首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutrient inputs associated with coastal population growth threaten the integrity of coastal ecosystems around the globe. In order to assess the threat posed by rapid growth in tourism, we analyzed the nutrient concentrations as well as the δ15N of NO3 and macrophytes to detect wastewater nitrogen (N) at 6 locations along a groundwater-dominated coastal seagrass bed on the Caribbean coast of Mexico. We predicted that locations with greater coastal development would have higher concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (P), as well as δ15N of NO3, reflecting wastewater sources of N. However, concentrations of NO3 were not significantly different between developed (3.3 ± 5.3 μM NO3) and undeveloped (1.1 ± 0.7 μM) marine embayments. The most important control on DIN concentration appeared to be mixing of fresh and salt water, with DIN concentrations negatively correlated with salinity. The δ15N of NO3 was elevated at an inland pond (7.0 ± 0.42‰) and a hydrologically-connected tide pool (7.6 ± 0.57‰) approximately 1 km downstream of the pond. The elevated δ15N of NO3 at the pond was paralleled by high δ15N values of Cladophora sp., a ubiquitous green alga (10 ± 1‰). We hypothesize that inputs of nitrogen rich (NO3 > 30 μM) groundwater, characterized by 15N enriched signatures, flow through localized submarine groundwater discharges (SGD) and contribute to the elevated δ15N signatures observed in many benthic macrophytes. However, changes in nitrogen concentrations and isotope values over the salinity gradient suggest that other processes (e.g. denitrification) could also be contributing to the 15N enrichments observed in primary producers. More measurements are needed to determine the relative importance of nitrogen transformation processes as a source of 15N to groundwaters; however, it is clear that continued inputs of anthropogenic N via SGD have the potential to severely impact ecologically and economically valuable seagrass meadows and coral reefs along the Caribbean coast of Mexico.  相似文献   

2.
We studied the seasonal, diel, and vertical distribution of phytoplankton N2 fixation to understand the relative contributions of unicellular and filamentous nitrogen fixers (diazotrophs) to N2 fixation and nitrogen recycling in the northern South China Sea (SCS) and the neighboring upstream Kuroshio. N2-fixation rates were measured by the 15N2 tracer technique (addition by bubble) on unicellular (<10 or 20 µm) and the filamentous diazotrophs (>10 or 20 µm, mostly Trichodesmium and Richelia) fractionated by 10- or 20-µm mesh sizes. The mean depth-integrated total (unicellular+filamentous) N2-fixation rates in the SCS (51.7±6.2 µmol N m−2 d−1) averaged 1/3 of that in the Kuroshio (142.7±29.6 µmol N m−2 d−1), with higher rates in the winter than in other seasons in the SCS and the opposite seasonal pattern in the Kuroshio. Unicellular diazotrophs contributed 65% of the total N2 fixation in the SCS, which were negatively correlated with surface temperature and, as for total N2 fixation, were higher in the winter when Trichodesmium spp. were scarce. In comparison, the unicellular diazotrophs contributed 50% of total N2 fixation in the Kuroshio, and their contributions were not significantly correlated with surface temperature. In both the SCS and the Kuroshio, the unicellular N2 fixation was more important during the night than during the day, and in the deep euphotic layer than in the surface layer, even in the daytime. Our results show that the unicellular diazotrophs were important N2 fixers and contributed significantly to N2 fixation in the tropical marginal seas, more so in the SCS than the Kuroshio.  相似文献   

3.
With the rapid economic development, the water quality is worsening and red tide takes place frequently in the Changjiang Estuary and adjacent seawaters. To improve the marine water quality, the total inland pollutant load should be controlled effectively. With efficiency and fairness in consideration, the total maximum allowable loads of CODMn, NH3–N, inorganic nitrogen and active phosphate to the seawaters were calculated and allocated by the linear programming method based on the water quality response fields of the pollution sources. The maximum allowable loads are 2008 × 103 tons, 169 × 103 tons, 226 × 103 tons and 18 × 103 tons for CODMn, NH3–N, inorganic nitrogen and active phosphate when the water quality targets are requested to be achieved in the whole studied region, and 346 × 103 tons and 32 × 103 tons for inorganic nitrogen and active phosphate when the water quality targets to be achieved only in the red tide sensitive area. The cut task of CODMn and NH3–N is relatively easy and can be finished by the watershed environmental plan; while the cut task of inorganic nitrogen and active phosphate is tremendous. The coastal provinces should install more denitrification and dephosphorization facilities in the existing waste water treatment plants or build new ones to control the red tides in the concerned seawaters.  相似文献   

