首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Glauconitic minerals are considered as one of the valuable input parameters in sequence stratigraphic analysis of a basin. In the present study glauconitic minerals are reported from subtidal green shale facies in the lower part of the Late Paleocene-Early Eocene Naredi Formation of western Kutch. On the basis of the foraminiferal assemblage the glauconite bearing beds are interpreted to have formed in a mid shelf depositional settings of an unstable marine conditions. XRD studies confirm the glauconite mineralogy of the green pellets and provide an estimation of glauconite maturity. Textural attributes of the glauconites confirm their derivation by different degrees of alteration of precursor feldspar grains. Because of the authigenic origin and autochthonous nature, these glauconites hold promise for understanding sequence stratigraphy of the Palaeogene succession of the western Kutch.  相似文献   

2.
This study presents geochemical characteristics of glauconites in estuarine deposits within the Maastrichtian Lameta Formation in central India. Resting conformably over the Bagh Group, the Lameta Formation consists of ~4-5 m thick arenaceous, argillaceous and calcareous green sandstones underlying the Deccan Traps. The sandstone is friable, medium-to coarse-grained, well-sorted and thoroughly crossstratified, and contains marine fossils. Detailed petrography, spectroscopy and mineral chemistry indicates unique chemical composition of glauconite with high K_2O, MgO, Al_2O_3 and moderate TFe_2O_3. Glauconite is formed by the replacement of K-feldspars, initially as stringers in the cleavages and fractures of feldspars. Incipient glauconite subsequently evolves fully, appearing as pellets. Fully-evolved glauconite pellets often leave tiny relics of K-feldspar. XRD exhibits characteristic peak of 10A from basal(001)reflection of glauconite, indicating the "evolved" character. The K_2O content of glauconites in the Lameta Formation varies from 5.51% to 8.29%, corroborating the "evolved" to "highly-evolved" maturation stage.The TFe_2O_3 content of glauconite varies from 12.56% to 18.90%. The PASS-normalized-REE patterns of glauconite exhibit a "hat-shape" confirming the authigenic origin of glauconites. The slightly-negative to slightly-positive Ce anomaly value and the moderate TFe_2O_3 content of glauconite agree well with a suboxic,estuarine condition. The replacement of K-feldspar by the glauconite contributes towards the high K_2O content. Compositional evolution of glauconites in the Lameta Formation is similar to those observed in many Precambrian sedimentary sequences.  相似文献   

3.
Some minerals are considered to be representative of specific natural environments. Among them glauconite is considered to be formed in marine deep platform conditions. However, the term glauconitic is misused to designate green minerals formed in marine outer-shelf environments. X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analyses of individual green materials were carried out leading to the identification of glauconite in the Purbeckian facies. Green glauconite grains predominantly occur as burrow fills and occasionally as faecal pellet replacements. Two depositional environments have been identified from bottom to top of the succession: (1) an argillaceous dolomitic lagoonal sediment formed in saline, shallow water; (2) a marl-limestone alternation deposited in a brackish water estuary. The crystallochemical properties of the glauconites change abruptly. These findings show that glauconite may form in coastal environments and not only in mid-shelf to upper deep water platform environments as classically assumed. Moreover, the glauconite composition changes with the chemical conditions imposed by the local environment.  相似文献   

4.
海绿石以独特的绿色自生色和球粒形状与围岩形成明显反差,关于其成因、演化、沉积和地层学意义目前存在3种普遍被认可并被采用的观点:海绿石是典型的海相沉积自生矿物,原地海绿石是“慢速、弱还原、较深水环境”的典型指相矿物之一;通常是海侵相的产物,含海绿石的地层在浅海沉积中常被作为海侵时期“凝缩段”及其相关沉积的识别标志之一;是沉积年代学中K-Ar、40Ar/39Ar年龄理想的测定对象。在采用海绿石作为典型指相矿物的过程中,应注意海绿石可以形成于多种沉积环境中,只有原地海绿石才能作为海侵时期“凝缩段”及其相关沉积的识别标志;海绿石年龄往往呈“年轻化”或“老化”,没有火成岩定年准确,只有成熟、富钾的海绿石才是最好的定年对象。  相似文献   

