首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We analyze the longest temperature series from Prague, Bologna and Uccle. We partition daily minimum and maximum temperatures and their differences in two subsets as a function of high vs low solar activity, using the superimposed epochs method. Differences display patterns with significant amplitudes and time constants ~3 months. These are recognized in all stations and are stable against a change in the analyzed period. Amplitude of variations is ~1 °C. Differences between average annual values corresponding to high vs low activity periods are also ~1 °C. Solar activity may account for these long-term temperature variations. These variations also present local characteristics, which may render identification of a global correlation delicate. We discuss possible physical mechanisms by which solar variation could force climate changes (e.g. through solar activity itself, the EUV part of the solar flux, cosmic rays, the downward ionosphere-earth current density, etc.).  相似文献   

2.
The prediction of solar activity strength for solar cycles 24 and 25 is made on the basis of extrapolation of sunspot number spectral components. Monthly sunspot number data during the 1850–2007 interval (solar cycles 9–23) are decomposed into several levels and searched for periodicities by iterative regression in each level. For solar cycle 24, the peak is predicted in November 2013 with a sunspot number of 113.3. The cycle is expected to be weak, with a length of 133 mo (months) or 11.1 yr. The sunspot number maximum in cycle 25 is predicted to occur in April 2023 with a sunspot number 132.1 and a solar cycle length of 118 mo or 9.8 yr. Thus, solar cycle 24 is predicted to have an intensity 23% lower than cycle 23, and cycle 25 will be 5% lower than cycle 23.  相似文献   

3.
We have investigated the solar activity signal in tree ring data from two locations in Chile. The tree ring time series extended over a period of ∼400 yr. Spectral and wavelet analysis techniques were employed. We have found evidence for the presence of the solar activity Schwabe (∼11 yr), Hale (∼22 yr), fourth-harmonic of the 208-yr Suess cycle (∼52 yr) and Gleissberg (∼80 yr) cycles. The Gleissberg cycle of tree ring data is in anti-phase with solar activity. Wavelet and cross-wavelet techniques revealed that the periods found are intermittent, possibly because solar activity signals observed in tree rings are mostly due to solar influence on local climate (rainfall, temperature, and cloud cover) where trees grow up. Further, cross-wavelet analysis between sunspot and tree ring time series showed that the cross power around the 11 yr solar cycle is more significant during periods of high solar activity (grand maximum) than during periods of low solar activity (grand minimum). As Glaciar Pio XI is practically at the Pacific Ocean level, the tree-ring response may be stronger due to the heating of the Pacific Ocean water following an increase of the solar radiation incidence rather than at the higher altitudes of Osorno region.  相似文献   

4.
We present new analyses of volatile, major, and trace elements for a suite of glasses and melt inclusions from the 85°E segment of the ultra-slow spreading Gakkel Ridge. Samples from this segment include limu o pele and glass shards, proposed to result from CO2-driven explosive activity. The major element and volatile compositions of the melt inclusions are more variable and consistently more primitive than the glass data. CO2 contents in the melt inclusions extend to higher values (167–1596 ppm) than in the co-existing glasses (187–227 ppm), indicating that the melt inclusions were trapped at greater depths. These melt inclusions record the highest CO2 melt concentrations observed for a ridge environment. Based on a vapor saturation model, we estimate that the melt inclusions were trapped between seafloor depths (~ 4 km) and ~ 9 km below the seafloor. However, the glasses are all in equilibrium with their eruption depths, which is inconsistent with the rapid magma ascent rates expected for explosive activity. Melting conditions inferred from thermobarometry suggest relatively deep (25–40 km) and cold (1240°–1325 °C) melting conditions, consistent with a thermal structure calculated for the Gakkel Ridge. The water contents and trace element compositions of the melt inclusions and glasses are remarkably homogeneous; this is an unexpected result for ultra-slow spreading ridges, where magma mixing is generally thought to be less efficient based on the assumption that steady-state crustal magma chambers are absent in these environments. All melts can be described by a single liquid line of descent originating from a pooled melt composition that is consistent with the aggregate melt calculated from a geodynamic model for the Gakkel Ridge. These data suggest a model in which deep, low degree melts are efficiently pooled in the upper mantle (9–20 km depth), after which crystallization commences and continues during ascent and eruption. Based on our melting model and the assumption that CO2 is perfectly incompatible, we show that the highest CO2 concentrations of the melt inclusions (~ 1600 ppm) are consistent with the calculated CO2 concentrations of primary undegassed melts. The highest measured CO2/Nb ratio (443) of Gakkel Ridge melt inclusions predicts a mantle CO2 content of 134 ppm and would result in a global ridge flux of 2.0 × 1012 mol CO2/yr.  相似文献   