4.
Fixed nitrogen is a key nutrient involved in regulating global marine productivity and hence the global oceanic carbon cycle. Oceanic nitrogen (N2) fixation is estimated to supply 8×1012 moles N y?1 to the ocean, approximately equal to current riverine and the atmospheric inputs of fixed N, and between 50 and 100% of current estimates of oceanic denitrification. However, the spatial and temporal variability of N2 fixation remains uncertain, mostly because of the normal low resolution sampling for diazotroph distribution and fixation rates. It is well established that N2 fixation, mediated by the enzyme nitrogenase, is a source of hydrogen (H2), but the extent to which it leads to supersaturation of H2 in oceanic waters is unresolved. Here, we present simultaneous measurements of upper ocean dissolved H2 concentration (nmol L?1), and rates of N2 fixation (μmol N m?3 d?1), determined using 15N2 tracer techniques (at 7 or 15 m), on a transect from Fiji to Hawaii. We find a significant correlation (r=0.98) between dissolved H2 and rates of N2 fixation, with the greatest supersaturation of H2 and highest rates of N2 fixation being observed in the subtropical gyres at the southern (~18°S) and northern (18°N) reaches of the transect. The lowest H2 saturation and N2 fixation were observed in the equatorial region between 8°S and 14°N. We propose that an empirical relationship between H2 supersaturations and N2 fixation measurements could be used to guide sampling for 15N fixation measurements or to aid the spatial interpolation of such measurements.  相似文献   

5.
Recent constructions of the global nitrogen budget estimate that at least half of the ocean's fixed nitrogen is lost by sedimentary denitrification, the majority of which occurs in continental shelves. The Arctic contains approximately 20% of the world's continental shelf, suggesting it is a substantial contributor to the global sedimentary denitrification rate. During two cruises in the summer and spring of 2002 and 2004, respectively, denitrification rates were calculated from the downward diffusive flux of nitrate in the shelf and slope sediments of the Chukchi Sea in the western Arctic. Additionally, in the spring of 2004, denitrification rates were determined by whole-core incubations in which the flux of nitrogen gas out of the sediments was measured. Measurements were made along three transects crossing the shelf and slope (50–3000 m), each transect having different overlying water characteristics. Denitrification rates generally decreased with increasing water depth: rates varied from about 1.6 mmol N m−2 d−1 for the shallow-water sediments to undetectable in deep-water sediments. Rates showed little variation between the two seasons. However, rates were found to correspond with differences in annual overlying primary productivities and particulate organic carbon export fluxes. An extrapolation to the whole Arctic yielded an average Arctic sedimentary denitrification rate of 13 Tg N yr−1. Taken in the context of the global nitrogen budget, it is about 4–13% of the total sink of fixed nitrogen in the ocean.  相似文献   

6.
Rates of nitrogen assimilation by phytoplankton were measured at 13 stations along a transect in the northwestern Indian Ocean, from the Gulf of Oman, southwards to approximately 8°N, during November and December 1994. Nitrate (NO3), ammonium (NH4) and urea assimilation were measured using simulated in situ 15N incubation techniques. These measurements were supported by simultaneous rate measurements of primary production using 14C incubation techniques and detailed vertical distributions of temperature and chlorophyll concentrations. Euphotic zone integrated nitrogen assimilation rates varied between 1.1 and 23.6 mmol N m-2 day-1, with generally higher rates occurring at the northern and southern ends of the transect. At the majority of stations ammonium was the preferred nitrogen substrate assimilated; the average integrated assimilation rate of ammonium being 3.7 mmol N m-2 day-1 compared to 1.6 and 1.8 mmol N m-2 day-1 for urea and nitrate respectively. This general preference is reflected in the low f-ratios, which were ⩽0.52 for all stations and in the relative preference indices (RPI) values which were consistently >1 for ammonium and <1 for nitrate. A further examination of the data has lead to an apparent partitioning of the northwestern Indian Ocean into 2 regions; a region north of 17°30′N and a region south of this, to about 8°N. This division is based on: (i) the relationship between the f-ratio and ambient nitrate levels; (ii) nitrogen assimilation and primary production and (iii) the biomass distribution. It is suggested that this partitioning should be investigated further with the development of biogeochemical provinces in mind and the estimation of f-ratios on much larger, horizontal scales.  相似文献   