5.
天津蓟县剖面中元古界铁岭组二段叠层石灰岩中普遍发育海绿石。野外观察表明,海绿石主要分布在叠层石柱体间的泥晶灰岩中,呈薄膜状富集在叠层石鞘外缘;微观特征分析表明,海绿石呈不规则状的胶体形式,显示了原地海绿石的基本特点。电子探针的组分分析表明,铁岭组中的海绿石为中成熟度的海绿石。由于产在潮下高能柱状叠层石灰岩中,铁岭组中的海绿石并不反映低沉积速率或沉积间断的沉积条件,与现代海绿石的形成环境具有明显的差异。因此,中元古界铁岭组叠层石灰岩中的中成熟度原地海绿石是特殊沉积背景下的独特产物,为研究海绿石在地质历史时期产出的多样性提供了一个重要实例。  相似文献   

6.
The detailed analysis of pellets deposited on the continental shelf off Congo and Gabon (Gulf of Guinea) reveals the present formation of goethite and berthierine-granules, as well as that of glauconite. The goethite is being formed in the most oxygenized zones, independently of the initial nature of the granular support and, sometimes, takes the form of pseudooolites. The berthierine is being formed in the Ogooue delta zone. To us the deltaic environment, rather than the temperature factor, seems determinant. Principally, this berthierine is found in the form of coprolites, of initial kaolinic composition. Incrustations of calcareous debris and fillings of animalculae tests are present. This genesis is recent (post-Flandrian) and is still continuing. The glauconite exists practically uniquely in the form of coprolites, from the medium-depth zones of the continental shelf (—50 m) down to the upper continental slope (—300 m). The sèdiment in which it was formed, and is probably still being formed, is older (ante-Flandrian). The actual rate of sedimention is null when glauconite is forming. The glauconite formation may be broken down into several stages, which are found at different sampling depths and, sometimes, in the same samples. The pellets are formed first. These original pellets, of kaolinic nature, gradually become smectitic. The evolution continues, becoming a component with diffractometric behaviour identical with that of an interlayered material (illite-vermiculite) with the illite dominant. Correlatively, the K2O percentage increases from 2–3% in the smectites to 5–6% in the most evolved component. The mineralogical composition of these last pellets is identical with that of certain fossil glauconites, the evolution of which could be followed up to the best crystallized glauconite mineral. Thus, we were able to reconstitute the formation history of the glauconite from any mineralogical support up to the typical glauconite mineral (Table l). Two conditions necessary for this formation are detected here: the time factor, as has often been pointed out, is important. However, it is, above all, the environment factor which has attracted our attention. The forming of pellets favours and determines the geo-chemical evolution through the creation of a semi-confined environment. Reactions take place there in a more concentrated environment than in the open sea, this environment is characterized by a large surface of reaction, since the granule is porous. Sedimentologically, it is possible to distinguish two groups of glauconites: one, monomineral, corresponds to more or less crystallized glauconite mineral; the other, plurimineral, consists of various TOT minerals. Only the first has the significance generally attributed to all glauconites : open epicontinental marine environment, free of sedimentation for a long time. The various cases of evolution encountered here are summarized below (Table 1).  相似文献   

7.
徐州大北望寒武系徐庄组发育不同类型海绿石,为探讨不同类型海绿石的成因,基于海绿石的矿物学、地球化学及沉积环境分析,利用偏光显微镜、X 射线衍射及电子探针等方法对各含海绿石岩层及不同类型海绿石进行系统对比研究查明海绿石的指相意义。结果表明,徐庄组发育颗粒状、碎屑假象状和胶团状三种类型海绿石,其中颗粒状海绿石具有中—高含量钾、高含量铁、砂岩中—高含量铝、石灰岩中低含量铝等特征;碎屑假象状海绿石具有变化大的钾、铁、铝,且保持着其母质形态特征;胶团状海绿石具有高钾、高铁、低铝特点。颗粒状海绿石成因符合颗粒绿化理论,砂岩中海绿石易受环境影响;碎屑假象状海绿石成因符合层状晶格理论及假象替代理论,受到交代和溶蚀作用,因受较强的水动力条件影响成分变化较大;胶团状海绿石是凝胶状海绿石通过胶结作用沉淀,形成于稳定环境中。  相似文献   

