首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
An improved hybrid gravimetric geoid model for Egypt, EGY-HGM2016, has been recently computed implementing the least-squares collocation (LSC) method through the remove-compute-restore (RCR) procedure. The computation of EGY-HGM2016 involves different datasets in terms of gravity anomalies determined from the GOCE (gravity field and steady-state ocean circulation explorer)-based global geopotential model (SPW-R4) up to d/o 200 and EGM2008 from d/o 201 to 720 combined with terrestrial gravity datasets in terms of 2140 gravity field anomalies and about 121,480 marine surface gravity anomalies. In addition, orthometric heights from 17 GPS/levelling measurements have been considered during the modelling process to improve the determination of the hybrid gravimetric geoid over the Egyptian region. The EGY-HGM2016 model estimated over Egypt provides geoid heights that are ranging from 7.677 to 21.095 m with a standard deviation (st. dev.) of about 2.534 m in the northwest of the country excluding the involvement of the orthometric heights from GPS/levelling measurements. When the later dataset is considered during the implementation of LSC process, hybrid residual height anomalies ranging from ?1.5 to +0.9 m, with a mean of 0.22 m and a st. dev. of 0.17 m, are obtained. Comparison of the predicted hybrid gravimetric geoid with the corresponding ones obtained from EGM2008, GOCE-based SPW R4 model, and GPS/levelling reveals considerable improvements of our EGY-HGM2016 model over Egypt.  相似文献   

2.
The main purpose of this article is to discuss the use of GPS positioning together with a gravimetrically determined geoid, for deriving orthometric heights in the North of Algeria, for which a limited number of GPS stations with known orthometric heights are available, and to check, by the same opportunity, the possibility of substituting the classical spirit levelling. For this work, 247 GPS stations which are homogeneously distributed and collected from the international TYRGEONET project, as well as the local GPS/Levelling surveys, have been used. The GPS/Levelling geoidal heights are obtained by connecting the points to the levelling network while gravimetric geoidal heights were interpolated from the geoid model computed by the Geodetic Laboratory of the National Centre of Spatial Techniques from gravity data supplied by BGI. However, and in order to minimise the discordances, systematic errors and datum inconsistencies between the available height data sets, we have tested two parametric models of corrector surface: a four parameter transformation and a third polynomial model are used to find the adequate functional representation of the correction that should be applied to the gravimetric geoid. The comparisons based on these GPS campaigns prove that a good fit between the geoid model and GPS/levelling data has been reached when the third order polynomial was used as corrector surface and that the orthometric heights can be deducted from GPS observations with an accuracy acceptable for the low order levelling network densification. In addition, the adopted methodology has been also applied for the altimetric auscultation of a storage reservoir situated at 40 km from the town of Oran. The comparison between the computed orthometric heights and observed ones allowed us to affirm that the alternative of levelling by GPS is attractive for this auscultation.  相似文献   

3.
A local geoid solution for the northern part of Greece is presented based on a recent processing of newly available gravity data in the area 40.25 ≤ /o ≤ 41.00, 22.5 ≤λ ≤ 24.25. The derived gravimetric geoid heights are compared with geoid heights computed at recently measured GPS/ leveling benchmarks. A 4-parameter transformation model is applied to the differences between the two aforementioned geoid height sets, and a discussion is given on the current state of the leveling datum in the test area and the Greek territory. Regional and local transformation parameters are computed and some numerical tests are performed. A common adjustment of gravimetric geoid heights and corresponding GPS/leveling heights will be carried out in another study following an integrated procedure in order to study problems arising from the combination of different height data sets for geoid determination. Finally, some conclusions are drawn on the problems related to the optimization of a local geoid solution.  相似文献   

4.
A new, high precision, high accuracy and high resolution gravimetric geoid of Australia has been produced using most updated data, theory and methodology. This paper presents a concise report of the new Australian geoid determination. Some aspects of the new geoid computation, such as data validation, geoid determination strategies and computational procedures, are described. The relative precision of the new geoid is better than 5 cm for average baseline length of 4km~40km and 18 cm for average baseline length of 120km when compared with three local GPS/levelling networks.  相似文献   