5.
Hot springs in the Marsyandi Valley, Nepal, vent CO2 sourced from metamorphic fluids that mix with shallow groundwaters before degassing near the Earth's surface. The δ13C of spring waters ranges up to + 13‰, while that of the coexisting free gas phase is close to ? 4‰. Empirical and thermodynamic modelling of this isotopic fractionation suggests > 97 ± 1% CO2 degassing. The calculated minimum total CO2 degassing in the Marsyandi catchment is 5.4 × 109 mol/yr from a Cl-based estimate of the spring water discharge to the Marsyandi River and the fraction of CO2 degassed. Extrapolated to the whole of the Himalayas, this implies a probable minimum metamorphic CO2 flux of 0.9 × 1012 mol/yr, or ~ 13% of solid Earth CO2 degassing. The calculated flux is a factor of three greater than the estimated CO2 drawdown by silicate weathering in the Himalayas. Himalayan metamorphic degassing contributes a significant fraction of the global solid Earth CO2 flux and implies that metamorphism may cause changes in long-term climate that oppose those resulting from the orogenic forcing of chemical weatherability.  相似文献   

6.
In addition to rhythmic slug-driven Strombolian activity, Stromboli volcano occasionally produces discrete explosive paroxysms (2 per year on average for the most frequent ones) that constitute a major hazard and whose origin remains poorly elucidated. Partial extrusion of the volatile-rich feeding basalt as aphyric pumice during these events has led to consider their triggering by the fast ascent of primitive magma blobs from possibly great depth. Here I examine and discuss the alternative hypothesis that most of the paroxysms could be triggered and driven by the fast upraise of CO2-rich gas pockets generated by bubble foam growth and collapse in the sub-volcano plumbing system. Data for the SO2 and CO2 crater plume emissions are used to show that Stromboli's feeding magma may originally contain as much as 2 wt.% of carbon dioxide and early coexists with an abundant CO2-rich gas phase with high CO2/SO2 molar ratio (≥ 60 at 10 km depth below the vents, compared to ~ 7 in time-averaged crater emissions). Pressure-related modelling indicates that the time-averaged crater gas composition and output are well accounted for by closed system decompression of the basalt–gas mixture until the volcano–crust interface (~ 3 km depth), followed by open degassing and crystallization in the volcano conduits. However, both the low viscosity and high vesicularity of the basaltic magma permit bubble segregation and bubble foam growth at deep sill-like feeder discontinuities and at shallower physical boundaries (such as the volcano–crust interface) where the gas-rich aphyric basalt interacts with the unerupted crystal-rich and viscous magma drained back from the volcano conduits. Gas pressure build-up and bubble foam collapse at these boundaries will intermittently trigger the sudden upraise of CO2-rich gas blobs that constitute the main driving force of the paroxysms. Deeper-sourced gas blobs, driving the most powerful explosions, will be the richest in CO2 and have highest CO2/SO2 ratios. This mechanism is shown to account well for the dynamic, seismic and petrologic features of Stromboli's paroxysms and, hence, to provide a potential alternative interpretation for their genesis and their forecasting. Enhanced bubble foam leakage prior to a paroxysm, or foam emptying in several steps, should lead indeed to precursory upstream of CO2-rich gas and increasing CO2/SO2 ratio in crater plume emissions. The recent detection of such signals prior to two explosions in December 2006 and March 2007 strongly supports this expectation and the model proposed in this study.  相似文献   

