首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meteorological measurements from Lerwick Observatory, Shetland (60°09′N, 1°08′W), are compared with short-term changes in Climax neutron counter cosmic ray measurements. For transient neutron count reductions of 10–12%, broken cloud becomes at least 10% more frequent on the neutron minimum day, above expectations from sampling. This suggests a rapid timescale (~1 day) cloud response to cosmic ray changes. However, larger or smaller neutron count reductions do not coincide with cloud responses exceeding sampling effects. Larger events are too rare to provide a robust signal above the sampling noise. Smaller events are too weak to be observed above the natural variability.  相似文献   

2.
《Journal of Hydrology》2006,316(1-4):13-27
A linearized approach to quantifying predictive uncertainty in a 2-D model of shallow water flow in response to uncertainty in friction parameterization is presented. The resulting uncertain finite volume (UFV) method is tested against Monte Carlo simulations for uncertain models over channel only, floodplain only and channel and floodplain meshes. The results show that the UFV model performs well in predicting mean and standard deviations of water depths, for problems with two independent Manning's n values, with standard deviations of up to 0.02 m1/3 s−1 with a mean value of 0.03 m1/3 s−1. For depth averaged velocities, mean values are well represented, but standard deviations are poorly predicted by UFV. UFV also performs well when modelling flow over an uneven fractal topography and for a distributed (11 degrees of freedom) parameterization. A computation time advantage of >50 when compared to the Monte Carlo method is observed.  相似文献   

3.
Although offset and age data from displaced landforms are essential for identifying earthquake clusters and thus testing whether faults slip at uniform or secularly varying rates, it is not clear how the uncertainties in such measurements should be propagated so as to yield a robust fault-slip history (i.e., record of fault displacement over time). Here we develop a Monte Carlo approach for estimating the distribution of geologically reasonable fault-slip histories that fit the offset and age data from a population of dated and displaced landforms. The model assumes that the landforms share common faulting histories, the offset and age constraints are correct, and the fault has not reversed shear sense. Analysis of the model results yields both a precise average slip rate, in the case where a linear fit is applied to the data, and a best-fit fault-slip history, in the case where the linear constraint is removed. The method can be used to test for secular variation in slip because the uncertainty on this best-fit history is quantified. By applying the method to previously published morphochronologic data from faulted late Quaternary terrace risers along the Kunlun fault in China and the Awatere fault in New Zealand, we have assessed the extent to which our modeled average slip rates match previously reported values and the data support previous interpretations of uniform slip rate. The Kunlun data set yields average slip rates of 8.7 + 3.6/?2.1 mm/yr and 5.1 + 1.6/?1.2 mm/yr (68.27% confidence), for the central and eastern reaches of the fault, respectively, both of which match previously published slip rates. Our analysis further indicates that these fault reaches have both slipped uniformly over the latest Quaternary. In contrast, analysis of data from the Saxton River site along the Awatere fault reveals a mid-Holocene deceleration in slip rate from 6.2 + 1.6/?1.4 mm/yr to 2.8 + 1.0/?0.6 mm/yr. This result contradicts previous interpretations of uniform slip along the Awatere fault. The Monte Carlo method we present here for quantifying fault-slip histories using the offset and age data from a population of faulted landforms provides an important tool for distinguishing temporally uniform from secularly varying fault slip.  相似文献   

4.
Observations of lake ice at the shore, complete ice cover, ice duration, ice thickness and other measures for 18 Polish lakes were collected for the 50 year period (1961–2010). Average ice dates in early winter became later: first appearance of ice along shore 2.3 days decade−1 and complete ice cover 1.2 days decade−1 while complete ice cover disappeared earlier (5.6 days decade−1) as did last ice at the shore (4.3 days decade−1). The duration of ice cover decreased by 5.6 days decade−1 and average ice thickness declined by 6.1 cm decade−1. The magnitude of these values for individual lakes decreased from eastern to western Poland. This geographic gradient is likely related to regional atmospheric circulation because in winter this part of Europe is strongly affected by continental air, an influence that is greater in the east. A multivariate redundancy analysis (RDA), used in order to examine the dependence of ice measures on lake physical properties and location, indicated longitude and altitude as key factors explaining lake ice dynamics such as the disappearance of ice and ice cover, ice cover duration and thickness. Lake volume and average depth influenced mostly the appearance of ice and ice cover.  相似文献   

