time, an extended and strongly magnetized plasma layer is formed around the neutron star. As a result, a stellar configuration is formed with an outer layer, mass, radius, and luminosity similar to those of an ordinary star. In the magnetized part of such a configuration, the gravitational attraction of the masses is compensated for by a magnetic pressure gradient, while the plasma is confifned by the magnetic field itself. Numerical estimates corroborate the possibility that magnetized stars exist. The radii and masses of the magnetized spheres of such stars are considerably less than the radii and masses of the corresponding configurations, so in observations they should not differ from ordinary stars: the outer layers (intermediate layer, photosphere, and chromosphere) of the magnetized configuration are the same as for an ordinary star. Structural differences may appear in the inner regions, however, involving magnetic activity and neutrino luminosity, for example.  相似文献   

16.
The physical parameters of both the components of fifteen symbiotic stars have been estimated statistically. Data obtained are compared with data available in the literature from photometric and spectroscopic observations. It is found that the mass-radius relations for close binary systems can be applicable for the giant and accreting main-sequence components of symbiotic binaries. Amass-radius relation for the white dwarf components is derived from the linear variation of masses and radii data obtained from observation. These statistical relations can be used to get a rough estimate of masses and radii of the components of symbiotic stars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A sample of 35 variable carbon stars has been considered. The stellar temperatures, radii, absolute luminosities, masses, and mass loss rates have been estimated. Then the spherical circumstellar dust shells around the analysed stars are discussed and the differences in the infrared properties between semi-regular, irregular, and long-period variables are indicated.  相似文献   

18.
The space velocities and Galactic orbital elements of stars calculated from the currently available high-accuracy observations in our compiled catalog of spectroscopic magnesium abundances in dwarfs and subgiants in the solar neighborhood are used to identify thick-disk objects. We analyze the relations between chemical, spatial, and kinematic parameters of F–G stars in the identified subsystem. The relative magnesium abundances in thick-disk stars are shown to lie within the range 0.0 < [Mg/Fe] < 0.5 and to decrease with increasingmetallicity starting from [Fe/H] ≈ ?1.0. This is interpreted as evidence for a longer duration of the star formation process in the thick disk. We have found vertical gradients in metallicity (gradZ[Fe/H] = ?0.13 ± 0.04 kpc?1) and relative magnesium abundance (gradZ[Mg/Fe] = 0.06 ± 0.02 kpc?1), which can be present in the subsystem only in the case of its formation in a slowly collapsing protogalaxy. However, the gradients in the thick disk disappear if the stars whose orbits lie in the Galactic plane, but have high eccentricities and low azimuthal space velocities atypical of the thin-disk stars are excluded from the sample. The large spread in relative magnesium abundance (?0.3 < [Mg/Fe] < 0.5) in the stars of the metal-poor “tail” of the thick disk, which constitute ≈8% of the subsystem, can be explained in terms of their formation inside isolated interstellar clouds that interacted weakly with the matter of a single protogalactic cloud. We have found a statistically significant negative radial gradient in relative magnesium abundance in the thick disk (gradR[Mg/Fe] = ?0.03 ± 0.01 kpc? 1) instead of the expected positive gradient. The smaller perigalactic orbital radii and the higher eccentricities for magnesium-richer stars, which, among other stars, are currently located in a small volume of the Galactic space near the Sun, are assumed to be responsible for the gradient inversion. A similar, but statistically less significant inversion is also observed in the subsystem for the radial metallicity gradient.  相似文献   

19.
The interpretation of pulsation data for sun-like stars is currently facing challenges quite similar to those faced by white dwarf modelers ten years ago. The observational requirements for uninterrupted long-term monitoring are beginning to be satisfied by successful multi-site campaigns and dedicated satellite missions. But exploration of the most important physical parameters in theoretical models has been fairly limited, making it difficult to establish a detailed best-fit model for a particular set of oscillation frequencies. I review the past development and the current state of white dwarf asteroseismology, with an emphasis on what this can tell us about the road to success for asteroseismology of other types of stars.  相似文献   

20.
About 30 photometrically variable red giant stars have periods less than 10 d, as determined by the compilers of the Hipparcos Catalogue from Hipparcos photometric measurements. These periods, when combined with estimates of the radii and masses of these stars, and with pulsation theory, imply that these stars are pulsating in very high overtones. We present several pieces of evidence which suggest that the periods may be spurious, as a result of the particular aliasing properties of the Hipparcos photometry. We conclude that the evidence for high-overtone pulsation in red giant stars is equivocal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号