7.
The incidence and severity of extraordinary macroalgae blooms (green tides) are increasing. Here, climate change (ocean warming and acidification) impacts on life history and biochemical responses of a causative green tide species, Ulva rigida, were investigated under combinations of pH (7.95, 7.55, corresponding to lower and higher pCO2), temperature (14, 18 °C) and nitrate availability (6 and 150 μmol L? 1). The higher temperature accelerated the onset and magnitude of gamete settlement. Any two factor combination promoted germination and accelerated growth in young plants. The higher temperature increased reproduction, which increased further in combination with elevated pCO2 or nitrate. Reproductive success was highest (64.4 ± 5.1%) when the upper limits of all three variables were combined. Biochemically, more protein and lipid but less carbohydrate were synthesized under higher temperature and nitrate conditions. These results suggest that climate change may cause more severe green tides, particularly when eutrophication cannot be effectively controlled.  相似文献   

8.
A database of the electron temperature (Te) comprising of most of the available LEO satellite measurements is used for studying the solar activity variations of Te. The Te data are grouped for two levels of solar activity (low LSA and high HSA), five altitude ranges between 350 and 2000 km, and day and night. By fitting a theoretical expression to the Te values we obtain variation of Te along magnetic field lines and heat flux for LSA and HSA. We have found that Te increases with increase in solar activity at low and mid-latitudes during nighttime at all altitudes studied. During daytime the Te response to solar activity depends on latitude, altitude, and season. This analysis shows existence of anti-correlation between Te and solar activity at mid-latitudes below 700 km during the equinox and winter day hours. Heat fluxes show small latitudinal dependence for daytime but substantial for nighttime.  相似文献   

9.
Understanding climate change is an active topic of research. Much of the observed increase in global surface temperature over the past 150 years occurred prior to the 1940s and after the 1980s. The main causes invoked are solar variability, changes in atmospheric greenhouse gas content or sulfur due to natural or anthropogenic action, or internal variability of the coupled ocean–atmosphere system. Magnetism has seldom been invoked, and evidence for connections between climate and magnetic field variations have received little attention. We review evidence for correlations which could suggest such (causal or non-causal) connections at various time scales (recent secular variation ∼ 10–100 yr, historical and archeomagnetic change ∼ 100–5000 yr, and excursions and reversals ∼ 103–106 yr), and attempt to suggest mechanisms. Evidence for correlations, which invoke Milankovic forcing in the core, either directly or through changes in ice distribution and moments of inertia of the Earth, is still tenuous. Correlation between decadal changes in amplitude of geomagnetic variations of external origin, solar irradiance and global temperature is stronger. It suggests that solar irradiance could have been a major forcing function of climate until the mid-1980s, when “anomalous” warming becomes apparent. The most intriguing feature may be the recently proposed archeomagnetic jerks, i.e. fairly abrupt (∼ 100 yr long) geomagnetic field variations found at irregular intervals over the past few millennia, using the archeological record from Europe to the Middle East. These seem to correlate with significant climatic events in the eastern North Atlantic region. A proposed mechanism involves variations in the geometry of the geomagnetic field (f.i. tilt of the dipole to lower latitudes), resulting in enhanced cosmic-ray induced nucleation of clouds. No forcing factor, be it changes in CO2 concentration in the atmosphere or changes in cosmic ray flux modulated by solar activity and geomagnetism, or possibly other factors, can at present be neglected or shown to be the overwhelming single driver of climate change in past centuries. Intensive data acquisition is required to further probe indications that the Earth's and Sun's magnetic fields may have significant bearing on climate change at certain time scales.  相似文献   

10.
Paleoelevation constraints from fossil leaf physiognomy and stable isotopes of sedimentary carbonate suggest that significant surface uplift of the northern Andean plateau, on the order of 2.5 ± 1 km, occurred between ~ 10.3 and 6.4 Ma. Independent spatial and temporal constraints on paleoelevation and paleoclimate of both the northern and southern plateau are important for understanding the distribution of rapid surface uplift and its relation to climate evolution across the plateau. This study focuses on teeth from modern and extinct mammal taxa (including notoungulates, pyrotheres, and litopterns) spanning ~ 29 Ma to present, collected from the Altiplano and Eastern Cordillera of Bolivia (16.2°S to 21.4°S), and lowland Brazil. Tooth enamel of large, water-dependent mammals preserves a record of surface water isotopes and the type of plants that animals ingested while their teeth were mineralizing. Previous studies have shown that the δ18O of modern precipitation and surface waters decrease systematically with increasing elevations across the central Andes. Our results from high elevation sites between 3600 and 4100 m show substantially more positive δ18O values for late Oligocene tooth samples compared to < 10 Ma tooth δ18O values. Late Oligocene teeth collected from low elevation sites in southeast Brazil show δ18O values similar (within 2‰) to contemporaneous teeth collected at high elevation in the Eastern Cordillera. This affirms that the Andean plateau was at a very low elevation during the late Oligocene. Late Oligocene teeth from the northern Eastern Cordillera also yield consistent δ13C values of about ? 9‰, indicating that the environment was semi-arid at that time. Latitudinal gradients in δ18O values of late Miocene to Pliocene fossil teeth are similar to modern values for large mammals, suggesting that by ~ 8 Ma in the northern Altiplano and by ~ 3.6 Ma in the southern Altiplano, both regions had reached high elevation and established a latitudinal rainfall gradient similar to modern.  相似文献   