5.
We present a new method of calculating cross-field diffusion of charged particles due to their interactions with interplanetary magnetic decreases (MDs) in high heliospheric latitudes. We use a geometric model that evaluates perpendicular diffusion to the ambient magnetic field as a function of particle's gyroradius, MD radius, ratio between fields outside and inside the MD, and a random impact parameter. We use Ulysses magnetic field data of 1994 to identify the MDs and get the empirical size and magnetic field decrease distribution functions. We let protons with energies ranging from 100 keV to 2 MeV interact with MDs. The MD characteristics are taken from the observational distribution functions using the Monte Carlo method. Calculations show that the increase in diffusion tends to saturate when particles' gyroradius becomes as large as MD radii, and that particles' gyroradius increases faster than diffusion distance as the energy of the particles is increased.  相似文献   

6.
A probabilistic approach that can systematically model various sources of uncertainty involved in the assessment of seismically induced permanent deformations of slopes is presented. This approach incorporates probabilistic concepts into the classical-limit equilibrium and Newmark-type deformation analysis and the risk of damage is then computed by Monte Carlo simulations. The spatial variability of the material properties and the uncertainty arising from insufficient information are treated in the framework of random fields. The uncertainty of seismic loading is modeled by generating a large series of hazard-compatible artificial motions. This approach provides a consistent level of risk within the time period of interest. The results of the case analyses show that the uncertainty of the soil properties can have a significant impact on the computed risk of failure for a slope with spatially correlated soil properties exposed to relatively low levels of seismic hazard (RMS<0.1–0.2 g); however, it appears to have little impact on the computed risk if the slope is exposed to relatively high hazard levels (RMS>0.1–0.2 g).  相似文献   

7.
We have investigated the solar activity signal in tree ring data from two locations in Chile. The tree ring time series extended over a period of ∼400 yr. Spectral and wavelet analysis techniques were employed. We have found evidence for the presence of the solar activity Schwabe (∼11 yr), Hale (∼22 yr), fourth-harmonic of the 208-yr Suess cycle (∼52 yr) and Gleissberg (∼80 yr) cycles. The Gleissberg cycle of tree ring data is in anti-phase with solar activity. Wavelet and cross-wavelet techniques revealed that the periods found are intermittent, possibly because solar activity signals observed in tree rings are mostly due to solar influence on local climate (rainfall, temperature, and cloud cover) where trees grow up. Further, cross-wavelet analysis between sunspot and tree ring time series showed that the cross power around the 11 yr solar cycle is more significant during periods of high solar activity (grand maximum) than during periods of low solar activity (grand minimum). As Glaciar Pio XI is practically at the Pacific Ocean level, the tree-ring response may be stronger due to the heating of the Pacific Ocean water following an increase of the solar radiation incidence rather than at the higher altitudes of Osorno region.  相似文献   

8.
The combined use of Lu–Hf and Sm–Nd isotope systems potentially offers a unique perspective for investigating continental erosion, but little is known about whether, and to what extent, the Hf–Nd isotope composition of sediments is related to silicate weathering intensity. In this study, Hf and Nd elemental and isotope data are reported for marine muds, leached Fe-oxide fractions and zircon-rich turbidite sands collected off the Congo River mouth, and from other parts of the SE Atlantic Ocean. All studied samples from the Congo fan (muds, Fe-hydroxides, sands) exhibit indistinguishable Nd isotopic composition (εNd ~ ? 16), indicating that Fe-hydroxides leached from these sediments correspond to continental oxides precipitated within the Congo basin. In marked contrast, Hf isotope compositions for the same samples exhibit significant variations. Leached Fe-hydroxide fractions are characterized by εHf values (from ? 1.1 to + 1.3) far more radiogenic than associated sediments (from ? 7.1 to ? 12.0) and turbidite sands (from ? 27.2 to ? 31.6). εHf values for Congo fan sediments correlate very well with Al/K (i.e. a well-known index for the intensity of chemical weathering in Central Africa). Taken together, these results indicate that (1) silicate weathering on continents leads to erosion products having very distinctive Hf isotope signatures, and (2) a direct relationship exists between εHf of secondary clay minerals and chemical weathering intensity.These results combined with data from the literature have global implications for understanding the Hf–Nd isotope variability in marine precipitates and sediments. Leached Fe-hydroxides from Congo fan sediments plot remarkably well on an extension of the ‘seawater array’ (i.e. the correlation defined by deep-sea Fe–Mn precipitates), providing additional support to the suggestion that the ocean Hf budget is dominated by continental inputs. Fine-grained sediments define a diffuse trend, between that for igneous rocks and the ‘seawater array’, which we refer to as the ‘zircon-free sediment array’ (εHf = 0.91 εNd + 3.10). Finally, we show that the Hf–Nd arrays for seawater, unweathered igneous rocks, zircon-free and zircon-bearing sediments (εHf = 1.80 εNd + 2.35) can all be reconciled, using Monte Carlo simulations, with a simple weathering model of the continental crust.  相似文献   

