首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results obtained in this study show that as the dart leader tip passes a given point on the defunct return stroke channel the electric field increases within a fraction of a microsecond to values larger than the critical electric field necessary for the initiation of cold electron runaway in low-density air comprising the channel. These results are in support of the hypothesis that cold runaway electron breakdown may play a role in the emission of X-ray bursts by dart leaders. The calculations also show that the peak power dissipated by a typical dart leader is about 300–500 MW/m and the energy dissipated within the first 10 μs or so is about 500–600 J/m. Furthermore, the minimum resistance and the maximum radius of the core of a typical dart leader are estimated to be about 3 Ω/m and 0.003 m, respectively.  相似文献   

2.
Using the optical images of a cloud-to-ground lightning flash with multiple grounding points obtained by a highspeed video system in the Qinghai Province of China along with synchronous radiated electric field information, the propagation characteristic and the electric field change features of the leaders and the grounding behavior of discharge channels are analyzed.In addition, the two-dimensional velocity of the leader was estimated and its correlation with the time interval of the corresponding subsequent return stroke, and that with the peak current of return stroke are investigated. The results show that the average distance between the three obvious grounded points of the first return stroke channel is about 512.7 m, and the average time interval between the pulses of the corresponding electric field fast changes is 3.8 μs. Further, the average time interval between electric field pulses from the stepped leader is smaller than that of normal single grounding lightning. The observed lightning in our study has two main channels, namely the left and right channels. Based on our observations, it is clear that the dart leader comes close to the ground in case of the left channel after the first return stroke, but it fails to form a return stroke.However, the right channel exhibits a relatively rare phenomenon in that the subsequent return stroke R2 occurred about 2.1 ms after the dart leader arrived at the ground, which was unusually long; this phenomenon might be attributed to the strong discharge of the first return stroke and insufficient charge accumulation near the grounded point in a timely manner. The two-dimensional velocities for the stepped leader of the two main channels are about 1.23×105 and 1.16×105 m s-1, respectively. A sub-branch of stepped leader for the left channel fails to reach the ground and develops into an attempt leader eventually; this might be attributed to the fact that the main branch connects considerably many sub-branches, which leads to the instantaneous decline of the potential difference between the sub-branch and ground. Furthermore, it might also be because the propagation direction of this sub-branch is almost perpendicular to the atmospheric electric field direction, which is not conducive to charge transfer. The two-dimensional velocities for the dart leaders of five subsequent return strokes are all in the normal range, and they positively correlate with the peak current of the subsequent return stroke.  相似文献   

3.
This paper presents direct measurements of narrowband 10 MHz HF radiation from so-called “chaotic leaders” associated with subsequent return strokes. Although the term is controversial and poorly defined, we find that more than 30% of subsequent strokes in close lightning flashes contain electric field characteristics that are best described as “chaotic”. In earlier studies, return strokes have consistently been observed to be the strongest sources of HF radiation, but the results for leader processes are less consistent. We also observe return strokes to be the main HF emitter, and the leaders before the first return stroke in a flash sequence also emit HF though somewhat less intensely. The leaders preceding subsequent strokes typically emit little or no HF radiation, whether they are dart or dart-stepped leaders.However, it was observed that the presence of a chaotic component increases the leader HF intensity dramatically Defining the HF intensity unequivocally can be problematic for processes like chaotic leaders which have a combination of continuous and impulsive phenomena. Two time-domain methods were used to measure the HF intensity, the peak energy and the RMS energy. In the frequency domain these correspond to the energy spectral density (ESD) and power spectral density (PSD), respectively.It was found that the methods are not necessarily compatible. Thus, it is suggested that to clarify future work, leader processes should be characterized by the PSD rather than the ESD.  相似文献   