11.
In general, the rate and timing of calcite precipitation is in part affected by variations in cave air CO2 concentrations. Knowledge of cave ventilation processes is required to quantify the effect variations in CO2 concentrations have on speleothem deposition rates and thus paleoclimate records. In this study we use radon-222 (222Rn) as a proxy of ventilation to estimate CO2 outgassing from the cave to the atmosphere, which can be used to infer relative speleothem deposition rates. Hollow Ridge Cave, a wild cave preserve in Marianna, Florida, is instrumented inside and out with multiple micro-meteorological sensor stations that record continuous physical and air chemistry time-series data. Our time series datasets indicate diurnal and seasonal variations in cave air 222Rn and CO2 concentrations, punctuated by events that provide clues to ventilation and drip water degassing mechanisms. Average cave air 222Rn and CO2 concentrations vary seasonally between winter (222Rn = 50 dpm L? 1, where 1 dpm L? 1 = 60 Bq m? 3; CO2 = 360 ppmv) and summer (222Rn = 1400 dpm L? 1; CO2 = 3900 ppmv). Large amplitude diurnal variations are observed during late summer and autumn (222Rn = 6 to 581 dpm L? 1; CO2 = 360 to 2500 ppmv).We employ a simple first-order 222Rn mass balance model to estimate cave air exchange rates with the outside atmosphere. Ventilation occurs via density driven flow and by winds across the entrances which create a ‘venturi’ effect. The most rapid ventilation occurs 25 m inside the cave near the entrance: 45 h? 1 (1.33 min turnover time). Farther inside (175 m) exchange is slower and maximum ventilation rates are 3 h? 1 (22 min turnover time). We estimate net CO2 flux from the epikarst to the cave atmosphere using a CO2 mass balance model tuned with the 222Rn model. Net CO2 flux from the epikarst is highest in summer (72 mmol m? 2 day? 1) and lowest in late autumn and winter (12 mmol m? 2 day? 1). Modeled ventilation and net CO2 fluxes are used to estimate net CO2 outgassing from the cave to the atmosphere. Average net CO2 outgassing is positive (net loss from the cave) and is highest in late summer and early autumn (about 4 mol h? 1) and lowest in winter (about 0.5 mol h? 1). Modeling of ventilation, net CO2 flux from the epikarst, and CO2 outgassing to the atmosphere from cave monitoring time-series can help better constrain paleoclimatic interpretations of speleothem geochemical records.  相似文献   

12.
Electron and ion temperature (Te and Ti) data observed using RPA on board SROSS C2 satellite are investigated for the variation with local time, season, latitude (0–30°N geographic) over a half of a solar cycle (1995–2000). The nighttime Te (∼1000 K) is independent of the season and the solar flux whereas Ti exhibits positive correlation with the solar activity during all three seasons. In the early morning hours during summer, Te is higher by ∼500 K than other seasons in all three levels of solar activity. During winter and equinox in the early morning hours, Te and Ti are higher during low solar activity, showing a negative correlation with solar flux. During daytime, the Ti increases with the solar flux in winter and summer solstice, but is independent in equinox. IRI underestimates Te and Ti during the morning period by 50–75% in the equatorial and near-equatorial stations during all levels of solar activities.  相似文献   