7.
Benthic fluxes of dissolved inorganic carbon, total alkalinity, oxygen, nutrients, nitrous oxide and methane were measured in situ at three sites of Río San Pedro salt marsh tidal creek (Bay of Cádiz, SW Spain) during three seasons. This system is affected by the discharges of organic carbon and nutrients from the surrounding aquaculture installations. Sediment oxygen uptake rates and inorganic carbon fluxes ranged respectively from 16 to 79 mmol O2 m? 2 d? 1 and from 48 to 146 mmol C m? 2 d? 1. Benthic alkalinity fluxes were corrected for the influence of NH4+ and NO3? + NO2? fluxes, and the upper and lower limits for carbon oxidation rates were inferred by considering two possible scenarios: maximum and minimum contribution of CaCO3 dissolution to corrected alkalinity fluxes. Average Cox rates were in all cases within ± 25% of the upper and lower limits and ranged from 40 to 122 mmol C m? 2 d? 1. Whereas carbon mineralization did not show significant differences among the sites, Cox rates varied seasonally and were correlated with temperature (r2 = 0.72). During winter and spring denitrification was estimated to account for an average loss of 46% and 75%, respectively, of the potentially recyclable N, whereas during the summer no net removal was observed. A possible shift from denitrification to dissimilatory nitrate reduction to ammonium (DNRA) during this period is argued. Dissolved CH4 and N2O fluxes ranged from 5.7 to 47 μmol CH4 m? 2 d? 1 and 4.3 to 49 μmol N–N2O m? 2 d? 1, respectively, and represented in all cases a small fraction of total inorganic C and N flux. Overall, about 60% of the total particulate organic matter that is discharged into the creek by the main fish farm facility is estimated to degrade in the sediments, resulting in a significant input of nutrients to the system.  相似文献   

8.
Atmospheric dry deposition of nitrogen (N) and dinitrogen (N2) fixation rates were assessed in 2004 at the time-series DYFAMED station (northwestern Mediterranean, 43°25′N, 7°52′E). The atmospheric input was monitored over the whole year. Dinitrogen fixation was measured during different seasonal trophic states (from mesotrophy to oligotrophy) sampled during nine cruises. The bioavailability of atmospherically deposited nutrients was estimated by apparent solubility after 96 h. The solubility of dry atmospheric N deposition was highly variable (from ∼18% to more than 96% of total N). New N supplied to surface waters by the dry atmospheric deposition was mainly nitrate (NO3) (∼57% of total N, compared to ∼6% released as ammonium (NH4+)). The mean bioavailable dry flux of total N was estimated to be ∼112 μmol m−2 d−1 over the whole year. The NO3 contribution (70 μmol NO3 m−2 d−1) was much higher than the NH4+ contribution (1.2 μmol NH4+ m−2 d−1). The N:P ratios in the bioavailable fraction of atmospheric inputs (122.5–1340) were always much higher than the Redfield N:P ratio (16). Insoluble N in atmospheric dry deposition (referred to as “organic” and believed to be strongly related to anthropogenic emissions) was ∼40 μmol m−2 d−1. N2 fixation rates ranged from 2 to 7.5 nmol L−1 d−1. The highest values were found in August, during the oligotrophic period (7.5 nmol L−1 at 10 m depth), and in April, during the productive period (4 nmol L−1 d−1 at 10 m depth). Daily integrated values of N2 fixation ranged from 22 to 100 μmol N m−2 d−1, with a maximum of 245 μmol N m−2 d−1 in August. No relationship was found between the availability of phosphorus or iron and the observed temporal variability of N2 fixation rates. The atmospheric dry deposition and N2 fixation represented 0.5–6% and 1–20% of the total biological nitrogen demand, respectively. Their contribution to new production was more significant: 1–28% and 2–55% for atmospheric dry deposition and N2 fixation, respectively. The dry atmospheric input was particularly significant in conditions of water column stratification (16–28% of new production), while N2 fixation reached its highest values in June (46% of new production) and in August (55%).  相似文献   