9.
Lynch's Crater on the Atherton Tablelands in NE-Australia formed about 230,000 years ago during an explosive eruption, creating a maar more than 80 m deep. Since the eruption, the maar has been filled with lake sediments that are topped by peat material. A 64 m long core was recovered and an OSL dating project was undertaken to extend the chronology beyond 16 m depth, which according to 14C age control represents ~60 ka. The predominantly organic lake sediments contained abundant fine quartz of aeolian origin, and the Single Aliquot Regenerative Method (SAR) provided satisfactory equivalent dose (DE) estimates. However, the determination of the dose rate proved both critical and difficult. Extremely low radionuclide contents led to cosmic radiation being the dominant dose rate contribution for most samples. The OSL chronology presented in this paper thus relies on modelling the changing cover by sediments and lake water over the burial time.  相似文献   

10.
Foggy air and clear air have appreciably different electrical conductivities. The conductivity gradient at horizontal droplet boundaries causes droplet charging, as a result of vertical current flow in the global atmospheric electrical circuit. The charging is poorly known, as both the current flow through atmospheric water droplet layers and the air conductivity are poorly characterised experimentally. Surface measurements during three days of continuous fog using new instrument techniques show that a shallow (of order 100 m deep) fog layer still permits the vertical conduction current to pass. Further, the conductivity in the fog is estimated to be approximately 20% lower than in clear air. Assuming a fog transition thickness of one metre, this implies a vertical conductivity gradient of order 10 fS m?2 at the boundary. The actual vertical conductivity gradient at a cloud boundary would probably be greater, due to the presence of larger droplets in clouds compared to fog, and cleaner, more conductive clear air aloft.  相似文献   

11.
In-situ cosmogenic 36Cl production rates from spallation of Ca and K determined in several previously published calibration studies differ by up to 50%. In this study we compare whole rock 36Cl exposure ages with 36Cl exposure ages evaluated in Ca-rich plagioclase in the same 10 ± 3 ka lava sample taken from Mt. Etna (Sicily, 38° N). The exposure age of the sample was determined by K–Ar and corroborated by cosmogenic 3He measurements on cogenetic pyroxene phenocrysts. Sequential dissolution experiments showed that high Cl concentrations in plagioclase grains could be reduced from 450 ppm to less than 3 ppm after 16% dissolution. 36Cl exposure ages calculated from the successive dissolution steps of this leached plagioclase sample are in good agreement with K–Ar and 3He age. Stepwise dissolution of whole rock grains, on the other hand, is not as effective in reducing high Cl concentrations as it is for the plagioclase. 330 ppm Cl still remains after 85% dissolution. The 36Cl exposure ages derived are systematically about 30% higher than the ages calculated from the plagioclase. We could exclude contamination by atmospheric 36Cl as an explanation for this overestimate. Magmatic 36Cl was estimated by measuring a totally shielded sample, but was found to account for only an insignificant amount of 36Cl in the case of the 10 ka whole rock sample. We suspect that the overestimate of the whole rock exposure age is due to the difficulty in accurately assessing all the factors which control production of 36Cl by low-energy neutron capture on 35Cl, particularly variable water content and variable snow cover. We conclude that some of the published 36Cl spallation production rates might be overestimated due to high Cl concentrations in the calibration samples. The use of rigorously pretreated mineral separates reduces Cl concentrations, allowing better estimates of the spallation production rates.In the Appendix of this paper we document in detail the equations used. These equations are also incorporated into a 36Cl calculation spreadsheet made available in the supplementary data.  相似文献   