13.
Pantelleria Island, located in the Sicily Channel Rift Zone (Italy), is the type locality for the peralkaline rhyolitic rocks called pantellerites. In the last 50 ka, after the large Green Tuff caldera-forming eruption, volcanic activity at Pantelleria has consisted of effusive and explosive eruptions mostly vented inside and along the rim of the caldera and producing silicic lava flows, lava domes and poorly dispersed pantelleritic pumice fall deposits. Basaltic cinder cones and lava flows are only present outside the caldera in the NW sector of the island. The most recent basaltic (Cuddie Rosse, ~ 20 ka) and pantelleritic (Cuddia Randazzo and Cuddia del Gallo, ~ 6 ka) pyroclastic products were sampled to investigate magmatic volatile contents through the study of melt inclusions.The melt inclusions in pyroxene and olivine phenocrysts of Cuddie Rosse scoriae have an alkali basalt composition. The dissolved volatiles comprise 0.9–1.6 wt.% H2O, several hundred ppm of CO2, 1600–2000 ppm of sulphur and 500–900 ppm of chlorine. The water–carbon dioxide couple gives a confining pressure ~ 2 kbar prior to the eruption. This result indicates that episodes of magma ponding and crystallization occurred in the upper crust prior to eruption. The melt inclusions in feldspar, fayalite and aenigmatite phenocrysts of Cuddia del Gallo and Cuddia Randazzo pumice have a pantelleritic composition (Agpaitic Indices 1.3–2.1), up to 4.4 wt.% H2O, 8700 ppm Cl, 6000 ppm F, and CO2 below the detection limit. Sulphur averaging 420 ppm has been measured in Cuddia Randazzo melt inclusions. These data indicate relatively high volatile contents for these low-energy Strombolian-type eruptions. Melt inclusions in Cuddia del Gallo pumice show the most evolved composition (Agpaitic Indices 2–2.1) and the highest volatile content, in agreement with fluid saturation conditions in the magma chamber prior to the eruption. This implies a confining pressure of ~ 1 kbar for the top of the pantelleritic reservoir. The composition of melt inclusions and mineralogical assemblage of Cuddia Randazzo pumice indicate that it has a lower evolutionary degree (Agpaitic Indices 1.3–1.8) and lower pre-eruptive Cl and H2O contents than Cuddia del Gallo pumice. An increase in pressure due to the exsolution of volatiles in the upper part of the pantelleritic reservoir may have triggered the Cuddia del Gallo explosive eruption. Evidence of widespread pre-eruptive mingling between trachytes and pantellerites suggests that the intrusion of trachytic magma into the pantelleritic reservoir likely played a major role in destabilizing the magma system just prior to the Cuddia Randazzo event.  相似文献   

14.
Surface partial pressure of CO2 (pCO2), dissolved inorganic carbon (DIC), temperature, salinity and chlorophyll a (Chl a) at grid stations were measured in the southern Yellow Sea (SYS; 32–37°N to 120–125°E) during four cruises conducted in March 2005 (winter), April 2006 (spring), May 2005 (late spring), and July 2001 (summer). Factors influencing pCO2 spatial and seasonal variations are explored.Surface seawater pCO2 during winter was oversaturated with respect to the atmosphere in the entire study area (380–606 μatm), primarily due to the complete mixing of the water column in winter which brought CO2-enriched bottom water to the surface. However, during spring, surface pCO2 in the central SYS was undersaturated relative to the atmosphere with a low range between 274 and 408 μatm. The net CO2 sink in the central SYS was mainly due to the consumption of CO2 by the strong phytoplankton activity and to the weak water stratification, whereas surface pCO2 in the nearshore area was oversaturated for the atmosphere owing to vertical mixing and terrestrial inputs. During summer, surface pCO2 varied between 125 and 599 μatm over the entire sampling area. In the Changjiang (Yangtze River) Diluted Water (CDW) area, surface pCO2 was undersaturated because of the nutrient inputs via the Changjiang, triggering strong phytoplankton activity, whereas surface pCO2 was oversaturated in other areas. We conclude that the nearshore area behaves as a source of atmospheric CO2 during the entire investigated periods owing to vertical mixing and terrestrial inputs as well as upwelling, whereas the central region generally shifts from a source of CO2 in March to a sink in the remaining time of the investigation.  相似文献   