4.
We present a new speleothem record of atmospheric Δ14C between 28 and 44 ka that offers considerable promise for resolving some of the uncertainty associated with existing radiocarbon calibration curves for this time period. The record is based on a comprehensive suite of AMS 14C ages, using new low-blank protocols, and U–Th ages using high precision MC-ICPMS procedures. Atmospheric Δ14C was calculated by correcting 14C ages with a constant dead carbon fraction (DCF) of 22.7 ± 5.9%, based on a comparison of stalagmite 14C ages with the IntCal04 (Reimer et al., 2004) calibration curve between 15 and 11 ka. The new Δ14C speleothem record shows similar structure and amplitude to that derived from Cariaco Basin foraminifera (Hughen et al., 2004, 2006), and the match is further improved if the latter is tied to the most recent Greenland ice core chronology (Svensson et al., 2008). These data are however in conflict with a previously published 14C data set for a stalagmite record from the Bahamas — GB-89-24-1 (Beck et al., 2001), which likely suffered from 14C analytical blank subtraction issues in the older part of the record. The new Bahamas speleothem ?14C data do not show the extreme shifts between 44 and 40 ka reported in the previous study (Beck et al., 2001). Causes for the observed structure in derived atmospheric Δ14C variation based on the new speleothem data are investigated with a suite of simulations using an earth system model of intermediate complexity. Data-model comparison indicates that major fluctuations in atmospheric ?14C during marine isotope stage 3 is primarily a function of changes in geomagnetic field intensity, although ocean–atmosphere system reorganisation also played a supporting role.  相似文献   

5.
A large wave event was observed in the three upper-mesospheric (80–105 km) airglow emissions of O(1S), Na and OH by the Boston University all-sky imager, at the Arecibo Observatory, during the night of 3 May 2003. The airglow structures appeared to be due to a large upward propagating internal gravity wave, which subsequently became unstable near the 95 km height level and produced large-scale vertical motions and mixing. Simultaneous density and temperature lidar measurements indicated the presence of a large temperature inversion of 80 K valley-to-peak between 88 and 96 km during the time of the event. Near-simultaneous temperature profiles, made by the TIMED SABER instrument, provided evidence that the horizontal extent of the inversion was localized to within 500 km of Arecibo during the wave event. As the gravity wave dissipated, an internal bore was generated, apparently due to the deposition of momentum and energy into the region by the original wave. Although mesospheric gravity wave breaking has been reported previously (Swenson and Mende, 21(1994); Hecht et al., 102(1997); Yamada et al., 28(2001), for example), this was the first time that the phenomenon has been associated with the generation of an internal mesospheric bore. The event suggested that the breaking of a large mesospheric gravity wave can lead to the generation of an internal bore, as suggested by Dewan and Picard 106(2001). Such behavior is of particular interest since little is known of their origins.  相似文献   

6.
The results from the numerical calculations of the global distribution of topside ionospheric parameters such as H+ ions and ion and electron temperatures up to 1500 km height are presented for equinoctial conditions at solar minimum. Calculations are carried out using the Global Self-consistent Model of Thermosphere, Ionosphere and Protonosphere (GSM TIP) developed in WD IZMIRAN, and using a new calculation block for electric fields due to dynamo and of magnetospheric origin. A comparison of two sets of calculations of magnetospheric convection electric field for a given potential difference is carried out, one through polar caps and other through field aligned currents of first zone. It is shown that the distribution of the electric potential obtained through field aligned currents of first zone is more self-consistent than that through polar caps. The light ion trough in H+ ions is deeper and occupies larger region for the potential difference through polar cap. For a given potential difference through field aligned current, at 1500 km, the maximum ion temperature is 150 K higher, minimum ion temperature is 200 K lower and maximum electron temperature is 100 K higher than those obtained for the same potential difference through polar caps. It is concluded that for modeling the electric field of magnetospheric origin, it is necessary to use the potential difference through field aligned current of first zone instead of through polar caps.  相似文献   