5.
Since the creation of the Sub-Commission for the Geoid in South America (SCGSA) in 1993, many efforts have been carried out in the different countries in order to improve the geoid computations. The validation of the gravity data in Brazil, Uruguay, Argentina and Chile has improved many of the gravity surveys in those countries. GPS observations carried out on benchmarks of the geometric levelling have been facilitated by the SIRGAS (Geocentric Reference System for South America) project and can contribute for testing the gravimetric determination of the geoid. Several countries made available GPS data for SCGSA like Brazil, Argentina, Venezuela and Chile. The Digital Terrain Model (DTM) has been improved considerably in Brazil and Argentina. A great number of topographic maps has been digitized to generate a DTM grid of 3′ resolution (DTM3). New gravity surveys in the Amazonas region have been in progress along Rio Negro and its tributaries. Many different organizations in most of the countries in South America have been involved with local or national geoid computations. This fact has brought attention to the data in several countries facilitating the efforts for a continental geoid. All these activities are strongly supported by Geophysical Exploration Technology (GETECH) — University of Leeds. The objective envisaged at the moment is to produce a 10′ resolution geoid for South America using FFT and to compare the result with that of the numerical integration of the modified Stokes integral.  相似文献   

6.
V. Corchete 《地学学报》2008,20(6):489-493
The gravimetric geoid computed in the northern part of Iberia, is presented in this paper. This computation has been performed considering two study windows fitted to the areas with higher density of gravity data, to reduce the computation errors associated to the scarcity of gravity data, as much as possible. The bad influence of a bathymetry with poorer resolution than the topography is also reduced considering the smallest marine area possible. Moreover, the computation of this gravimetric model is based on the most recent geopotential model: EIGEN‐GL04C (obtained in 2006). The method used in the computation of the new gravimetric geoid has been the Stokes integral in convolution form. The terrain correction has been applied to the gridded gravity anomalies, to obtain the corresponding reduced anomalies. Also the indirect effect has been taken into account. Thus, a new geoid model has been calculated and it is provided as a data grid in the Geodetic Reference System of 1980, distributed for the northern part of Iberia from 40 to 44 degrees of latitude and ?10 to 4 degrees of longitude, on a 161 × 561 regular grid with a mesh size of 1.5′ × 1.5′. This new geoid and the previous geoid Iberian Gravimetric Geoid 2005, are compared with the geoid undulations measured for eight points of the European Vertical Reference Network (EUVN) on Iberia. The new geoid shows an improvement in precision and reliability, fitting the geoidal heights of these EUVN points with more accuracy than the previous geoid. Moreover, this new geoid has a smaller standard deviation (12.6 cm) than that obtained by any previous geoid developed for the Iberian area up to date. This geoid obtained for the northern part of Iberia will complement the previously obtained geoid for South Spain and the Gibraltar Strait area; both geoids jointly will give a complete picture of the geoid for Spain and the Gibraltar Strait area. This new model will be useful for orthometric height determination by GPS over this study area, because it will allow orthometric height determination in the mountains and remote areas, in which levelling has many logistic problems. This new model contributes to our knowledge of the geoid, but the surrounding areas must be better known to constrain the lithospheric and mantle models.  相似文献   

7.
In this paper an estimator for geoid is presented and applied for geoid computation which considers the topographic and atmospheric effects on the geoid. The total atmospheric effect is mathematically developed in terms of spherical harmonics to degree and order 2,160 based on a recent static atmospheric density model. Also the contribution of its higher degrees is formulated. Another idea of this paper is to combine one of the recent Earth gravity models (EGMs) of the Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission with EGM08 and the terrestrial gravimetric data of Fennoscandia in an optimum way. To do so, the GOCE EGMs are compared with the Global Positioning System (GPS)/levelling data over the area for finding the most suited one. This comparison is done in two different ways: with and without considering the errors of the EGMs. Comparison of the computed geoids with the GPS/levelling data shows that a) considering the total atmospheric effect will improve the geoid by about 5 mm, b) GOCO03S is the most suited GOCE EGM for Fennoscandia, c) the errors of some of the GOCE EGMs are optimistic and far from reality. Combination of GOCO03S from degree 120 to 210 and EGM08 for the rest of degrees shows its good quality in these frequencies.  相似文献   

