首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lake Uddelermeer (The Netherlands) is characterized by turbid conditions and annual blooms of toxic cyanobacteria, which are supposed to be the result of increased agricultural activity in the twentieth century AD. We applied a combination of classic palaeoecological proxies and novel geochemical proxies to the Holocene sediment record of Lake Uddelermeer (The Netherlands) in order to reconstruct the natural variability of the lake ecosystem and to identify the drivers of the change to the turbid conditions that currently characterize this lake. We show that the lake ecosystem was characterized by a mix of aquatic macrophytes and abundant phytoplankton between 11,500 and 6000 cal year BP. A transition to a lake ecosystem with clear-water conditions and relatively high abundances of ‘isoetids’ coincides with the first signs of human impact on the landscape around Lake Uddelermeer during the Early Neolithic (ca. 6000 cal year BP). An abrupt and dramatic ecosystem shift can be seen at ca. 1030 cal year BP when increases in the abundance of algal microfossils and concentrations of sedimentary pigments indicate a transition to a turbid phytoplankton-dominated state. Finally, a strong increase in concentrations of plant and faecal biomarkers is observed around 1950 AD. Canonical Correspondence Analysis suggests that reconstructed lake ecosystem changes are best explained by environmental drivers that show long-term gradual changes (sediment age, water depth). These combined results document the long-term anthropogenic impact on the ecosystem of Lake Uddelermeer and provide evidence for pre-Industrial Era signs of eutrophication.  相似文献   

2.
To investigate the response of a remote boreal lake to recent climate warming, a 200-year varved sediment record from Rainbow Lake A (RLA), located in the northern boreal forest of Wood Buffalo National Park, straddling northern Alberta and the Northwest Territories (Canada), was investigated using diatom assemblages and biogenic silica concentrations. Diatom community composition, trends in diatom-inferred total phosphorus (TP) and biogenic silica levels all showed significant changes beginning between circa 1830 and 1840, coincident with the onset of increasingly warm June/July temperatures in northern Canada. We evaluated several hypotheses which may have caused these nutrient changes, including local anthropogenic disturbances, forest fires, increased atmospheric deposition of nutrients or pollen, and internal sources of nutrient regeneration. We concluded that TP is likely increasing as a result of enhanced internal cycling of phosphorus due to either increased thermal stratification in response to warmer summer temperatures and/or decreased meromictic stability. The results presented here, in combination with other recent paleolimnological research in northern latitude regions, suggest widespread aquatic response to increasing temperatures beginning in the 19th century.  相似文献   

3.
Changes in the diatom assemblages preserved in a sediment core taken from a small lake located north of arctic treeline on the western Taimyr Peninsula, Russia, were examined in order to investigate late Holocene (i.e., ca 5000 cal yr BP to present) climatic and environmental changes within the region. Early diatom assemblages were dominated by benthic Fragilaria taxa and indicate a transitional phase in the lake history, most likely reflecting lake development and environmental change associated with treeline retreat to the south of the study site. Concurrent with pollen and macrofossil evidence of a vegetation shift to shrub tundra in the catchment basin at ca 4200 cal yr BP, an increase in cold-water taxa, followed by little change in diatom assemblages until ca 2800 cal yr BP, suggests that conditions were relatively cool and stable at this time. The last 2000 years of the Middendorf Lake record have been marked by fluctuating limnological conditions, characterized by striking successional shifts between Fragilaria pinnata and Aulacoseira distans var. humilis. Recent conditions in Middendorf Lake indicate an increase in diatom taxa previously rare in the record, possibly associated with twentieth-century climatic warming. The Middendorf Lake record indicates that significant limnological change may occur in the absence of catchment vegetation shifts, suggesting late-Holocene decoupling of aquatic and terrestrial responses to climatic and hydrological change. Our study results represent one of the few paleoecological records currently available from northern Russia, and highlight the need for further development of calibration data sets from this region.  相似文献   