7.
Relationships between the polar cap magnetic activity index PC and the magnetic storm Dst index have been studied for the magnetic storms with duration more 12 h and peak value Dst<?30 nT and, observed in 1998–2002 and 2004–2005. Along with PC index the geoeffective interplanetary electric field Em was also examined. It has been found that all examined storms, lying in range from ?30 to ?373 nT, started when the PC index and, correspondingly, the Em field firmly exceeded the threshold >2 mV/m. In particular, the “anomalous” magnetic storm on January 21–22, 2005 occurring under conditions of northward IMF BZ (Du et al., 2008) is usual phenomena fitted well with the threshold restriction owing to the large IMF By component input. The maximal storm depression (the peak value of Dst) is linearly related to the quantities Em and PC, averaged for the time interval from the storm beginning to the storm maximum. The correlation between Dst and PC is more steady and larger than correlation between Dst and Em, the latter being dependent on Em value (effect of “Dst saturation”). The moment of the firm descent of the Em and PC quantities below the threshold level ~2 mV/m is indicative of the depression damping and transition to the recovery phase. The results are consistent with the similar peculiarities revealed for substorms development (Troshichev and Janzhura, 2009) and support the conclusion that the PC index is a reliable proxy characterizing the solar wind energy having been entered into the magnetosphere.  相似文献   

8.
The fine structure is discussed arising in the spatial distribution of the pulsed electric field above a Γ-shaped stroke of lightning. The channel of discharge contains a vertical and a horizontal section. The structured spatial distribution of field appears due to a superposition of three pulses arriving from vertical and horizontal sections of the causative discharge and from reflections from the ground. The details of electric field distribution depend on time and on the stroke orientation relative to an elevated observer. The characteristic size of ‘filaments’ in the transient electric field is about 1 km along the horizontal direction, while it reaches a few tens of kilometers along the vertical direction.  相似文献   

9.
Robust, independent age constraints on the absolute timing of climate events based on the U-series dating of fossil coral are sparse before the last glacial cycle. Using multiple-collector inductively coupled plasma mass spectrometry with multiple-Faraday protocols, we are able to date ~ 600 ka samples with an uncertainty of better than ± 15 ka (2σ), representing a three-fold improvement in precision compared with previous techniques. Using these methods, we report U-series measurements for a suite of > 500 thousand year old (ka) corals from Henderson Island, an emergent atoll in the south-central Pacific Ocean. The fossil corals show extraordinarily little diagenetic alteration for their age and the best-preserved sample yields a U-series age of 600 ± 15 ka (2σ), which overlaps with the timing of the warm Marine Isotope Stage (MIS) 15 interglacial. The open-system model of Villemant and Feuillet [Villemant B. and Feuillet N. (2003) Dating open systems by the 238U–234U–230Th method: application to Quaternary reef terraces. Earth and Planetary Science Letters 210(1–2), 105–118.] and the linear regression (or open-system isochron) is clearly limited for such old samples. However, the open-system model developed by Thompson et al. [Thompson W.G., Spiegelman M.W., Goldstein S.L., and Speed R.C. (2003) An open-system model for U-series age determinations of fossil corals. Earth and Planetary Science Letters 210(1–2), 365–381.] appears to reliably correct for open-system effects in roughly half of the corals, giving a MIS 15 origin for these. Thus the data provide evidence that the systematic addition of 230Th and 234U through α-recoil is a dominant open-system process occurring in the Henderson Island fossil reef system. Several coral samples yield significantly older Thompson et al. open-system ages between 650 and 750 ka. The uncertainty on these ages (typically ± 30 kyrs) is too great for precise assignment but most data overlap with the MIS 17 interglacial. The reliability of these ages is currently unclear. It is shown that separate aliquots of the same coral can yield different Thompson model ages. Therefore, there appear to be additional diagenetic mechanisms that create further anomalous excursions in the U-series systematics, limiting the reliability of the Thompson et al. open-system model.  相似文献   

10.
In this paper, based on theoretical estimation of the achievable electric fields during the physical development process of a long spark under different conditions, we show that the encounter of negative and positive streamer fronts just before the final breakdown is one scenario, under which the observed X-ray bursts in long sparks is highly possible. Our calculations show that for example in an 80 cm long rod–sphere air gap at atmospheric pressure with negative lightning impulse breakdown voltage of about 925 kV, electrons are accelerated to values in the range of 100–300 keV during the encounter. Subsequently, these electrons gain more energy moving through the potential gradient of the positive streamer region. The total gain of energy by electrons may reach 300–500 keV. The results also show that negative discharges can produce more energetic electrons than positive. If the suggested mechanism of X-ray production in long sparks is correct, then the X-ray burst may consist of several pulses closely spaced in time. Time resolved photography in simultaneous measurement of X-rays would be able to confirm this prediction.  相似文献   