8.
Glauconite     
The term glauconite has been employed in two senses. It has been used most commonly as a morphological term for sand-sized greenish grains found in sedimentary rocks, but also as a name for a specific mineral species, a hydrated iron-rich micaceous clay mineral. The two uses are not synonymous, since not all morphological glauconite consists exclusively of mineral glauconite, nor is the latter restricted in its occurrence to such pellets. Mineral glauconite in sensu lato is a random interstratification of nonexpanding 10A?layers and expanding montmorillonitic layers. The amount of expandable layers may be over 50 % but it is customary to restrict the name mineral glauconite in sensu stricto to varieties with less than 10 % expandable layers. The variation in amount of expandable layers explains many of the observed variations in the properties of glauconite including chemical composition (especially potassium content), thermal characteristics, cation exchange capacity, colour, refractive index and specific gravity. Mineral glauconite is believed to form by the progressive absorption of potassium and iron by a degraded layer silicate lattice of low lattice charge and elimination of other silicate-lattice types under suitable environmental conditions, of which the most critical seems to be the redox potential. The catalytic activity of marine organisms is no longer thought to be essential, although decaying organic matter and empty foraminiferal tests supply the ideal environment for glauconite genesis. The process of glauconitization is arrested by rapid sedimentation, so that there is a relationship between the variety of mineral glauconite formed and the nature of the host rock. Glauconite is found associated particularly with marine transgressions. Morphological glauconite grains are believed to form as casts, faecal pellets or by accretionary growth, but may have their morphology modified by subsequent re-working. A number of characteristic internal and external morphologies have been recognised. The wide range of environmental conditions suitable for its formation and its common detrital occurrence debars the use of glauconite in palaeo-environmental studies. Its major use in geology is for the absolute age dating of sedimentary rocks by the K-Ar method. Glauconitic deposits have no present day commercial value, but soils formed on glauconitic parent materials are notable for their fertility. Glauconite weathers by loss of potassium to produce a montmorillonitic or vermiculitic product with the release of, or oxidation of, structural iron, so that the grain has the appearance of having weathered to limonite.  相似文献   

9.
Glauconite pellets from the Lower Silurian Brassfield Formation on both limbs of the Cincinnati Arch in Ohio and Indiana give a RbSr age of 370 ± 11 Ma, which is substantially younger than the stratigraphic age of the formation. The age is concordantcwith conventional KAr ages of 355 ± 6 and 368 ± 5 Ma for two of the same glauconites. Concordant ages were also obtained from the Viburnum Trend in Missouri, where glauconite pellets from the Davis Formation in an ore-zone collapse structure into the underlying Bonneterre Formation give a RbSr age of 387 ± 21 Ma and conventional KAr ages of 368 ± 5 and 369 ± 5 and 369 ± 5 Ma. A third suite of glauconite from the Bonneterre Formation in the Old Lead Belt ~ 10 km from the nearest ore body has given a RbSr age of 423 ± 7 Ma and slightly older conventional KAr ages of 434 ± 6, 445 ± 6 and 441 ± 11 Ma.Because these glauconite-bearing rocks have been buried to depths of less than 1 km, thermal resetting of the RbSr and KAr systematics appears unlikely. The initial 87Sr86Sr ratios of the RbSr isochrons are similar to the ratios for vein- and vug-filling dolomite and calcite. This is consistent with resetting of the RbSr and KAr systems during diagenetic changes which included the isotopic equilibration (perhaps by cation exchange) of the Sr in the glauconite with that in the diagenetic and Mississippi Valley-type ore fluids. This interpretation implies that the age of the Mississippi Valley-type mineralization in the Viburnum Trend is Devonian rather than Carboniferous—Permian as has been inferred from paleomagnetic measurements.Cation-exchange experiments with a dilute Sr-bearing solution and an artificial oilfield brine indicate that glauconite adsorbs large amounts of Sr, some of which is sufficiently strongly attached to the glauconite lattice as to resist leaching with ammonium acetate. The introduction of this strongly attached Sr may be the first step in the resetting of the RbSr systematics of glauconite by cation exchange.  相似文献   