9.
10.
Variations in the nutrient concentrations were studied during two cruises to the Arabian Sea. The situation towards the end of the southwest monsoon season (September/October 1994) was compared with the inter-monsoonal season during November and December 1994. Underway surface transects showed the influence of an upwelling system during the first cruise with deep, colder, nutrient-rich water being advected into the surface mixed layer. During the southwesterly monsoon there was an area of coastal Ekman upwelling, bringing colder water (24.2°C) into the surface waters of the coastal margin. Further offshore at about 350 km there was an area of Ekman upwelling, as a result of wind-stress curl, north of the Findlater Jet axis; this area also had cooler surface water (24.6°C). Further offshore (>1000 km) the average surface temperatures increased to >27°C. These waters were oligotrophic with no evidence of the upwelling effects observed further inshore. In the upwelling regions nutrient concentrations in the close inshore coastal zone were elevated (NO3=18 μmol l-1, PO4=1.48 μmol l-1); higher concentrations also were measured at the region of offshore upwelling off the shelf, with a maximum nitrate concentration of 12.5 μmol l-1 and a maximum phosphate concentration of 1.2 μmol l-1. Nitrate and phosphate concentrations decreased with increasing distance offshore to the oligotrophic waters beyond 1400 km, where typical nitrate concentrations were 35.0 nmol l-1 (0.035 μmol l-1) in the surface mixed layer. A CTD section from the coastal shelf, to 1650 km offshore to the oligotrophic waters, clearly showed that during the monsoon season, upwelling is one of the major influences upon the nutrient concentrations in the surface waters of the Arabian Sea off the coast of Oman. Productivity of the water column was enhanced to a distance of over 800 km offshore. During the intermonsoon period a stable surface mixed layer was established, with a well-defined thermocline and nitracline. Surface temperature was between 26.8 and 27.4°C for the entire transect from the coast to 1650 km offshore. Nitrate concentrations were typically between 2.0 and 0.4 μmol l-1 for the transect, to about 1200 km where the waters became oligotrophic, and nitrate concentrations were then typically 8–12 nmol l-1. Ammonia concentrations for the oligotrophic waters were typically 130 nmol l-1, and are reported for the first time in the Indian Ocean. The nitrogen/phosphorus (N/P) ratios suggest that phytoplankton production was potentially nitrogen-limited in all the surface waters of the Arabian Sea, with the greatest nitrogen limitation during the intermonsoon period.  相似文献   

11.
Highly sensitive STOX O2 sensors were used for determination of in situ O2 distribution in the eastern tropical north and south Pacific oxygen minimum zones (ETN/SP OMZs), as well as for laboratory determination of O2 uptake rates of water masses at various depths within these OMZs. Oxygen was generally below the detection limit (few nmol L−1) in the core of both OMZs, suggesting the presence of vast volumes of functionally anoxic waters in the eastern Pacific Ocean. Oxygen was often not detectable in the deep secondary chlorophyll maximum found at some locations, but other secondary maxima contained up to ~0.4 µmol L−1. Directly measured respiration rates were high in surface and subsurface oxic layers of the coastal waters, reaching values up to 85 nmol L−1 O2 h−1. Substantially lower values were found at the depths of the upper oxycline, where values varied from 2 to 33 nmol L−1 O2 h−1. Where secondary chlorophyll maxima were found the rates were higher than in the oxic water just above. Incubation times longer than 20 h, in the all-glass containers, resulted in highly increased respiration rates. Addition of amino acids to the water from the upper oxycline did not lead to a significant initial rise in respiration rate within the first 20 h, indicating that the measurement of respiration rates in oligotrophic Ocean water may not be severely affected by low levels of organic contamination during sampling. Our measurements indicate that aerobic metabolism proceeds efficiently at extremely low oxygen concentrations with apparent half-saturation concentrations (Km values) ranging from about 10 to about 200 nmol L−1.  相似文献   