4.
We studied multiple variables in a sediment core from Lake Kipojärvi, northern Finland, to investigate Holocene ecosystem changes in relation to catchment characteristics and known climate variations. We focused on a forested catchment because previous paleolimnological studies conducted in Fennoscandia focused mainly on subarctic lakes within a range of shifting treeline(s). Data on aquatic macrophytes, diatoms, Cladocera, C:N ratio, organic matter (LOI) and regional vegetation (pollen), revealed a three-phase limnological development. The early Holocene, species-rich, mesotrophic lake was transformed into an oligotrophic, species-poor aquatic ecosystem by the early middle Holocene, ca. 7,500 cal years BP, earlier than has generally been reported. The transition involved considerable changes in aquatic macrophytes. Changes in the Cladocera and diatom communities appear to have been linked to aquatic macrophyte development, which in turn, was probably regulated by catchment development and hydrology, and a consequent decrease in nutrient input from the catchment. During the more humid late Holocene, surface flow from the catchment probably increased, but the lake??s nutrient status remained oligotrophic. Possible reasons for low nutrient concentration in the late Holocene include: 1) slower biogeochemical cycling due to cooler climate, 2) a new hydrologic outlet and associated shorter water-retention times, and 3) accelerated peatland development in the catchment that affected water flow patterns and nutrient cycling.  相似文献   

5.
Causal links that connect Holocene high stands of Lake Superior with dune building, stream damming and diversion and reservoir impoundment and infilling are inferred from a multidisciplinary investigation of a small watershed along the SE shore of Lake Superior. Radiocarbon ages of wood fragments from in-place stumps and soil O horizons, recovered from the bottom of 300-ha Grand Sable Lake, suggest that the near-shore inland lake was formed during multiple episodes of late Holocene dune damming of ancestral Sable Creek. Forest drownings at 3000, 1530, and 300 cal. years BP are highly correlated with local soil burial events that occurred during high stands of Lake Superior. During these and earlier events, Sable Creek was diverted onto eastward-graded late Pleistocene meltwater terraces. Ground penetrating radar (GPR) reveals the early Holocene valley of Sable Creek (now filled) and its constituent sedimentary structures. Near-planar paleosols, identified with GPR, suggest two repeating modes of landscape evolution mediated by levels of Lake Superior. High lake stands drove stream damming, reservoir impoundment, and eolian infilling of impoundments. Falling Lake Superior levels brought decreased sand supply to dune dams and lowered stream base level. These latter factors promoted stream piracy, breaching of dune dams, and aerial exposure and forestation of infilled lakebeds. The bathymetry of Grand Sable Lake suggests that its shoreline configuration and depth varied in response to events of dune damming and subsequent dam breaching. The interrelated late Holocene events apparent in this study area suggest that variations in lake level have imposed complex hydrologic and geomorphic signatures on upper Great Lakes coasts.  相似文献   

6.
Geochemical data obtained from X-ray fluorescence, physical properties, total organic and inorganic carbon content (TOC/TIC), and diatom analysis from a 6.61-m-long sedimentary sequence near the modern northern shore of Lake Zirahuen (101° 44′ W, 19° 26′ N, 2000 m asl) provide a reconstruction of lacustrine sedimentation during the last approximately 17 cal kyr BP. A time scale is based on ten AMS 14C dates and by tephra layers from Jorullo (AD 1759-1764) and Paricutin (AD 1943-1952) volcanoes. The multiproxy analyses presented in this study reveal abrupt changes in environmental and climatic conditions. The results are compared to the paleo-record from nearby Lake Patzcuaro. Dry conditions and low lake level are inferred in the late Pleistocene until ca. 15 cal kyr BP, followed by a slight but sustained increase in lake level, as well as a higher productivity, peaking at ca. 12.1 cal kyr BP. This interpretation is consistent with several regional climatic reconstructions in central Mexico, but it is in opposition to record from Lake Patzcuaro. A sediment hiatus bracketed between 12.1 and 7.2 cal kyr BP suggests a drop in lake level in response to a dry early Holocene. A deeper, more eutrophic and turbid lake is recorded after 7.2 cal kyr BP. Lake level at the coring site during the mid Holocene is considered the highest for the past 17 cal kyr BP. The emplacement of the La Magueyera lava flows (LMLF), dated by thermoluminiscence at 6560 ± 950 year, may have reduced basin volume and contributed to the relative deepening of the lake after 7.2 cal kyr BP. The late Holocene (after 3.9 cal kyr BP) climate is characterized by high instability. Extensive erosion, lower lake levels, dry conditions and pulses of high sediment influx due to high rainfall are inferred for this time. Further decrease in lake level and increased erosion are recorded after ca. AD 1050, at the peak of Purepechas occupation (AD 1300–1521), and until the eighteenth century. Few lacustrine records extend back to the late Pleistocene—early Holocene in central Mexico; this paper contributes to the understanding of late Pleistocene-Holocene paleoclimates in this region.  相似文献   