10.
海绿石是一种富钾、富铁的含水层状铝硅酸盐矿物,在沉积学领域常被作为一种普遍的指相矿物。多年研究的结果表明,现代海绿石主要形成在慢速、弱还原的较深水环境中,而且还可以作为"凝缩段"的识别标志之一。天津蓟县剖面中元古界铁岭组第二段灰岩中的海绿石,产在高能叠层石岩礁之中,主要以胶体形式富集在叠层石和均一石的边界上,代表较为典型的原地海绿石;较高的氧化钾含量(大于8%)而显示出高成熟海绿石的特点。很明显,铁岭组二段灰岩中的原地高成熟海绿石,不但不能作为"凝缩段"的识别标志,而且也不是长时间地层间断的产物。由于形成在正常高能浅海环境,而且处于中元古代末期,与现代沉积中的海绿石存在较大的差异,可能代表了中元古代末期的正常浅海还处于含氧量不够充分的弱还原状态,最终使铁岭组灰岩中的海绿石成为前寒武纪海绿石产出的一个典型代表,也间接的表明了在漫长的地质历史演变过程中海绿石产出的多样性特点。  相似文献   

11.
关于东海现代沉积物中的海绿石,前人曾有过报道,但都限于一般性的描述。近年来我们对东海表层沉积物中的海绿石进行了较为系统的研究,工作范围为东经121°-129°,北纬26°30′-32°00′,样品233个。分别进行了镜下鉴定、透射电镜和扫描电镜观察,并以多晶X-射线衍射法,化学全分析、差热分析、红外吸收光谱和电子探针等方法进行较系统的矿物学研究。本文就东海表层沉积物中海绿石的矿物学特征,产状及分布进行阐述,并对其成因作了初步的探讨。  相似文献   

12.
陈瑞君 《地质科学》1983,(3):267-272
样品产于南海北部湾滨岸浅滩胶结较松散的长石石英砂岩中,属于上第三系下洋组。本文从海绿石形态、矿物的物理化学测试结果以及形成介质条件等方面,探讨该区海绿石特征和形成环境。  相似文献   

13.
The crystallinity and mineralogy of both the glauconite and the clay fraction of samples from six contemporary marine environments were investigated by X-ray diffraction. In those areas where glauconite is now forming, the mineralogy and the degree of crystallinity of both the glauconite pellets and the associated clay fraction are similar. In contrast, detrital and relic glauconites are observed to have mineralogies that are different from their clay fractions. No consistent relationship was observed between degree of crystallinity and color of the pellets. Further, only two classes of glauconite as defined by BURST (1958) were common: expandable, interlayered clays and two or more clay minerals in a mixed assemblage. Based on the clay fraction-glauconite similarities and other supporting evidence, glauconite on the Scotia Ridge is concluded to be authigenic. Glauconite from Santa Monica Bay, California and from the continental shelf off Morocco appear to be detrital. Glauconite pellets in the shelf sediments off Guinea and the southeastern Atlantic Shelf of the United States are both detrital and authigenic. The poor crystallinity exhibited by the Chatham Rise glauconite is in contrast to the well-crystallized associated clay fraction and indicates that they are not genetically related. However, the origin of this glauconite remains in doubt.  相似文献   