12.
We have hypothesized that the weekly/biweekly passage of winter storms in the subtropical open ocean destabilizes the water column leading to pulsed NO3? inputs, resulting in new production that is not accounted for in most annual estimates. This paper presents data on nitrogen and carbon cycling in the Sargasso Sea at approximately daily resolution, during the period prior to seasonal stratification in 2004 and 2005; these data permit us to assess the importance of winter storms for introducing NO3? and the contribution of these inputs to annual new and export production. The two sampling years were in stark contrast to each other with 2004 characterized by periods of relative calm between winter storms, and 2005 characterized by nearly continuous storm activity. As a result, temporal variability in mixed layer depth (MLD) and euphotic zone [NO3?] were very different between years. MLDs in 2004 increased to >150 m in response to the passage of storms and then rapidly shoaled to <100 m leading to the pulsed injection of NO3? (~100 nmol l?1) into the lower half of the euphotic zone, while in 2005 MLDs were consistently >300 m and euphotic zone [NO3?]>100 nmol l?1. Despite the very different [NO3?], rates of daily NO3? uptake were similar from year to year because of significant nocturnal uptake in 2004. Similar rates of new production did not translate into similar rates of particulate nitrogen and carbon export however, as observed export from the upper 200 m was 2–5-fold greater in 2004 than in 2005. Furthermore, the decrease of particulate nitrogen and carbon flux with depth between 200 and 400 m in 2004 was substantially lower than in 2005; this is consistent with the observed biological response in which diatoms and coccolithophores exhibited rapid growth following pulsed NO3? inputs in 2004. A combination of data from the Bermuda Testbed Mooring, which provides a longer temporal record than the cruise, and the observations presented in this study show that in the winter of 2004, there were 8–10 storm events that likely resulted in pulsed NO3? inputs. Summed over all the events, new production prior to seasonal stratification was estimated to be ~0.12–0.18 mol N m?2 or ~14–21% of current annual estimates.  相似文献   

13.
Recent studies of the nitrogen gas excess produced during water column denitrification have indicated that water column denitrification rates calculated using nitrate deficit-type methods could be a substantial underestimate. Since there are no other significant processes that produce (or consume) N2 in the oxygen deficient zone (ODZ), its excess above background can be used to estimate the amount of denitrification, avoiding assumptions made in nitrate deficit calculations of the composition of the respired organic matter and also uncertainties in the nitrogen removal pathways. Dissolved N2, Ar, and nutrient concentrations were measured at 2 stations in the ODZ of the eastern tropical South Pacific (ETSP) in order to compare the nitrogen gas excess with the dissolved inorganic nitrogen (DIN) deficit due to denitrification. In contrast with previous findings in the Arabian Sea ODZ, the shapes of the N2 excess and DIN deficit profiles were similar in the ETSP ODZ, with maxima at the top of the ODZ. Maximum DIN deficits at each station were 19 and 18 μM N compared to the maximum N2 excesses of 15 and 20 μM N, respectively. Given the same considerations of the volume and residence time for the oxygen deficient zone waters, denitrification rates for the ETSP estimated from the N2 excess would be comparable or no greater than 30% larger than the one determined using the DIN deficit. This implies that the source of the DIN removed from the ODZ is either deep sea nitrate or organic matter with an N:P ratio close to Redfield.  相似文献   