7.
This study used palaeolimnological approaches to determine how Holocene climatic and environmental changes affected aquatic assemblages in a subarctic lake. Sediments of the small Lake Njargajavri, in northern Finnish Lapland above the present treeline, were studied using multi-proxy methods. The palaeolimnological development of the lake was assessed by analyses of chironomids, Cladocera and diatoms. The lake was formed in the early Holocene and was characterized by prominent erosion and leaching from poorly developed soils before the establishment of birch forests, resulting in a high pH and trophic state. The lake level started to lower as early as ca. 10,200 cal. BP. In the resulting shallow basin, rich in aquatic mosses, pH decreased and a diverse cladoceran and chironomid assemblage developed. It is likely that there was a slight rise in the water level ca. 8000 cal. BP. Later, during the mid-Holocene characterized by low effective moisture detected elsewhere in Fennoscandia, the lake probably completely dried out; this is manifest as a hiatus in the stratigraphy. The sediment record continues from ca. 5000 cal. BP onwards as the lake formed again due to increased effective moisture. The new lake was characterized by very low pH. The possible spread of pine to the catchment and the development of heath community may have contributed to the unusually steep (for northern Fennoscandia) decline in pH via change in soils, together with the natural decrease in leaching of base cations. Furthermore, the change in pH may have been driven by cooling climate, affecting the balance of dissolved inorganic carbon in the lake.  相似文献   

8.
Knowledge of natural variability in aquatic ecosystems is vital for assessing the nature and amplitude of human-induced change, and for predicting future anthropogenic impacts. Distinguishing between naturally and anthropogenically caused variability in lake sediment records can be problematic, however, because both drivers can produce similar ecological effects. Standard sediment-based approaches for reconstructing past environmental changes tend to focus on qualitative and quantitative variations in palaeoenvironmental indicators, with little significance attached to their complete absence. We used multiple variables in radiometrically dated sediment cores collected from two sites in Lough Mask, a lake in western Ireland. Results suggest that the Lough Mask sediment record has been a sensitive recorder of past climate variability, especially changing precipitation, since the middle Holocene. Variations in the presence of aquatic siliceous microfossils and calcareous macrofossils, and changing sediment lithology and geochemistry, indicate a quasi-cyclic response to oscillations in climate conditions that correspond generally with palaeoclimate findings from elsewhere in NW Europe, including other sites in Ireland. We conclude that during much of the middle to late Holocene, prolonged periods of relatively high rainfall in the catchment reduced nutrient inputs to the lake, particularly silica and calcite. Diatom productivity consequently declined, whereas dissolution of frustules was enhanced. During relatively dry climate periods, availability of these nutrients increased, diatom productivity was higher, and dissolution was reduced. Relatively early human impacts are evident in the sediment record beginning ca. 1,000?BP. The results highlight the aquatic and taphonomic effects of complex interactions among past variations in catchment conditions, climate and water chemistry. The complexity of these interactions and their effects, mediated through the characteristics of Lough Mask and its catchment, pose problems for conventional interpretation of palaeolimnological data and their use in computer-based simulations of future changes in stresses on aquatic ecosystems and their consequent impacts.  相似文献   

9.
Detailed stratigraphic analyses of sediments deposited in Lake Botjärnen, a small boreal forest lake in the shield terrain of central Sweden, clearly reflect progressively increasing human impact on terrestrial and aquatic ecosystems following settlement and establishment of an iron industry in the 17th century. Rising frequencies of pollen and spores from light-demanding plants provide evidence of extensive forest clearance for charcoal and timber production, which peaked in the early 20th century. An associated increase in catchment erosion is reflected by changing carbon and nitrogen elemental content and carbon–isotope composition of sediment organic matter and by increased magnetic susceptibility of the sediments. Records of air-borne pollutants (lead, zinc and sulphur) can be correlated to the development of local and regional mining and metal industry as inferred from historical accounts. Rapid recession of the iron industry led to re-forestation and recovery of the aquatic nutrient status to pre-industrial conditions over the past 100 years. The chronology of the sediment succession, which is based on 210Pb and 137Cs radionuclide data in combination with radiocarbon dating, is confirmed by historical lead pollution trends established for the region.  相似文献   