14.
This study examines textural inhomogeneity and variable chemical composition of Upper Jurassic glaucony in relation to small‐scale synsedimentary and postsedimentary authigenic processes controlled by the palaeonvironmental and palaeogeographical context. Four glaucony types with complex textural and compositional features have been recognized in cores of the Georgiev Formation of the West Siberian Basin. Samples exclusively made of light green type 1 glaucony (K2O < 6·5%: the less mature type, richer in glauconite–smectite mixed layer) formed under dysoxic conditions in the deepest distal marine environments of the northern sectors of the West Siberian Basin. Dark green type 2 glaucony is the most mature (richest in glauconitic mica: K2O up to 8·5%), is sometimes associated with type 1 glaucony, and is typical of high bottom areas with a low sedimentation rate within the central sectors of the basin. Type 3 glaucony is formed by brown grains, poorer in K and Fe but richer in Al and Si than type 2 glaucony, and is only present in strongly condensed successions of the central‐eastern sectors of the West Siberian Basin. Type 4 glaucony is much richer in Fe than any other type, shows fresh yellowish green cores slightly less mature than type 2 glaucony, and brown rims and cracks with composition similar to that of type 3 grains; it was formed in western sectors of the West Siberian Basin, close to Urals. Weathering under a subtropical to temperate climate, and erosion of badly drained peneplaned lowland areas around the basin, provided Al‐rich terrigenous clays as substratum for glauconitization, which explains Al and Si enrichment in Siberian glaucony. Maturation from glauconite–smectite to glauconitic mica is monitored by a change from light to dark green colour related to decrease in Al, Si, Mg, Ca and Na, and to increase in K and Fe. Brown rims of type 4 glaucony, and brown type 3 grains formed after leaching of Fe and K from mature glauconite, with formation of clays and Fe oxyhydroxides as reaction products, as a result of free oxygen exposure related to a hydrodynamic regime and temporary sea‐level fall. Glauconitization stopped and diagenetic pyrite formed due to basin deepening and burial under black shales during the latest Jurassic–earliest Cretaceous transgression. This study demonstrates that, due to the complex nature of glaucony, the authigenesis of glauconitic minerals in the rock record cannot be correctly understood if the palaeoenvironmental context and the palaeogeographical context of glaucony‐bearing sediments are not considered.  相似文献   

15.
The present paper reports the K-Ar ages determined on glauconitic samples collected from the Ukra Member of the Mesozoic Bhuj Formation in two different sections, one located on the Ghuneri-Ghaduli road near Katesar Mahadeo temple and the other at the base of the Ukra hill in the northwestern part of the Kutch Mainland area. Three glauconite samples viz., UkraKT-1, UkraKT-4 and UkraUH-3 have yielded K-Ar ages of 107.9 ± 3.4 Ma, 105.5 ± 3.3 Ma and 103.5 ± 3.4 Ma, respectively. The sample UkraKT-l treated with 0.5N HC1 and analysed in duplicate has yielded a mean age of 104 ± 2.3 Ma while the sample UkraKT-4 treated with 0.1N HCl has given an age of 106.5 ± 3.3 Ma. The ages of the treated and untreated glauconites are indistinguishable within 2σ uncertainty with a mean of 105.2 ± 1.3 Ma, which has been interpreted as the depositional age of the Ukra Member of the Mesozoic Bhuj Formation. The study has further indicated that mild acid treatment (up to 0.5N HCl) does not lead to any loss of radiogenic argon in the glauconites and can be helpful in purification of the samples.  相似文献   

16.
厄瓜多尔奥连特盆地白垩系Napo组UT段发育一套分布广泛的富含海绿石的硅质碎屑岩,针对海绿石的岩相、矿物学、地球化学及时空属性进行分析,可以揭示海绿石的组分、成熟度、形成及成因类型,结合地质约束有助于理解其形成的沉积地质意义.利用偏光显微镜、X射线衍射、电子探针及Qemscan对海绿石矿物的岩相、矿物组成和主量元素进行系统地分析.暗绿色、呈弯曲玫瑰花状的海绿石具有高的K2O含量(平均值为8%,质量百分比),是形成于海相低沉积速率环境的高演化成熟型海绿石云母矿物或狭义范畴的海绿石.化学组分和时空属性揭示研究层段的海绿石经历了一定程度风暴流和/或潮汐流作用的搬运改造,属于层内准原地海绿石.UT段海绿石含量向上的增大趋势和成熟度的变化,以及横向上从盆地东部斜坡区埋深2~3 km到西部盆缘露头区相距约120 km的海绿石在形态和化学成分上具有相似性,指示其主要是层内准原地海绿石的特点.UT段垂向上海绿石含量增大的趋势同时反映外陆棚物源区原地海绿石向岸方向的短距离迁移,反映了相对海平面持续上升的海进过程;而且同时期海绿石平面上的广泛分布指示沉积时期的环境属于构造稳定的陆表海.   相似文献   