14.
Measurements of nitrate and ammonium in precipitation and associated with aerosols were conducted at Rutgers University Marine Field Station in Tuckerton, New Jersey from March 2004 to March 2005 to characterize atmospheric nitrogen deposition to the Mullica River-Great Bay Estuary. The arithmetic means of nitrate and ammonium concentrations for precipitation samples were 2.3 mg L−1 and 0.42 mg L−1, respectively. Nitrate and ammonium concentrations in aerosol samples averaged 3.7 μg m−3 and 1.6 μg m−3, respectively. Wet deposition rates appeared to vary with season; the highest rate of inorganic nitrogen deposition (nitrate + ammonium) occurred in the spring with an average value of 1.33 kg-N ha−2 month−1. On an annual basis, the total (wet and dry) direct atmospheric deposition fluxes into the Mullica River-Great Bay Estuary were 7.08 kg-N ha−2 year−1 for nitrate and 4.44 kg-N ha−2 year−1 for ammonium. The total atmospheric inorganic nitrogen directly deposited to the Mullica River-Great Bay Estuary was estimated to be 4.79 × 104 kg-N year−1, and the total atmospheric inorganic nitrogen deposited to the Mullica River watershed was estimated to be 1.69 × 106 kg-N year−1. Only a fraction of the nitrogen deposited on the watershed will actually reach the estuary; most of the nitrogen will be retained in the watershed due to utilization and denitrification during transport. The amount of N reaching the Mullica River-Great Bay Estuary indirectly is estimated to be 5.07 × 104 kg-N year−1, approximately 97% is retained within the watershed. This atmospheric nitrogen deposition may stimulate phytoplankton productivity in the Mullica River-Great Bay ecosystem.  相似文献   

15.
Determinations of the activity of the respiratory electron transport system (ETS), during the FRAM III expedition permit us to estimate oxygen utilization rates (RO2) from the surface to 2000 m under the polar pack ice in the Nansen Basin just north of Svalbard (83°N, 7°E) during April 1981. We found RO2 at in situ temperatures ranging from 20 pM O2 min−1 just below the ice to 0.2 pM O2 min−1 at 2000 m. These rates are low compared to most other ocean regions, but they could decrease particulate organic carbon and nitrogen by 76% and 74%, respectively, over a period of ∼6 months. The RO2 calculations based on measurements made at 0 °C yielded a power function of RO2 vs. depth (Z) of RO2=67Z−0.5534. When this RO2 profile was superimposed on a more recent oxygen utilization rate profile made using the 3He–3H–AOU method (OUR), in the same vicinity of the Nansen Basin during 1987 (OUR=52Z–0.4058, [Zheng, Y., Schlosser, P., Swift, J.W., Jones, E.P., 1997. Oxygen utilization rates in the Nansen Basin, Arctic Ocean: implications for new production. Deep Sea Research I 44, 1923–1943]), the agreement of the two profiles was close. On one hand, this was to be expected because RO2 is the biological basis of OUR, on the other hand, it was a surprise because the methodologies are so different. Nitrate mineralization obtained from ETS activities also compared favorably with calculations based on the data of Zheng et al. [1997. Oxygen utilization rates in the Nansen Basin, Arctic Ocean: implications for new production. Deep Sea Research I 44, 1923–1943]. Chlorophyll ranged from 6 ng L−1 at 5 m to 0.06 ng L−1 at 2000 m. Particulate organic carbon (POC) decreased from 0.93 μM C just below the ice to less than 0.4 μM C at 500 m. Particulate organic nitrogen (PON) was not detectable below 70 m, however in the upper 70 m it ranged from 0.16 to 0.04 μM N. The C/N mass ratio over these depths ranged from 5.8 to 11.3. Annual carbon productivity as calculated to balance the total water column respiration was 27 g C m−2 y−1. The integrated respiration rate between 50 and 4000 m suggests that exported production and carbon flux from the 50 m level was 24 g C m−2 y−1. These are minimal estimates for the southern Nansen Basin because they are based on measurements made at the end of the Arctic winter.  相似文献   