12.
We present a new speleothem record of atmospheric Δ14C between 28 and 44 ka that offers considerable promise for resolving some of the uncertainty associated with existing radiocarbon calibration curves for this time period. The record is based on a comprehensive suite of AMS 14C ages, using new low-blank protocols, and U–Th ages using high precision MC-ICPMS procedures. Atmospheric Δ14C was calculated by correcting 14C ages with a constant dead carbon fraction (DCF) of 22.7 ± 5.9%, based on a comparison of stalagmite 14C ages with the IntCal04 (Reimer et al., 2004) calibration curve between 15 and 11 ka. The new Δ14C speleothem record shows similar structure and amplitude to that derived from Cariaco Basin foraminifera (Hughen et al., 2004, 2006), and the match is further improved if the latter is tied to the most recent Greenland ice core chronology (Svensson et al., 2008). These data are however in conflict with a previously published 14C data set for a stalagmite record from the Bahamas — GB-89-24-1 (Beck et al., 2001), which likely suffered from 14C analytical blank subtraction issues in the older part of the record. The new Bahamas speleothem ?14C data do not show the extreme shifts between 44 and 40 ka reported in the previous study (Beck et al., 2001). Causes for the observed structure in derived atmospheric Δ14C variation based on the new speleothem data are investigated with a suite of simulations using an earth system model of intermediate complexity. Data-model comparison indicates that major fluctuations in atmospheric ?14C during marine isotope stage 3 is primarily a function of changes in geomagnetic field intensity, although ocean–atmosphere system reorganisation also played a supporting role.  相似文献   

13.
This paper presents the dynamic soil–structure analysis of the main telescope T250 of the Observatorio Astrofísico de Javalambre (OAJ, Javalambre Astrophysical Observatory) on the Pico del Buitre. Vibration control has been of prime concern in the design, since astrophysical observations may be hindered by mechanical vibration of optical equipment due to wind loading. The telescope manufacturer therefore has imposed a minimal natural frequency of 10 Hz for the supporting telescope pier. Dynamic soil–structure interaction may significantly influence the lowest natural frequency of a massive construction as a telescope pier. The structure clamped at its base has a resonance frequency of 14.3 Hz. A coupled finite element–boundary element (FE–BE) model of the telescope pier that accounts for the dynamic interaction of the piled foundation and the soil predicts a resonance frequency of 11.2 Hz, demonstrating the significant effect of dynamic soil–structure interaction. It is further investigated to what extent the coupled FE–BE model can be simplified in order to reduce computation time. The assumption of a rigid pile cap allows us to account for dynamic soil–structure interaction in a simplified way. A coupled FE–BE analysis with a rigid pile cap predicts a resonance frequency of 11.7 Hz, demonstrating a minor effect of the pile cap flexibility on the resonance frequency of the telescope pier. The use of an analytical model for the pile group results in an overestimation of the dynamic soil stiffness. This error is due to the large difference between the actual geometry and the square pile cap model for which the parameters have been tuned.  相似文献   

14.
It is uncertain whether the solar cycle 24 will have a high or a low sunspot maximum number. In its last revision the Solar Cycle 24 Prediction Panel indicates that the low prediction is the most likely. Also, solar cycle 25 is considered to present an equal or lower activity than cycle 24. In order to assess the possible effect of the solar activity on temperature, in the present work we attempt to model the tendency of the Northern Hemisphere temperature for the years 2009–2029, corresponding to solar cycles 24 and 25, using a thermodynamic climate model. We include as forcings the atmospheric carbon dioxide (CO2) and the solar activity by means of the total solar irradiance, considering that the latter has not only a direct effect on climate, but also an indirect one through the modulation of the low cloud cover. We use two IPCC-2007 CO2 scenarios, one with a high fossil consumption and other with a low use of fossil sources. Also we consider higher and lower solar activity conditions. We found that in all the performed experiments the inclusion of the solar activity produces a noticeable reduction in warming respect to the IPCC-2007 CO2 scenarios. Such reduction goes between ~14% and ~44%. In order to evaluate the efficiency of the TCM, we use the root mean square (RMS) between the observed and model temperatures for the period 1980–2003. We find that the RMS for the experiment using the CO2 as the only forcing is 0.06 °C,while for the experiment that includes also the solar activity it is higher, 0.13 °C.  相似文献   