17.
Middle Eocene Fulra Limestone and Oligocene Maniyara Fort Formation represent platform carbonate deposits of Kutch at the north-western margin of India. These carbonates contain larger benthic foraminifera, including Alveolina, Assilina, Discocyclina, Lepidocyclina, Miogypsina, Nummulites and Spiroclypeus. This study presents paleodepositional and paleobathymetric interpretations for both formations using benthic foraminifera in combination with lithological association, sedimentary structures and early diagenetic features. The six carbonate facies comprising the Fulra Limestone indicate a depositional spectrum ranging from bar-lagoon to mid-ramp depositional conditions. It records several shallowing upward cycles, leading to emergence and formation of paleokarst. The four carbonate facies of the Maniyara Fort Formation represents deposition within the inner ramp setting in bar-lagoon and patch-reef environment, while intervening fine siliciclastics correspond to episodes of relative sea level fall. Nummulitic accumulations form low-relief bars within the fair weather wave base in both the formations. The depositional setting of the Paleogene carbonate in Kutch broadly resembles Eocene platformal deposits in the circum-Tethys belt.  相似文献   

18.
In Normandy (France), the glauconite bearing base of the Cenomanian has a wide distribution in outcrops and boreholes. Glauconite pellets are subjected to natural weathering and fluvial transport following separation from the glauconite-bearing bedrock by streams and creeks which dissolve the carbonate fraction. From the 100 samples collected, 19 samples from the studied horizon have been selected after X ray, diffaction studies. X ray diffractron techniques show that the non weathered glauconite pellets are composed of well-ordered gilauconites. In the reworked glauconite, the alteration is manifested by a slight opening of the structure. In addition, the diffractogramm yield a fast and sensitive estimation of the K contents of the glauconites. Lowering of the K content goes hand in hand with the opening of the glauconite structure. 12 samples were selected from the autochtonous horizon (fresh outcrop and borehole) a second group of 7 samples was taken from alluvions (streams and quaternary terraces) to study the effects of natural weathering. As actually, no other glauconite-bearing horizons are found in the region, the glauconite pellets in the alluvions can only be derived from the studied bedrock. Reworking and natural weathering of the glauconites leads to a decrease of the K content of 10–15%. Argon analysis shows that comparable percentage of radiogenic argon is lost at the same time so that the apparent ages do not change (in the errors limits). These results are only valid for well-ordered glauconites and continental alteration under moderate climate with basic fresh water. In conclusion, it can be stressed that the credibility of glauconite K-Ar ages does not change after such a reworking.  相似文献   

19.
The Paleogene sections of Kutch are the reference for the regional chronostratigraphic units of India. The ages of these dominantly shallow marine carbonates are mainly based on larger benthic foraminifera (LBF). The taxonomic revisions of the LBF and the progressively refined shallow benthic zonations (SBZ) have necessitated the present study on updating the stratigraphy of the area. The sedimentation in Kutch commenced with the deposition of volcaniclastics in terrestrial environments in the Paleocene. The marine transgression in SBZ 5/6 deposited finer clastics and carbonates, designated as Naredi Formation, in early Eocene. There is no evidence of marine Paleocene in Kutch. A major hiatus spanning SBZ 12 to SBZ 16 was followed by the development of a carbonate platform and deposition of Harudi Formation – Fulra Limestone during the Bartonian, SBZ 17. The hiatus corresponds to a widespread stratigraphic break in Pakistan and India to Australia, referred as the ‘Lutetian Gap.’ The Maniyara Fort Formation is assigned to SBZ 22 B and SBZ 23, and its age is revised to Chattian. Climate played a major role in building up of the Paleogene stratigraphic succession of Kutch, the carbonates formed during the warming intervals and the stratigraphic gaps were in the intervening cooling periods.  相似文献   

20.
Systematic research over years on datable horizons of lower Miocene age has led to an election of nine glauconite samples suitable for dating work. The chosen glauconites come from various regions of the tethys. Following careful sedimentological as well as stratigraphical studies the K-Ar ages of these glauconites were measured. The interpretation of the apparent ages found takes into consideration sedimentation, mineralogical quality and present knowledge of the genesis of the green glauconite pellets. The presented data allow to fix the basis of the Miocene at about 21–22 m. y. and the boundary of Aquitanian-Burdigalian at 18 m. y. The K-Ar data on glauconites presented here are in good agreement with newer measurements of other authors on high temperature minerals of the same age span.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号