11.
A narrowband radio interferometer has been developed and used to locate the entire sources of VHF radiations from a negative cloud-to-ground (CG) lightning discharge which contains 19 strokes. This system uses five antennas to form an array consisting of short- and long-baselines along two or- thogonal directions. The system error which comes from frequency conversion is reduced by phase detection through direct high frequency amplifying. An interactive graphic analysis procedure is used to remove the fringe ambiguities which exist inherently in interferometry and to determine the direction of lightning radiation sources in two dimensions (azimuth and elevation) as a function of time at a time resolution of microsecond orders. With the developed system, the whole progression process in time and space of a lightning flash can be reconstructed. In this paper, combining the synchronous data of electric filed change and VHF radiation, the whole processes of an example negative CG flash have been studied in detail. It is found that the preliminary breakdown event of the CG flash started from negative charge region and exhibited firstly a downward pregression and then an upward propagation. There were very intense and continuous radiations during stepped leaders which became much stronger when the first return stroke began. In contrast, there were less and only discrete radiations during dart leaders. Stepped leader and dart leader may transform to each other depending on the state of the ionization of the path. The progression speed of initial stepped leaders was about 105 ms?1, while that was about 4.1×106 and 6.0×106 ms?1 for dart leaders and dart-stepped leaders, respectively. M events produced hook-shaped field changes accompanied by active burst of radiations at their begin- nings. Followed these active radiation processes, M events appeared to contact finally into conducting main discharge channels. The mean progression speed of M events was about 7×107 ms?1, greater than that of the dart leaders and dart-step leaders. K events and attempted leaders were essentially the same as dart leaders except that they could not reach the ground and initiate return strokes.  相似文献   

12.
The present paper reveals that the air contains electromagnetic energy of extremely low frequency, low amplitude as well as of a low phase speed. The energy is of great interest because of its impact on certain biological processes. It is created by the interaction of two well-known phenomena. The rotation of the earth generates 24 h periods currents in the magnetosphere, known as the Birkeland currents. The currents generate transverse electromagnetic waves (EM waves) propagating parallel to the geomagnetic field lines. Furthermore, the air and the earth crust contain electrons caused by the global electric circuit. The electric field vectors of the EM waves exert a force on these electrons, causing them to oscillate and thus generate currents of extremely low frequency both in the air and in the earth crust. A theoretical model of the system is presented and measurement techniques are described. Measurements have been performed during a six year period. The results of the performed measurements verified the theoretical model. Impact on biological processes is discussed.  相似文献   

13.
We have measured magnetic hysteresis loops, zero-field-cooled (ZFC) and field-cooled (FC) remanence, and low-field AC susceptibility as a function of temperature between 2 and 40 K for a single crystal several mm in size and for two powders of manganese carbonate (mineral rhodochrosite, MnCO3), one ground from a natural precipitate (grainsize ∼100 μm) and another synthesized in the laboratory (grainsize ∼10 μm). For the single crystal, measurements carried out both in the basal (easy magnetization) plane and along the trigonal (hard magnetization) axis yielded, expectedly, grossly different magnetic properties. In the basal plane, hysteresis appears to be mostly controlled by domain wall movement at the two lowest temperatures studied, 5 and 15 K, as indicated by a fairly broad switching field distribution. At 25 K and above, however, magnetization reversal occurs at a single, well defined magnetic field, which we interpret as a characteristic field of the in-plane magnetic anisotropy. Hysteresis in the basal plane is observed up to 36 K which is above the nominal Néel temperature of rhodochrosite (34.3 K). In addition, a sharp coercivity peak occurs at 34.5 K. Rather unexpectedly, hysteresis is also observed for the magnetic field applied along the trigonal axis. It is very small at 5 K but develops gradually with increasing temperature, coercivity reaching maximum of 100 mT at 28 K and remanence peaking at slightly higher temperature (30–31 K). Hysteresis along the trigonal axis is observed up to 37 K. Hysteresis temperature dependence conforms with the AC susceptibility versus temperature curve which shows a maximum at 36.5 K. ZFC/FC remanence curves also closely match the temperature dependence of remanence extracted from hysteresis loops. We suggest that this behavior could be due to the presence of a minor, about 1 at.% amount of Fe2+ substituting for Mn in the crystalline lattice of rhodochrosite. Hysteresis measurements on powders have revealed a significant enhance in coercivity, up to 50 mT for the 100-μm powder and up to 150 mT for the 10-μm one. FC/ZFC ratio amounts to about 2 for the natural powder, while for the synthetic one, which is essentially pure material, it barely exceeds unity. FC/ZFC ratio can thus be viewed as a sensitive indicator of iron incorporation into rhodochrosite.  相似文献   