8.
The Fast Fourier Transformation (FFT) has become a routine mathematical tool for the refinement of the Earth's gravity field, such as the computation of precise gravimetric geoid and terrain corrections, particularly over a large area. This paper presents ideas and methodologies to evaluate the accuracy of geoid undulation computations using FFT. A global geopotential model is used as a ‘ground truth’ gravity field model to assess the geoid determination precision by using FFT technique. It is demonstrated that special considerations must be given for a high precision FFT gravimetric geoid determination. A maximum of a few decimetres error could be introduced by the FFT algorithm if the gravity anomalies are not long wavelength filtered and/or no zero padding is applied.  相似文献   

9.
Nowadays, Global Geopotential Models (GGMs) are used as a routine stage in the procedures to compute a gravimetric geoid. The GGMs based geoidal height also can be used for GPS/levelling and navigation purposes in developing countries which do not have accurate gravimetric geoid models. Also, the GGM based gravity anomaly including the digital elevation model can be used in evaluation and outlier detections schemes of the ground gravity anomaly data. Further, the deflection of vertical and gravity gradients components from the GGMs can be used for different geodetic and geophysical interpretation purposes. However, still a complete and user-friendly software package is not available for universities and geosciences communities. In this article, first we review the procedure for determination of the basic gravity field and gradient components from the GGMs, then general MATLAB based software is presented and applied as a sample case study for determination of gravity components based on the most recent EIGEN-GL04C GRACE model in Sweden. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
For GPS levelling applications, it is convenient to express the height reference surface in a suitable geodetic reference system. This can be obtained through a set of levelled GPS points. Unfortunately, available data are sparse. A gravimetric geoid is often used to interpolate the height reference surface issued from GPS and levelling. Both surfaces do not coincide exactly with each other. At this point, one must compare two realisations of the geoid, detect outliers, retrieve (if possible) the causes of the discrepancies and finally combine the two kinds of data. The paper presents some practical solutions to these problems.  相似文献   

11.
New geoid computations for the Hellenic area are carried out using (a) gravity anomalies for the land area available from old and new data bases, and gravity data for the sea area derived from altimetry and a recent digitization of sea gravity maps, and (b) a 1km × 1km digital terrain model. The EGM96 geopotential model is used as the reference field. In order to assess the quality of the computed geoid heights in the continental area comparisons were carried out with GPS/leveling heights and the recently available European Gravimetric Geoid EGG97. In the sea area the geoid heights were compared with sea surface heights of the recent and more accurate TOPEX/POSEIDON (T/P) altimetry mission. At the end of this article the improvement of the data bases is discussed and some plans for further development in the methodological schedule are pointed out.  相似文献   

12.
A new gravimetric geoid is computed for South Spain and the Gibraltar Strait area. This geoid is located just in the junction between two tectonic plates (Euro-Asiatic and African plates) and in the junction of two gravimetric geoids: IGG2005 (the Iberian Gravimetric Geoid obtained in 2005) and MORGEO (the MORoccan GEOid). IGG2005 is the Iberian geoid and MORGEO is the Moroccan geoid, both geoids have been previously obtained. The new geoid is the gravimetric geoid solution that connects the two above-mentioned geoids, getting a more accurate and reliable picture of this area than the other previous geoids. The method used is the Stokes integral in convolution form, which shows to be an efficient method to reach the proposed objective. The terrain correction and the indirect effect have been taken into account. The new geoid is obtained as a regular grid (with a mesh size of 1.5′ × 1.5′) in the GRS80 reference system, covering the study area from 34° to 40° of latitude and from −8° to 0° of longitude. This gravimetric geoid and the previous geoids: IGG2005 and MORGEO; are compared to the geoid undulations derived at the validation points located on the study area (four GPS/levelling points measured on Morocco and five points of the European vertical reference network (EUVN) measured on Iberia). As it is expected, the new geoid is a more precise and reliable model, fitting the geoidal heights of these validation points with more accuracy than the other previous geoids. This new model will be useful for orthometric height determination by GPS in the mountains and remote areas, where levelling has many logistic problems. Also, it can be interesting for other geophysical purposes different to the height measurements, because it can provide a constraint for the density distribution, the thermal state of Lithosphere and the viscosity in the mantle. Such details can be inferred from a geoid model and the seismic velocity structure.  相似文献   

