首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absolute dimensions of the components of the eccentric eclipsing binary KL CMa have been determined. The solution of light and radial velocity curves of high (Δλ=0.14 Å) and intermediate (Δλ=1.1 Å) resolution spectra yielded masses M1 = 3.55 ± 0.27 M, M2 = 2.95 ± 0.24 M and radii R1 = 2.37 ± 0.09 R, R2 = 1.70 ± 0.1 R for primary and secondary components, respectively. The system consists of two late B-type components at a distance of 220 ± 20 pc for an estimated reddening of E(B-V)=0.127.The present study provides an illustration of spectroscopy’s crucial role in the analysis of binary systems in eccentric orbits. The eccentricity of the orbit (e=0.20) of KL CMa is found to be bigger than the value given in the literature (e=0.14). The apsidal motion rate of the system has been updated to a new value of ẇ=0°.0199±0.0002cycle-1, which indicates an apsidal motion period of U=87±1 yrs, two times slower than given in the literature. Using the absolute dimensions of the components yielded a relatively weak relativistic contribution of ẇrel=0°.0013cycle-1. The observed internal-structure component (logk2,obs=-2.22±0.01) is found to be in agreement with its theoretical value (logk2,theo=-2.23).Both components of the system are found very close to the zero-age main-sequence and theoretical isochrones indicate a young age (τ=50 Myr) for the system. Analysis of the spectral lines yields a faster rotation (Vrot1,2=100 km s−1) for the components than their synchronization velocities (Vrot,syn1=68 km s−1, Vrot,syn1=49 km s−1).  相似文献   

2.
Using available astrometric and radial velocity data, the space velocities of cataclysmic variables (CVs) with respect to Sun were computed and kinematical properties of various sub-groups of CVs were investigated. Although observational errors of systemic velocities (γ) are high, propagated errors are usually less than computed dispersions. According to the analysis of propagated uncertainties of the computed space velocities, available sample was refined by removing the systems with the largest propagated uncertainties so that the reliability of the space velocity dispersions was improved. Having a dispersion of 51±7kms-1 for the space velocities, CVs in the current refined sample (159 systems) are found to have 5 ± 1 Gyr mean kinematical age. After removing magnetic systems from the sample, it is found that non-magnetic CVs (134 systems) have a mean kinematical age of 4 ± 1 Gyr. According to 5 ± 1 and 4 ± 1 Gyr kinematical ages implied by 52 ± 8 and 45 ± 7 km s?1 dispersions for non-magnetic systems below and above the period gap, CVs below the period gap are older than systems above the gap, which is a result in agreement with the standard evolution theory of CVs. Age difference between the systems below and above the gap is smaller than that expected from the standard theory, indicating a similarity of the angular momentum loss time scales in systems with low-mass and high-mass secondary stars. Assuming an isotropic distribution, γ velocity dispersions of non-magnetic CVs below and above the period gap are calculated σγ=30±5kms-1 and σγ=26±4kms-1. The small difference of γ velocity dispersions between the systems below and above the gap may imply that magnetic braking does not operate in the detached phase, during which the system evolves from the post-common envelope orbit into contact.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
This paper presents the results of the first high-resolution spectroscopic observations of the Southern W UMa type system IS CMa. Spectroscopic observations of the system were made at Mt. John University Observatory using a HERCULES fibre-fed échelle spectrograph in September 2007. The first radial velocities of the component stars of the system were determined by using the spectral disentangling technique. The resulting orbital elements of IS CMa are: a1sini=0.0041±0.0001 AU, a2sini=0.0135±0.0001 AU, M1sin3i=1.48±0.01M, and M2sin3i=0.44±0.01M. The components were found to be in synchronous rotation taking into account the disentangled Hδ line profiles of both components of the system. The Hipparcos light curve was solved by means of the Wilson–Devinney method supplemented with a Monte Carlo type algorithm. The radial velocity curve solutions including the proximity effects give the mass ratio of the system as 0.297 ± 0.001. The combination of the Hipparcos light and radial velocity curve solutions give the following absolute parameters of the components: M1=1.68±0.04M,M2=0.50±0.02M,R1=2.00±0.02R,R2=1.18±0.03R,L1=7.65±0.60 L and L2=1.99±0.80L. The distance to IS CMa was calculated as 87±5 pc using the distance modulus with corrections for interstellar extinction. The position of the components of IS CMa in the HR diagram are also discussed: the system seems to have an age of 1.6 Gyr.  相似文献   

14.
Well-sampled optical and radio light curves of BL Lacertae in B,V,R,I bands and 4.8, 8.0, 14.5 GHz from 1968 to 2014 were presented in this paper. A possible 1.26±0.05 yr period in optical bands and a 7.50±0.15 yr period in radio bands were detected based on discrete correlation function, structure function as well as Jurkevich method. Correlations among different bands were also analyzed and no reliable time delay was found between optical bands. Very weak correlations were detected between V band and radio bands. However, in radio bands the variation at low frequency lagged that at high frequency obviously. The spectrum of BL Lacertae turned mildly bluer when the object turned brighter, and stronger bluer-when-brighter trends were found for short flares. A scenario including a precessing helical jet and periodic shocks was put forward to interpret the variation characteristics of BL Lacertae.  相似文献   

15.
16.
《Planetary and Space Science》2007,55(9):1190-1196
The Swedish Institute of Space Physics is developing a miniature plasma analyzer for planetary missions (MIPA—Miniature ion precipitation analyzer). MIPA has been accepted to fly on-board both the ESA BepiColombo mission to Mercury (2014) and the Indian Chandrayaan—1 mission to the Moon (2007). The analyzer measures ions in the energy range 10 eV–15 keV and has a sufficient mass resolution to resolve the main groups of ions, namely M/q=1,2,4,8,16,>30. Field of view is 9×180. The instrument consists of the sensor head and a separate electronic board whose total mass is 300 g. The sensor head envelope is roughly 53×85×30mm3 in volume and is designed for the extreme operation temperature range of -100 to +125C. MIPA comprises an electrostatic scanner for angular resolution, a cylindrical electrostatic analyzer for energy discrimination and a time-of-flight (TOF) section for particle velocity measurement. Generic design allows using the instrument on various platforms including nano-satellite and multi-spacecraft missions. This document describes the design of the sensor part including ion optical as well as mechanical aspects.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号