10.
We have reconstructed the history of mid-late Holocene paleohydrological changes in the Chinese Loess Plateau using n-alkane data from a sediment core in Tianchi Lake. We used Paq (the proportion of aquatic macrophytes to the total plant community) to reflect changes in lake water level, with a higher abundance of submerged macrophytes indicating a lower water level and vice versa. The Paq-based hydrological reconstruction agrees with various other lines of evidence, including ACL (average chain length), CPI (carbon preference index), C/N ratio and the n-alkane molecular distribution of the sediments in Tianchi Lake. The results reveal that the lake water level was relatively high during 5.7–3.2 ka BP, and decreased gradually thereafter. Our paleohydrological reconstruction is consistent with existing paleoclimate reconstructions from the Loess Plateau, which suggest a humid mid-Holocene, but is asynchronous with paleoclimatic records from central China which indicate an arid mid-Holocene. Overall, our results confirm that the intensity of the rainfall delivered by the EASM (East Asian summer monsoon) is an important factor in affecting paleohydrological changes in the region and can be considered as further evidence for the development of a spatially asynchronous “northern China drought and southern China flood” precipitation pattern during the Holocene.  相似文献   

11.
Whitefish Lake is a large (11-km-long), shallow, basin in Northwestern Ontario, Canada. The presence of extensive stands of wild rice (Zizania sp.) in combination with high archaeological site density suggests that this lake was ecologically important to regional precontact populations. Collection and analysis of sediment from Whitefish Lake was initiated in 2008 in order to reconstruct changes in lake depth, climate, and vegetation throughout the Holocene. In general, the upper 4.5 m of basinal sediment is composed of ~1.5+ m of varves, which is overlain by a 1.5-m-thick unit with ped-like structures, and ~1.5 m of lacustrine sediment. This sequence documents an early proglacial lake phase, followed by a dry interval before 4,300 (4,900 cal) BP when the lake was significantly shallower, and the establishment of the modern lake during the late Holocene. Plant microfossil (phytolith) evidence indicates that wild rice had colonized the basin ~5,300 (6,100 cal) BP as the lake level rose in response to climate change. Beginning ~4,000 (4,500 cal) BP, changes in elemental data suggest a sharp increase in lake productivity and a switch to anaerobic depositional conditions as the rate of organic sedimentation increased. Recent archaeological research confirms that wild rice was locally processed and consumed during the Middle and Late Woodland periods (~300 BC–AD 1700) although it was evidently growing in the lake well before this time.  相似文献   

12.
This study uses the Holocene lake sediment of Lake ?ū?i (Latvia, Vidzeme Heights) for environmental reconstruction with multi-proxy records including lithology, computerised axial tomography scan, grain-size analysis, geochemistry, diatoms and macrofossils, supported by AMS radiocarbon dating. Numerical analyses (PCA; CONISS) reveal three main phases in the development of the lake. Response to the Lateglacial–Holocene transition in Lake ?ū?i took place around 11,300 cal. BP. Organogenic sedimentation started with distinctive 5-cm-thick peat layer and was followed by lacustrine sedimentation of carbonaceous gyttja. Several findings of the peat layer with similar dated age and position at different absolute altitudes indicate that lake basin was formed by glaciokarstic processes. In the Early Holocene (until around 8,500 cal. BP), the lake was shallow and holomictic, surrounded by unstable catchment with erosion and inflow events. Predominance of diatom species of Cyclotella and Tabellaria, large numbers of respiratory horns of phantom midge pupae (Chaoboridae), high Fe/Mn ratio, as well as the presence of laminated sediments indicates the transition to a dimictic and oligo-mesotrophic lake conditions with high water level, anoxia in the near-bottom and stable catchment in the Middle Holocene (8,500–2,000 cal. BP). This contrasts with many hydrologically sensitive lakes in Northern and Eastern Europe in which the water level fell several meters during this period. During the Late Holocene (from 2,000 cal. BP to the present), the lithological and biotic variables reveal major changes, such as the increase in erosion (coarser grain-size fraction) and eutrophication [diatoms Aulacoseira ambigua (Grun.) Sim., Stephanodiscus spp., Cyclostephanos dubius (Fricke) Round]. Characteristics of lake-catchment system during the Late Holocene reflect anthropogenic signal superimposed on the natural forcing factors. To date, the Late Quaternary palaeolimnological reconstructions using lake sediment has been limited in the Baltic region. Therefore, findings from Lake ?ū?i provide important information about environmental and climatic changes that took place in this part of Eastern Europe. This study shows that the relative importance of climate and local factors has varied over the time and it is essential to consider the lake basin topography, catchment size and land cover as potential dominant forcing factors for changes in sedimentary signal.  相似文献   