13.
We use Fast Fourier Transform (FFT) and least-squares modification (LSM) of Stokes formula to compute the geoid over Khartoum State in Sudan. The two methods (FFT and LSM) have been utilised to test their efficiency with respect to EGM08 and the local GPS-levelling data. The FFT method has many advantages, it is fast and it reduces the computational complexity. The modification of Stokes formula is widely used in geoid modelling; however, its implementation based on point-wise summation requires a considerable amount of time. In FFT, we combine the terrestrial gravity data and the global geopotential model (GGM) by means of a remove-compute-restore procedure and we successfully apply the modification of the Stokes formula in the least-squares sense. FFT and LSM geoid solutions are evaluated against EGM2008 and the GPS-levelling data. The analysis of the undulation differences shows that the LSM solution is more compatible with EGM08 and GPS-levelling data. The discrepancies of the differences are removed using a 4-parameter model, the standard deviation (STD) of the undulation differences of LSM decreased from 0.41 to 0.37 m and from 0.48 to 0.39 m for FFT solution. There is no significant impact to the LSM geoid when adding the additive corrections, while the FFT geoid solution is slightly improved when terrain correction is applied.  相似文献   

14.
大地测量在研究青藏地壳运动及其机制中的作用   总被引:2,自引:0,他引:2  
基于对GPS和重力测量数据的分析,扼要地介绍了重力与内部构造关系,大地水准面的场源与其动力效应等方面的研究内容和方法。总结了利用重力与形变资料研究青藏地区的现代地壳运动及其动力机制的研究结果。  相似文献   

15.
This paper looks at the relation between the time-averaged level of the sea surface and a gravimertic geoid, as determined in coastal areas. Measurements in local regions can now be accurate enough to demonstrate that the geoid and mean sea level are not even parallel to each other, let alone identical. The accuracy and pattern structure of surface gravity data in some shelf seas is comparable with those on land, so that a marine geoid can be derived from surface data without using satellite altimetry. The geodetic objective is then to combine the two to determine sea surface topography. In principle, gravimetric studies provide the absolute datum so that local oceanographic models on the shelf can be combined with sea surface topography models related to the global ocean circulation. In contrast, sea surface topography information near deep ocean coasts must come from external sources and satellite altimetry used to give the gravity data needed to offset the less good coverage by ship-borne gravimetry.Marine Bouguer anomalies enable two specific problems of gravity anomaly patterns near the continent ocean transition to be overcome. The necessary extension of Stokes' condensation reduction is developed and illustrated along a north-south profile from the Mediterranean across the Cote d'Azur. The effect on gravity of deep ocean water introduces a geoid correction in the form of a dipolar ridge whose amplitude at the shore is about 11 cm. In addition to geostrophic currents, a semi-quantitative model for the thermohaline effects on sea surface topography is discussed in relation to sea level differences between the Atlantic and Mediterranean.In considering appropriate algorithms for local geoid computation, Kirby's Iterative Fourier Combination routine for combining altimetry and surface gravity is extended to account for global sea surface topography. The impact of very fast spherical harmonic analysis algorithms is discussed and a simple physical model is given which explains the short coherence lengths found for the global gravity field. This necessary assumption for any local geoid computation was hitherto purely empirical.Finally, the use of land data such as tide gauges, ellipsoidal heights from GPS, and orthometric heights from first order levelling are reviewed as ways of corroborating geodetic estimates of sea surface topography and its relation to levelling datums. Successful examples are given from southern England.  相似文献   