14.
Regular measurements of the atmospheric electric field made at Vostok Station (φ=78.45°S; λ=106.87°E, elevation 3500 m) in Antarctica demonstrate that extremely intense electric fields (1000–5000 V/m) can be observed during snow storms. Usually the measured value of the atmospheric electric field at Vostok is about 100–250 V/m during periods with “fair weather” conditions. Actual relation between near-surface electric fields and ionospheric electric fields remain to be a controversial problem. Some people claimed that these intense electric fields produced by snowstorms or appearing before strong earthquakes can re-distribute electric potential in the ionosphere at the heights up to 300 km. We investigated interrelation between the atmospheric and ionospheric electric fields by both experimental and theoretical methods. Our conclusion is that increased near-surface atmospheric electric fields do not contribute notably to distribution of ionospheric electric potential.  相似文献   

15.
Observations showed that the main engine water exhaust plumes from space shuttles released at ~110 km altitude from Florida could be transported over thousands of kilometers northward or southward, reaching the Arctic after a day or so, and in one case Antarctica after three days (Stevens et al., 2003, Stevens et al., 2005). In this work, we study the meridional transport associated with the quasi-two-day wave (QTDW) and migrating tides. Diagnostic calculations are performed to trace the particle trajectories using winds from the Thermosphere–Ionosphere–Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) simulations for January, when the amplitude of the QTDW usually peaks. The calculations demonstrate that the mean meridional circulation, a QTDW or a migrating tide cannot individually sustain planetary-scale meridional transport for one to three days, but the combined effects of a QTDW and a tide can. In particular, when the QTDW and the tides are scaled according to the observed amplitudes, particles released at ~110 km and appropriate longitudes/local times can undergo transport fast enough to reach Antarctica within three days as observed. The magnitude and direction of the transport depend on the amplitudes and phases of the tides and the QTDW. These simulations thus suggest that the observed rapid planetary-scale meridional transport of the shuttle main engine plume can be driven by planetary waves and tides.  相似文献   

16.
《Marine pollution bulletin》2012,65(12):2692-2698
The occurrence of tetracycline resistance (TRG) and integrase (INT) genes were monitored in Crassostrea virginica oyster reefs of three pristine creeks (SINERR, Georgia, USA). Their profiles revealed 85% similarity with the TRG/INT profiles observed in the adjacent to the SINERR and contaminated Altamaha River estuary (Barkovskii et al., 2010). The TRG/INT spectra and incidence frequencies corresponded to the source of oceanic input and to run-offs from creeks’ watersheds. The highest incidence frequencies and concentrations were observed in oysters. TRG/INT incidences correlated positively (Spearman Rank = 0.88), and negatively correlated (−0.63 to −0.79) with creek salinity, conductivity, dissolved solids, and temperature. Coliform incidence positively correlated with temperature, and not with the TRG/INT incidence. The Altamaha River estuary was the primary TRG/INT source for the reefs with contributions from creek’s watersheds. TRG/INT were carried by non-coliforms with a preference for low-to-temperate thermohaline environments coupled with bioaccumulation by oysters.  相似文献   