13.
Chironomid remains from the sediment of Lake Vuolep Njakajaure reflect limnological conditions resulting from changing climate and vegetation throughout the Holocene, but do not strictly follow accepted climate trends or the vegetation history based on regional pollen and macrofossil analyses. Chironomid community changes appear to be influenced by organic nutrient input from the surrounding catchment vegetation and lake hydrology, both of which are indirectly responding to some combination of climate change, hypolimnetic oxygen concentration, and changes in basin morphology. The chironomid-based quantitative mean July air-temperature reconstruction differs from other regional quantitative records; this discrepancy is likely related to limnological conditions particular to Lake Vuolep Njakajaure. Comparison of a northern Swedish temperature transfer function and one from western Canada reveals differences in the mean July air-temperature optima of several common taxa, suggesting that the existing conservative estimates of Holocene climate change in northern Sweden may be underestimated due to the limited temperature gradient captured by the Swedish training set.  相似文献   

14.
The oribatid mite assemblages found in late-glacial and early-Holocene sediments in Kråkenes Lake, western Norway, consist of 38 species within 24 genera. In accordance with known present habitat distribution we distinguish 4 true aquatic species, 6 species associated with wetland, 2 with mesic grassland, 12 with dry grassland and heathland, 3 with saxicolous and arboricolous lichens, 7 widely distributed species, and 4 with uncertainly known habitat preferences. The sediments from the pioneer phase (12,300-11,700 14C BP) contain 7 species, among them the 2 typical pioneer species Limnozetes ciliatus and Tectocepheus velatus.The sediments of the warmer Allerød interstadial (11,700-10,900 BP) contain 18 species, the cold Younger Dryas (10,900-10,000 BP) 9 species, and the early Holocene (10,000-9,000 BP) 36 species.The oribatid fossils of the pioneer phase indicate habitats and climate similar to the mid-alpine zone in western Norway today, the Allerod interstadial that of the low- to mid-alpine zone. L. ciliatus is the aquatic pioneer species in the Allerod. In the Younger Dryas the climate was more arctic, 60-70% of the species had presumably disappeared, and no aquatic species were found. In the early Holocene, 4 true aquatic species colonised the lake and showed a high productivity. The terrestrial oribatid fauna in this period contained a high diversity of more boreal species, while the alpine species declined or became extinct.  相似文献   

15.
城市湖泊湿地是城市重要的生态基础,具有许多生态功能和社会服务功能。合理开发和利用湿地资源是确保城市可持续发展的重要前提。针对武汉月湖的水体污染问题,围绕城市受污染水体的生境改善、生态系统结构优化与系统稳定等问题,开展水生植物定植、湖滨人工湿地、藻类控制、受污染底泥修复等水质改善技术的研究,并相应建设示范工程对月湖湿地进行管理和生态恢复。  相似文献   

16.
We reconstructed the paleohydrologic and climatic history of the Lake Neor region, NW Iran, from the end of the late glacial to the middle Holocene (15,500–7500 cal yr BP). Subfossil chironomid and pollen assemblages in a sediment core from a peatland located south of Lake Neor enabled identification of four main hydrologic phases. The period 15,500–12,700 cal yr BP was characterized by a relatively dry climate with an open landscape, suggested by the abundance of Irano-Turanian steppe plants (e.g. Amaranthaceae, Artemisia and Cousinia). Dominance of several shallow-water and semi-terrestrial chironomid taxa (e.g. Pseudosmittia, Smittia/Parasmittia and Paraphaenocladius/Parametriocnemus) during this period is indicative of lower water tables in the wetland. Between 12,700 and 11,300 cal yr BP, chironomid taxa indicate higher wetland water tables, as suggested by the presence of Zavrelia, Chironomus anthracinus/plumosus-type and Micropsectra, which are inhabitants of open-water, lacustrine areas. The open-steppe vegetation remained dominant in the watershed during this time. Increasing wetland moisture could be explained by: (1) cool summers that reduced the evaporation rate; and/or (2) a decrease in duration of the summer dry season. The period 11,300–8700 cal yr BP was characterized by lower wetland moisture, contemporaneous with a delay in the expansion of deciduous forest, suggesting persistent dry climate conditions throughout the beginning of the Holocene, which may have been related to the intensified seasonality of precipitation. Around 8700 cal yr BP, higher wetland water levels, inferred from chironomids, occurred simultaneously with the onset of regional deciduous forest expansion, probably caused by a shortening of the summer dry period. We concluded that chironomids are appropriate paleoecological proxies to investigate global and local hydrologic variability in the Middle East.  相似文献   