16.
We conducted a research cruise in late summer (July–August) 2000 to study the effect of mesoscale circulation features on zooplankton distributions in the coastal upwelling ecosystem of the northern California Current. Our study area was in a region of complex coastline and bottom topography between Newport, Oregon (44.7°N), and Crescent City, California (41.9°N). Winds were generally strong and equatorward for >6 weeks prior to the cruise, resulting in the upwelling of cold, nutrient-rich water along the coast and an alongshore upwelling jet. In the northern part of the study area, the jet followed the bottom topography, creating a broad, retentive area nearshore over a submarine shelf bank (Heceta Bank, 44–44.4°N). In the south, a meander of the jet extended seaward off of Cape Blanco (42.8°N), resulting in the displacement of coastal water and the associated coastal taxa to >100 km off the continental shelf. Zooplankton biomass was high both over the submarine bank and offshore in the meander of the upwelling jet. We used velocities and standing stocks of plankton in the upper 100 m to estimate that 1×106 m3 of water, containing an average zooplankton biomass of ~20 mg carbon m?3, was transported seaward across the 2000-m isobath in the meandering jet each second. That flux equated to offshore transport of >900 metric tons of carbon each day, and 4–5×104 tons over the 6–8 week lifetime of the circulation feature. Thus, mesoscale circulation can create disparate regions in which zooplankton populations are retained over the shelf and biomass can accumulate or, alternatively, in which high biomass is advected offshore to the oligotrophic deep sea.  相似文献   

17.
Anammox is the anaerobic oxidation of ammonium by nitrite or nitrate to yield N2. This process, along with conventional denitrification, contributes to nitrogen loss in oxygen-deficient systems. Anammox is performed by a special group of bacteria belonging to the Planctomycetes phylum. However, information about the distribution, activity, and controlling factors of these anammox bacteria is still limited. Herein, we examine the phylogenetic diversity, vertical distribution, and activity of anammox bacteria in the coastal upwelling region and oxygen minimum zone off northern Chile. The phylogeny of anammox bacteria was studied using primers designed to specifically target 16S rRNA genes from Planctomycetes in samples taken during a cruise in 2004. Anammox bacteria-like sequences affiliated with Candidatus “Scalindua spp.” dominated the 16S rRNA gene clone library. However, 62% of the sequences subgrouped separately within this cluster and together with a single sequence retrieved from the suboxic zone of the freshwater Lake Tanganyika. The vertical distribution and activity of anammox bacteria were explored through CARD-FISH (fluorescence in situ hybridization with catalyzed reporter deposition) and 15N labeling incubations, respectively, at two different open-ocean stations during a second cruise in 2005. Anammox bacterial CARD-FISH counts (up to 3000 cells ml−1) and activity (up to 5.75 nmol N2 L−1 d−1) were only detected at the station subjected directly to the upwelling influence. Anammox cell abundance and activity were highest at 50 m depth, which is the upper part of the OMZ. In this layer, a high abundance of cyanobacteria and a marked nitrogen deficit were also observed. Thus, our results show the presence of a new subcluster within the marine anammox phylogeny and indicate high vertical variability in the abundance and activity of anammox bacteria that could be related to an intensification of carbon and nitrogen cycling in the upper part of the OMZ.  相似文献   

18.
Sulfate reduction rate measurements by the 35SO42− core injection method were carried out in situ with a benthic lander, LUISE, and in parallel by shipboard incubations in sediments of the Black Sea. Eight stations were studied along a transect from the Romanian shelf to the deep western anoxic basin. The highest rates measured on an areal basis for the upper 0–15 cm were 1.97 mmol m−2 d−1 on the shelf and 1.54 mmol m−2 d−1 at 181 m water depth just below the chemocline. At all stations sulfate reduction rates decreased to values <3 nmol cm−3 d−1 below 15 cm depth in the sediment. The importance of sulfate reduction relative to the total mineralization of organic matter was very low, 6%, on the inner shelf, which was paved with mussels, and increased to 47% on the outer shelf at 100 m depth. Where the oxic–anoxic interface of the water column impinged on the sea floor at around 150 m depth, the contribution of sulfate reduction increased from >50% just above the chemocline to 100% just below. In the deep sea, mean sulfate reduction rates were 0.6 mmol m−2 d−1 corresponding to an organic carbon oxidation of 1.3 mmol m−2 d−1. This is close to the mean sedimentation rate of organic carbon over the year in the western basin. A comparison with published data on sulfate reduction in Black Sea sediments showed that the present results tend to be higher in shelf sediments and lower in the deep-sea than most other data. Based on the present water column H2S inventory and the H2S flux out of the sediment, the calculated turnover time of H2S below the chemocline is 2100 years.  相似文献   