16.
The establishment of the Hungarian National GPS Network (OGPSH) had been completed in 1997. It is exclusively settled on the traditional horizontal network sites, no leveling benchmarks were included. The OGPSH network consists more than 1100 GPS points, but less than 30% of the sites have trustful leveled heights. Our task was to supply the remaining points with cm-accuracy heights above the geoid in a uniform system. For this purpose a technique had been developed using the GPS data and the geoid information available. A specialized geoid solution, covering the whole country was computed and used for supporting the GPS-heighting procedure.The OGG98B GPS-gravimetric geoid solution made the GPS-heighting very simple and efficient. The accuracy of the technique was extensively tested and proved to be accurate not worse than ±3 cm. Higher residuals were found only at some points, where the height information was questionable. The improved technique is planned to be used in the 3rd order leveling network in Hungary.This paper shortly summarizes the computational procedure of the GPS-gravimetric geoid and presents some results on the GPS-heighting had been performed in the OGPSH network.  相似文献   

17.
作为GPS/重力边值问题理论及方法的应用,在对GPS/重力方法确定(似)大地水准面的原理进行简要介绍与分析的基础上,利用收集到的N区的600个GPS/重力数据和48个高精度GPS水准数据,计算出该区域的(似)大地水准面。通过拟合法和系统差直接改正法进行的精度分析表明,应用GPS/重力数据结合水准方法确定的该地区(似)大地水准面的精度达到厘米级精度。  相似文献   

18.
CRUSTAL STRUCTURE IN EASTERN REGION OF QINGHAI—TIBET PLATEAU  相似文献   

19.
Short-period (1–60 min) variations in the coordinates of the centers of gravity of isolated sunspots are analyzed. The sunspot coordinated were determined using two sets of observational data—magnetograms and intensities—obtained by SOHO (MDI) on December 6, 1998, from 01:00 to 21:57 UT with temporal resolution 60 s and spatial resolution 0.6″/pixel. A slow drift in the sunspot coordinates was removed using a low-frequency filter with a 61-min integration window. The guiding errors (RMS~0.014″) were determined by analyzing correlated motions in pairs of sunspots, and were removed from the time series before determining the sunspot proper motions. Based on the calculated power spectra for the sunspot proper motions, two period intervals containing appreciable power were identified. One coincides with the well-known 5-min acoustic solar oscillations. The concentration of power in this interval is greater for the coordinate variations derived the magnetograms than those derived from the intensities; the harmonic amplitude for some peaks reaches ~±30 km. The other spectral interval corresponds to periods exceeding 30 min. Overall, the rms short-period variations in the sunspot proper motions are 9.9±2.2 and 16.7±7.6 km (0.014″±0.003″ and 0.024″±0.010″) for the magnetogram and intensity data, respectively.  相似文献   

20.
区域大地水准面的确定是GPS测量常需解决的问题。目前确定大地水准面的方法主要包括重力法、GPS水准几何法及组合法,其中组合法因其精度和可靠性都较高,常用于计算高精度区域大地水准面。高精度的大地水准面模型是组合法确定区域大地水准面的关键。在我国,EGM2008全球重力场模型精度和分辨率均高于此前的所有模型,研究基于该模型的组合法大地水准面精化具有重要的实践意义。笔者以吉林大学兴城教学实习基地物探实验区为例,基于实测重力数据、EGM2008重力场模型和GPS水准数据,采用组合法精化了区域大地水准面,比较了组合法大地水准面模型和无重力实测数据的几何法大地水准面模型的精度差异,分析了该方法在物探测量中的适用性。结果表明,实验区组合法大地水准面模型精度最高达到1.2 cm,并且误差分布区间较小,总体上精度和可靠性高于对比的几何方法,并且组合法和几何法获取的两种大地水准面模型均能满足大比例尺物探测量要求。EGM2008模型精度较高,故平坦地区使用组合法时,高密度的实测重力数据可能带来高频扰动,有可能降低EGM2008重力场模型本身的精度,所以重力数据采集过程中要顾及重力点的密度和空间分布。本文方法更适用于地形复杂的地区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号