17.
Stratigraphic shifts in the oxygen isotopic (18O) and trace element (Mg and Sr) composition of biogenic carbonate from tropical lake sediment cores are often interpreted as a proxy record of the changing relation between evaporation and precipitation (E/P). Holocene 18O and Mg and Sr records from Lakes Salpetén and Petén Itzá, Guatemala were apparently affected by drainage basin vegetation changes that influenced watershed hydrology, thereby confounding paleoclimatic interpretations. Oxygen isotope values and trace element concentrations in the two lowland lakes were greatest between ~ 9000 and 6800 14C-yr BP, suggesting relatively high E/P, but pollen data indicate moist conditions and extensive forest cover in the early Holocene. The discrepancy between pollen- and geochemically-inferred climate conditions may be reconciled if the high early Holocene 18O and trace element values were controlled principally by low surface runoff and groundwater flow to the lake, rather than high E/P. Dense forest cover in the early Holocene would have increased evapotranspiration and soil moisture storage, thereby reducing delivery of meteoric water to the lakes. Carbonate 18O and Mg and Sr decreased between 7200 and 3500 14C-yr BP in Lake Salpetén and between 6800 and 5000 14C-yr BP in Lake Petén Itzá. This decline coincided with palynologically documented forest loss that may have led to increased surface and groundwater flow to the lakes. In Lake Salpetén, minimum 18O values (i.e., high lake levels) occurred between 3500 and 1800 14C-yr BP. Relatively high lake levels were confirmed by 14C-dated aquatic gastropods from subaerial soil profiles ~ 1.0–7.5 m above present lake stage. High lake levels were a consequence of lower E/P and/or greater surface runoff and groundwater inflow caused by human-induced deforestation.  相似文献   

18.
近百年来由于受气候暖干化、青海湖湖体水位下降和周围草地退化及沙化趋势加剧等生态环境变化,加速了湿地环境变迁的生态过程。本研究在青海湖北岸地区选取三种典型沼泽湿地(藏嵩草kobresia ti-betica、华扁穗草Blysmus sinocompressus、盐地凤毛菊Saussurea salsa),建立地层的年代序列,计算得到每一测年段内的沉积速率,结合前人研究的历史气候变化,分析湿地形成的历史背景,初步揭示三种沼泽湿地的发育和沉积规律与全球变化的耦合性。结果表明光释光测得的三种沼泽湿地其发育时期各不相同,华扁穗草沼泽湿地发育于8.436±0.6 ka,藏嵩草沼泽湿地发育于2.058±0.11 ka,盐地凤毛菊沼泽湿地发育于1.143±0.20 ka;从整个剖面的平均沉积速率来看盐地凤毛菊湿地沉积最快(0.63 mm/a),藏嵩草湿地次之(0.39 mm/a),华扁穗湿地最慢(0.09 mm/a)。三种沼泽湿地主要在气候由暖干向湿润期转变时形成,自形成以来由于受到全球变化和人类因素的影响,沉积并非随时间呈线性关系发展。  相似文献   

19.
Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000?year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000?years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000?cal?year BP sediments have ??13C values that range from ~?39 to ?31??, suggesting peak methane carbon assimilation at that time. These low ??13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500?cal?year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640?cal?year BP, and fossil chironomids from 1,500?cal?year BP in the core illustrate that ??old?? carbon has also contributed to the development of the aquatic ecosystem since ~1,500?cal?year BP. The relatively low ??13C values of aquatic invertebrates (as low as ?40.5??) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.  相似文献   

20.
The level of Kluane Lake in southwest Yukon Territory, Canada, has fluctuated tens of metres during the late Holocene. Contributions of sediment from different watersheds in the basin over the past 5,000 years were inferred from the elemental geochemistry of Kluane Lake sediment cores. Elements associated with organic material and oxyhydroxides were used to reconstruct redox fluctuations in the hypolimnion of the lake. The data reveal complex relationships between climate and river discharge during the late Holocene. A period of influx of Duke River sediment coincides with a relatively warm climate around 1,300 years BP. Discharge of Slims River into Kluane Lake occurred when Kaskawulsh Glacier advanced to the present drainage divide separating flow to the Pacific Ocean via Kaskawulsh and Alsek rivers from flow to Bering Sea via tributaries of Yukon River. During periods when neither Duke nor Slims river discharged into Kluane Lake, the level of the lake was low and stable thermal stratification developed, with anoxic and eventually euxinic conditions in the hypolimnion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号