15.
High resolution OSL dating back to MIS 5e in the central Sea of Okhotsk   总被引:1,自引:0,他引:1  
Marine sediments contain important archives of past ocean and climate changes, but at high latitudes the absence of carbonate has prevented the construction of accurate chronological models. We have begun a study to (1) determine the accuracy of luminescence ages in deep-sea marine sediments, e.g. by comparison with marine oxygen isotope stratigraphy where possible, (2) describe changes in sedimentation rate through time, and (3) test whether it is possible to date back to marine isotope stage 5e (MIS 5e). We show here that optical dating of fine grains of quartz from the central Sea of Okhotsk is able to provide an accurate and precise chronology for the reconstruction of the palaeoceanic and palaeoclimatic environment at our site. The upper 6.5 m of the 18.42 m long core MR0604-PC07A is believed, based on its magnetic susceptibility and the oxygen isotope (δ18O) records to contain the last ~150 ka. Forty OSL samples were taken from this upper part of the core. The single-aliquot regenerative-dose (SAR) procedure is used for equivalent dose (De) determination. The luminescence characteristics of fine-grained quartz (4–11 μm) extracted from the core are described. The OSL signal is dominated by the fast component and a dose recovery test shows that we can accurately measure a known dose given in the laboratory prior to any heat treatment. Dose rates were determined using high-resolution gamma spectrometry, and vary between 0.4 and 1.6 Gy/ka. The OSL ages from this section lie between ~140 ka and ~15 ka and are in very good agreement with the δ18O stratigraphy up to MIS 5e. A clear change in sedimentation rate is identified: between ~139 and 110 ka, the sedimentation rate was ~0.09 m/ka, but then from ~110 to 15 ka, the sedimentation rate decreases to a constant value of ~0.04 m/ka. Our data confirm that OSL dating using widely distributed fine-grain quartz has great potential for dating deep-sea sediments. Because luminescence methods use clastic materials, they do not depend on the presence of biogenic carbonate. As a result it is now likely that we can establish a chronology in regions of the ocean that were previously undatable.  相似文献   

16.
We investigated the provenance of organic matter in the inner fjord area of northern Patagonia, Chile (~44–47°S), by studying the elemental (organic carbon, total nitrogen), isotopic (δ13C, δ15N), and biomarker (n-alkanoic acids from vascular plant waxes) composition of surface sediments as well as local marine and terrestrial organic matter. Average end-member values of N/C, δ13C, and δ15N from organic matter were 0.127±0.010, ?19.8±0.3‰, and 9.9±0.5‰ for autochthonous (marine) sources and 0.040±0.018, ?29.3±2.1‰, and 0.2±3.0‰ for allochthonous (terrestrial) sources. Using a mixing equation based on these two end-members, we calculated the relative contribution of marine and terrestrial organic carbon from the open ocean to the heads of fjords close to river outlets. The input of marine-derived organic carbon varied widely and accounted for 13–96% (average 61%) of the organic carbon pool of surface sediments. Integrated regional calculations for the inner fjord system of northern Patagonia covered in this study, which encompasses an area of ~4280 km2, suggest that carbon accumulation may account for between 2.3 and 7.8×104 ton C yr?1. This represents a storage capacity of marine-derived carbon between 1.8 and 6.2×104 ton yr?1, which corresponds to an assimilation rate of CO2 by marine photosynthesis between 0.06 and 0.23×106 ton yr?1. This rate suggests that the entire fjord system of Patagonia, which covers an area of ~240,000 km2, may represent a potentially important region for the global burial of marine organic matter and the sequestration of atmospheric CO2.  相似文献   

17.
《Marine pollution bulletin》2012,64(5-12):385-395
The influence of different environmental stresses, including salinity (5–35‰), tidal cycle (6/6, 12/12 and 24/24 h of high/low tidal regimes) and nutrient addition (1–6 times background nitrogen and phosphorus content) on Bruguiera gymnorrhiza and Aegiceras corniculatum grown in sediment contaminated with spent lubricating oil (7.5 L m−2) were investigated. The oil-treated 1-year-old mangrove seedlings subject to low (5‰) and high (35‰) salinity had significantly more reduction in growth, more release of superoxide radical (O2) and higher activity of superoxide dismutase (SOD) than those subject to moderate salinity (15‰). Extended flooding (24/24 h of high/low tidal regime) enhanced O2 release and malondialdehyde (MDA) content in both oil-treated species but had little negative effects on biomass production (P > 0.05) except the stem of A. corniculatum (P = 0.012). The addition of nutrients had no beneficial or even posed harmful effects on the growth and cellular responses of the oil-treated seedlings.  相似文献   