17.
We have undertaken helium, neon and argon step-heating, isotopic analyses of eleven polycrystalline diamonds of known peridotite/eclogite paragenesis from the Jwaneng kimberlite pipe, Botswana. In contrast to the findings of crustal noble gases in framesites from the same kimberlite pipe (Honda et al., 2004. Unusual noble gas compositions in polycrystalline diamonds: preliminary results from the Jwaneng kimberlite, Botswana. Chem. Geol. 203, 347–358.), the Jwaneng polycrystalline diamonds appear to contain similar noble gas isotopic compositions (particularly Ne) to those representing a mantle source for MORBs. This implies that the Jwaneng polycrystalline diamonds may have formed in recent times, possibly close to the time of kimberlite emplacement at ~ 235 Ma. In contrast, Jwaneng framesites could be as old as gem diamonds (mineral inclusion ages of ~ 2.9 Ga). Furthermore, the data indicate that the sub-continental mantle lithosphere in the region has heterogeneous Ne isotopic compositions, or that these compositions changed over time from crustal Ne (as observed in the framesites) to MORB-like (as observed in the polycrystalline diamonds).  相似文献   

18.
Narrow bipolar events (NBEs) are a distinct class of intra-cloud lightning discharge. In this paper we present observations of 10 negative and 67 positive such events in East China. Positive NBEs occurred at 7–12 km altitude above mean sea level (MSL) with a mean altitude of 9.5 km, and negative NBEs occurred at 14–16 km altitude. Electrical/channel characteristics of these events were derived from NBE pulse waveforms based on the transmission-line model. On average, the peak current moment and the charge moment change of a NBE event is 15 kA km, and 0.12 C km, respectively. The mean time for the propagation of current front along the channel is 2.2 μs. The upper limit on channel length for NBEs in this study is 510–1060 m, the lower limit on discharge current amplitude is 12.5–43.2 kA, and the minimum charge transfer is 0.1–0.3 C.  相似文献   

19.
The suggestion that the polar cap can completely disappear under certain northward IMF conditions is still controversial. We know that the size of the polar cap is strongly controlled by the interplanetary magnetic field (IMF). Under a southward IMF, the polar cap is usually large and filled with weak diffuse polar rain electrons. The polar cap shrinks under a northward IMF. Here we use the global auroral images and coincident particle measurements on May 15, 2005 to show that the discrete arcs (due to precipitation of both electrons and ions) expanded from the dayside oval to the nightside oval and filled the whole polar ionosphere after a long (8 h) and strong (~5–30 nT) northward IMF Bz, The observations suggested that the polar cap disappeared under a closed magnetosphere.  相似文献   

20.
On December 1, 2007, the solar absorption infrared spectra of the Popocatépetl volcanic plume was recorded during an eruptive event and complementarily on November 17, 2008, the passive quiescent degassing was measured from the same site. A portable FTIR spectrometer with a scanning mirror for fast tracking of the sun provided the flexibility, quality, and simplicity needed for field deployment. Slant columns of the gases SO2, HCl, HF, and SiF4 were retrieved and strong differences could be observed when comparing gas ratios in both time periods. During the explosive eruption, the SO2/HCl ratio was three times greater and the HF/HCl ratio was slightly smaller than during passive degassing.While the ratios among SO2, HCl, HF, and SiF4 describe the chemical composition of the volcanic gas mixture, the SiF4/HF ratio provides information about the equilibrium temperatures of the stored gases which in this study were calculated at 150° and 185 °C for the explosive and quiescent degassing episodes, respectively. We conclude that cooling of lava domes in the crater precedes Vulcanian explosions as suggested by Schaaf et al (2005). Based on SO2 flux (Grutter et al., 2008) and measurements and data from the November 2008 event, the average fluxes for HCl, HF, SiF4, and F through quiescent degassing are estimated to be 204, 22.7, 9.8, and 31.7 tons/day, respectively. These values are similar to those reported by Love et al. (1998) more than 10 yrs ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号