19.
Phytoplankton production was measured at the shelf edge region of the Celtic Sea in April/May 1994 at the beginning of the spring bloom. Size fractionated 14C uptake experiments showed that phytoplankton >2 μm dominated the bloom although, in the period immediately before the increase in phytoplankton biomass, picophytoplankton (<2 μm) was responsible for up to 42% of the production; in these late winter conditions, chlorophyll concentrations were generally <0.7 μg l-1 and primary production was ca. 70 mmol C m-2 d-1. As the spring bloom developed, phytoplankton production rates of 120 mmol C m-2 d-1 were measured. Chlorophyll concentration increased to >2 μg l-1 as a result of growth of larger phytoplankton, including diatoms, with large numbers of Nitzschia, Thalassionema and Chaetoceros dominating the assemblage. Picophytoplankton production declined as the spring bloom progressed. Nutrient concentrations were not depleted during the sampling period, and NO-3 concentrations were >6 μmol l-1. Nutrient assimilation rates were measured at the same time as primary production was estimated. Before the development of any substantial phytoplankton biomass, the uptake rates for ammonium and nitrate were very similar, with f-ratios ranging from 0.5 to 0.6. Assimilation of ammonium remained relatively constant after the onset of stratification and bloom development, but nitrate uptake increased by a factor of 2 or more, resulting in f-ratios >0.8. There was significant phosphate uptake in the dark, which was generally ca. 50% of the rate in the light. The C : N : P assimilation ratios changed as the bloom developed; in the pre-bloom situation, when small phytoplankton cells dominated the assemblage, the C : N assimilation ratio was variable, with some stations having ratios less than (ca 2.5), and some higher than (ca. 9), the Redfield ratio. The most actively growing assemblages had N : P ratios close to the Redfield ratio, but the C : N ratios were consistently lower. New production was found to be closely correlated with the size of the species making up the phytoplankton assemblage, and high f ratios were measured when larger phytoplankton dominated the assemblage.  相似文献   

20.
To reveal spatial dynamics of silicic acid [Si(OH)4] in the poorly sampled oligotrophic western North Pacific, we investigated the surface distribution of Si(OH)4 and associated biogeochemical parameters by using an underway survey system with a highly sensitive nutrient analyzer along the 138°E transect (between 30 and 34°N) and the 155°E transect (between 10 and 35°N) during the summers of 2007 and 2008. Surface Si(OH)4 concentrations ranged from the detection limit (11 nmol L−1) to 2462 nmol L−1. High Si(OH)4 concentrations (>1000 nmol L−1) and dynamic fluctuations were generally observed north of 23°N, while consistently stable low concentrations of 415–751 nmol L−1 were observed south of 23°N. Surface nitrate+nitrite (N+N) and phosphate (PO43−) were typically depleted to <20 nmol L−1, except for PO43− in the area south of 16°N. The majority of the study area was characterized by high-Si(OH)4 and low-N+N and PO43−. However, submesoscale/mesoscale depressions of Si(OH)4 were locally observed in the cyclonic eddy fields north of 23°N. Among a total of six Si(OH)4 depressions within the eddies, a complete Si(OH)4 depletion (<11 nmol L−1) was observed on the cyclonic side near the Kuroshio axis (33.1°N, 138°E). This depletion was closely coupled with a diatom bloom, suggesting that Si(OH)4 was exhausted by diatoms. All of the Si(OH)4 depressions were selective and not accompanied by local depressions of N+N and PO43−. This unique phenomenon might be driven by biogeochemical processes such as selective Si export (Si pump), anomalous Si uptake associated with diatom physiology, and/or Si uptake supported by N2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号