18.
The Toarcian Oceanic Anoxic Event (OAE) in the Early Jurassic (∼ 183 Ma ago) was characterized by widespread near-synchronous deposition of organic-rich shales in marine settings, as well as perturbations to several isotopic systems. Characteristically, two positive carbon-isotope excursions in a range of materials are separated by an abrupt negative shift. Carbon-isotope profiles from Toarcian fossil wood collected in England and Denmark have previously been shown to exhibit this large drop (∼ − 7‰) in δ13C values, interpreted as due to an injection of isotopically light CO2 into the ocean–atmosphere system. However, the global nature of this excursion has been challenged on the basis of carbon-isotope data from nektonic marine molluscs (belemnites), which exhibit heavier than expected carbon-isotope values. Here we present new data, principally from fossil wood and bulk carbonate collected at centimetre scale from a hemipelagic section at Peniche, coastal Portugal. This section is low in organic carbon (average TOC =  0.5%), and the samples should not have suffered significant diagenetic contamination by organic carbon of marine origin. The carbon-isotope profile based on wood shows two positive excursions separated by a large and abrupt negative excursion, which parallels exactly the profile based on bulk carbonate samples from the same section, albeit with approximately twice the amplitude (∼ − 8‰ in wood versus ∼ − 3.5‰ in carbonate). These data indicate that the negative carbon-isotope excursion affected the atmosphere and, by implication, the global ocean as well. The difference in amplitude between terrestrial organic and marine carbonate curves can be explained by greater water availability in the terrestrial environment during the negative excursion, for which there is independent evidence from marine osmium-isotope records and, plausibly, changes in atmospheric CO2 content, for which independent evidence is also available. The Peniche succession is also notable for the occurrence of re-deposited sediments: their lowest occurrence coincides with the base of the negative excursion and their highest occurrence coincides with its top. Thus, slope instability and sediment supply could have been strongly linked to the global environmental perturbation, an association that may misleadingly simulate the effects of sea-level fall.  相似文献   

19.
A tree-ring thickness time series from Passo Fundo (Southern Brazil) for the interval 1741–2004 was studied by spectral, wavelet and cross-wavelet analyses in order to identify the non-stationary characteristics in tree-ring and sunspot number data. Periods corresponding to the solar cycles of 11, 22, and 80 yr were found. The 11 yr solar cycle is detected in tree-ring data only during maximum solar activity interval from 1764 to 1804, 1824 to 1884, and 1924 to 1984. The Hale 22 yr solar cycle was observed in tree-ring wavelet map for the 1764–1864 and 1904–2004 intervals. The Gleissberg solar cycle was also observed in tree-ring wavelet map for the 1844–1904 interval.  相似文献   

20.
We report volatile (H2O, CO2, F, S, Cl) and trace element data for submarine alkalic basalt glasses from the three youngest Samoan volcanoes, Ta'u, Malumalu and Vailulu'u. Most samples are visibly sulfide saturated, so have likely lost some S during fractionation. Cl / K ratios (0.04–0.15) extend to higher values than pristine MORBs, but are suspected to be partly due to source differences since Cl / K roughly varies as a function of 87Sr / 86Sr. There are no resolvable differences in the relative enrichment of F among sources, and compatibility of F during mantle melting is established to be nearly identical to Nd. Shallow degassing has affected CO2 in all samples, and H2O only in the most shallowly erupted samples from Vailulu'u. Absolute water contents are high for Samoa (0.63–1.50 wt.%), but relative enrichment of water compared to equally incompatible trace elements (Ce, La) is low and falls entirely below normal MORB values. H2O / Ce (58–157) and H2O / La (120–350) correlate inversely with 87Sr / 86Sr compositions (0.7045–0.7089). This leads us to believe that, because of very fast diffusion of hydrogen in mantle minerals, recycled lithospheric material with high initial water and trace element content will lose water to the drier ambient mantle during storage within the inner Earth. The net result is the counter-intuitive appearance of greater dehydration with greater mantle enrichment. We expect that subducted slabs will experience a two-stage dehydration history, first within subduction zones and then in the ambient mantle during long-term convective mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号