15.
Raindrops falling on the sea surface produce turbulence. The present study examined the influence of rain-induced turbulence on oil droplet size and dispersion of oil spills in Douglas Channel in British Columbia, Canada using hourly atmospheric data in 2011–2013. We examined three types of oils: a light oil (Cold Lake Diluent - CLD), and two heavy oils (Cold Lake Blend - CLB and Access Western Blend - AWB). We found that the turbulent energy dissipation rate produced by rainfalls is comparable to what is produced by wind-induced wave breaking in our study area. With the use of chemical dispersants, our results indicate that a heavy rainfall (rain rate > 20 mm h? 1) can produce the maximum droplet size of 300 μm for light oil and 1000 μm for heavy oils, and it can disperse the light oil with fraction of 22–45% and the heavy oils of 8–13%, respectively. Heavy rainfalls could be a factor for the fate of oil spills in Douglas Channel, especially for a spill of light oil and the use of chemical dispersants.  相似文献   

16.
Variations of atmospheric pressure in the North Atlantic region during Forbush decreases of galactic cosmic rays were investigated. A noticeable pressure growth with the maximum on the 3rd and 4th days after the Forbush decrease onsets was revealed over Scandinavia and the northern region of the European part of Russia. It was shown that the observed pressure growth was caused by the formation of blocking anticyclones in the region of the climatic Arctic front, as well as by the sharp slowing of the movement of North Atlantic cyclones. It was suggested that the particles that precipitate in the regions of the climatic Arctic and Polar fronts, with the minimum energies E~20–80 MeV and ~2–3 GeV, respectively, may influence the processes of cyclone and anticyclone formation and development at extratropical latitudes.  相似文献   

17.
There are many areas of uncertainty when solving the inverse problems of snow water equivalent (SWE) reconstruction. These include (i) the ability to infer the Final Date of the Seasonal Snow (FDSS) cover, particularly from remote sensing; (ii) errors in model forcing data (such as air temperature or radiation fluxes); and (iii) weaknesses in the snow model used for the reconstruction, associated with both the fidelity of the equations used to simulate snow processes (structural uncertainty) and the parameter values selected for use in the model equations. We investigate the trade-offs among these sources of uncertainty using 10,000 station-years worth of data from the western US SNOTEL network. Model structural and parameter uncertainty are eliminated by using a perfect model scenario i.e. comparing results to modelled control runs. The model was calibrated for each station-year to ensure that the model simulations reflect reality. Results indicate that for a temperature index model, a ±5 days error in FDSS gives a median −25%/+32% error in maximum SWE. A 1 °C air temperature bias produces a SWE error larger than a 5 days error in the FDSS for 50% of the 10,000 cases. Similarly, a 5 days error in FDSS could be accounted for by a net radiation error of 13 W m−2 or less during the melt period, in 50% of cases. Mean absolute errors of 1 °C or more are typically reported in the literature for air temperature interpolations at high elevations. Observed solar radiation during the melt season can differ by 30 W m−2 over relatively short distances, while estimates from reanalysis (NARR, ERA-Interim, MERRA, CFSRR) and GOES satellites typically span more than 40 W m−2. Using data from both MODIS sensors (Terra & Aqua) at all snow covered points in the western US, a consecutive 5 days gap in imagery at time of FDSS is likely to occur only 5–10% of the time. This work shows that errors in model forcing data are at least as important, if not more, than image availability when reconstructing SWE.  相似文献   

18.
We report observations of a noctilucent cloud (NLC) over central Alaska by a ground-based lidar and camera on the night of 9–10 August 2005. The lidar at Poker Flat Research Range (PFRR), Chatanika (65°N, 147°W) measured a maximum integrated backscatter coefficient of 2.4×10?6 sr?1 with a peak backscatter coefficient of 2.6×10?9 m?1 sr?1 corresponding to an aerosol backscatter ratio of 120 at an altitude of 82.1 km. The camera at Donnelly Dome, 168 km southeast of PFRR, recorded an extensive NLC display across the sky with distinct filamentary features corresponding to wave structures measured by the lidar. The occurrence of the maximum integrated backscatter coefficient corresponded to the passage of a bright cloud band to the southwest over PFRR. The camera observations indicate that the cloud band had a horizontal width of 50 km and a length of 150 km. The horizontal scale of the cloud band was confirmed by medium-frequency radar wind measurements that reported mesopause region winds of 30 m/s to the southwest during the period when the cloud band passed over PFRR. Comparison of these measurements with current NLC microphysical models suggests a lower bound on the water vapor mixing ratio at 83 km of 7–9 ppmv and a cloud ice mass of 1.5–1.8×103 kg. Satellite measurements show that this NLC display occurred during a burst of cloud activity that began on 5 August and lasted for 10 days. This cloud appeared 10 days after a launch of the space shuttle. We discuss the appearance of NLCs in August over several years at this lower polar latitude site in terms of planetary wave activity and space shuttle launches.  相似文献   

19.
Human activities result in deforestation, expansion of cropland, grassland degradation, urbanization and other large-scale land use/cover change; among these, cropland expansion is one of the most important processes. To understand the effects of cropland expansion on seasonal temperatures over China, two 21-year simulations (spanning January 1, 1980–December 31, 2000), using the Regional Integrated Environmental Model System (RIEMS 2.0), were performed. The two simulations comprised current realistic land use/cover patterns and the previous vegetation cover without crop expansion, to investigate the impact of crop expansion on seasonal temperatures over China. The results showed that due to cropland expansion: (1) the most obvious changes occurred in the maximum temperatures, followed by the mean surface air temperatures, and the minimum temperatures were the least affected; (2) the summer mean maximum temperatures decreased in most parts of eastern China, and the temperatures changed significantly in most parts of northeast China, north China and central China (p < 0.05); (3) the surface air temperatures, maximum temperatures and minimum temperatures in summer decreased in the different regions by between −0.03 and −0.76 °C (the greatest temperature changes occurred in southwest China, and the smallest were in northeast China); (4) the net radiation flux and latent heat flux increased, while the sensible flux decreased, when semi-desert vegetation was replaced by dry land crops, in both summer and winter seasons, and the converse occurred when irrigated crops were replaced by dry land crops. In addition, the net radiation flux and sensible heat flux decreased, and the latent heat flux increased when short grass and tall grass were replaced dry land crops, as well as when dry land crops were replaced by irrigated crops.  相似文献   

20.
Temporal mass variations in the continental hydrosphere and in the atmosphere lead to changes in the gravitational potential field that are associated with load-induced deformation of the Earth’s crust. Therefore, models that compute continental water storage and atmospheric pressure can be validated by measured load deformation time series. In this study, water mass variations as computed by the WaterGAP Global Hydrology Model (WGHM) and surface pressure as provided by the reanalysis product of the National Centers for Environmental Prediction describe the hydrological and atmospheric pressure loading, respectively. GPS observations from 14 years at 208 stations world-wide were reprocessed to estimate admittance factors for the associated load deformation time series in order to determine how well the model-based deformation fits to real data. We found that such site-specific scaling factors can be identified separately for water mass and air pressure loading. Regarding water storage variation as computed by WGHM, weighted global mean admittances are 0.74 ± 0.09, 0.66 ± 0.10, 0.90 ± 0.06 for the north, east and vertical component, respectively. For the dominant vertical component, there is a rather good fit to the observed displacements, and, averaged over all sites, WGHM is found to slightly overestimate temporal variations of water storage. For Europe and North America, with a dense GPS network, site-specific admittances show a good spatial coherence. Regarding regional over- or underestimation of WGHM water storage variations, they agree well with GRACE gravity field data. Globally averaged admittance estimates of pre-computed atmospheric loading displacements provided by the Goddard Geodetic VLBI Group were determined to be 0.88 ± 0.04, 0.97 ± 0.08, 1.13 ± 0.01 for the north, east and vertical, respectively. Here, a relatively large discrepancy for the dominant vertical component indicates an underestimation of corresponding loading predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号