首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sierra Las Navajas, known to archaeologists as “the Pachuca obsidian source,” has been a major source of obsidian to Mesoamerican societies for more than 3000 years, producing a fine green obsidian unique in Middle America. It was the primary source of the obsidian that formed the economic backbone of the major sociopolitical centers of Classic period Teotihuacán, epi‐Classic Toltec Tula, and Aztec Tenochtitlán. In this paper, the obsidian of Sierra Las Navajas is discussed in the following contexts: (1) geologically, because the extraordinary quality of the Pachuca obsidian, its ease of extraction, and its distinctive color and chemistry are a direct result of its geologic emplacement; (2) locally, as the different mining localities within Sierra Las Navajas reflect the varying needs of the cultures working them; and (3) globally, as the obsidians of Las Navajas were used in concert with obsidians from other sources, and were traded great distances across Mesoamerica. © 2004 Wiley Periodicals, Inc.  相似文献   

2.
《International Geology Review》2012,54(14):1684-1708
Volcanic rocks that make up Faial Island, Central Azores, consist of four volcano-stratigraphic units, with ages between 730 ka and the present. Lavas range from alkali basalts to trachyandesites and belong to the alkaline-sodic series. The oldest unit is the Ribeirinha Volcanic Complex, generally characterized by low MgO contents. The Cedros Volcanic Complex is composed of basalts to benmoreites with low MgO contents. The Almoxarife Formation represents fissure flows, containing MgO contents similar to to slightly higher than those of the underlying Cedros Volcanic Complex. The youngest unit, the Capelo Formation, consists of mafic rocks with MgO values higher than those of the other units. Bulk-rock major and trace element trends suggest that differentiation of the three earliest units were dominated by fractional crystallization of plagioclase ± clinopyroxene ± olivine ± titanomagnetite. Capelo bulk-rock compositions are the most primitive, and are related to a period when volcanic activity was fed by deep magmatic chambers, and melts ascended more rapidly. Comparison among geochemical patterns of the trace elements suggests a strong similarity between the lavas from Faial and Pico islands. Corvo Island volcanism contrasts with the geochemistry of Faial and Pico lavas, reflecting its strong K and Rb depletion, and Th, U, Ta, Nb, La, and Ce enrichment. Absence of the Daly gap in the Faial volcanics is attributed to early crystallization of Ti-Fe oxides. The probable source of the Faial magma coincides with the MORB-FOZO array, which implies the presence of ancient recycled oceanic crust in the mantle source. Ratios of incompatible trace elements suggest the similarity of Corvo volcanic rocks with magmas derived from HIMU sources, whereas the Faial and Pico volcanic rocks could have been produced from sources very close to EMII-type OIB.  相似文献   

3.
Six chemical subsource groups were identified in the analysis of 84 obsidian samples collected from subsource locations at Coso volcanic field, California. In prehistoric times, Coso provided obsidian for artifacts found from San Francisco Bay to San Diego to Death Valley to the eastern Mojave Desert. Subsource groups were defined by instrumental neutron activation analysis (INAA) of 29 elements followed by cluster analysis, principal component analysis, and bivariate plotting. The new data are compared to previously published INAA and X‐ray fluorescence data. Characterization of 55 obsidian artifacts from archaeological sites located approximately 100 miles from Coso suggests preferential usage of specific subsources as a function of the directionality of travel. The results are consistent with a bimodal (resident and itinerant) model of procurement. This research illustrates the importance of accurate sourcing of obsidian artifacts when attempting to define subsource usage. © 2004 Wiley Periodicals, Inc.  相似文献   

4.
Tim Church 《Geoarchaeology》2000,15(7):649-678
The obsidian in the gravels deposited by the Rio Grande in New Mexico has interested archaeologists of the region, particularly the use of these gravels by prehistoric populations and the implications for obsidian sourcing studies. Previous investigations of Rio Grande gravel obsidian have focused on obsidian in the archaeological record. This study focuses on the natural occurrence and distribution of obsidian in the gravels and the implications for archaeological investigations. Spatial sampling of the gravels clearly indicate that obsidian, as well as other chipped stone material, is not uniformly distributed across the landscape. Geochemical analysis of the obsidian in the gravels establishes the true source constituents for the obsidian present in the gravels. The main source area for obsidian in the Rio Grande gravels is the Jemez Mountains, although some obsidian comes from Grant's Ridge, Polvadera, and No Aqua sources. Sources south of Mount Taylor, such as Red Hill and Mule Creek, do not occur in the Rio Grande gravels of southern New Mexico. © 2000 John Wiley & Sons, Inc.  相似文献   

5.
This paper is a presentation of three sources of artifact‐quality chert in Central Anatolia. A previous dearth of research focused on locating and characterizing such raw material sources has incorrectly colored our view of prehistoric economic practices. To remedy this situation, we have conducted a survey of various locales within Central Anatolia to test for the presence of artifact‐quality materials. We make use of Individual Attribute Analysis (IAA) and Energy Dispersive X‐ray Fluorescence (EDXRF) analysis to discriminate among these materials, and suggest their use by the Neolithic occupants of Çatalhöyük through similar analyses of artifactual materials. We argue that the presence and characterization of these new sources allows us to better understand the intricacies of Neolithic practices by illustrating the ways in which the consumption of these materials was variably entwined with the exploitation of other resources, as well as embedded within social relations outside of Central Anatolia. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Whole-rock geochemical analyses using major and trace elements in combination with the Sm–Nd and Pb–Pb isotope systems, together with SHRIMP age dating on metasedimentary rocks from the Sierras de Chepes, the Sierras de Córdoba, the Sierra Norte and the San Luis Formation in the Sierra de San Luis, have been carried out to unravel the provenance and the geodynamic history of the Eastern Sierras Pampeanas, Central Argentina. The geochemical and the Sm–Nd data point to a slightly stronger mafic and less-fractionated material in the provenance area of the Sierras de Córdoba when compared to the other units. The TDM model ages from the Sierras de Chepes (~1.82 Ga) and the Sierra Norte (~1.79 Ga) are significantly older than the data from the Sierras de Córdoba (1.67 Ga). The Pb data are homogeneous for the different units. Only the 208Pb/204Pb ratios of some samples from the Sierras de Córdoba are higher. A late Pampean detrital zircon peak around 520 Ma from the Sierras de Chepes is in accordance with the new data from the San Luis Formation. This is similar to the literature data from the Famatina Belt located to the northwest of the Sierras de Chepes and also fits the detrital zircon peaks in the Mesón group. These maximum depositional ages were also reported from some locations in the Puncoviscana Formation but are absent in the Sierras de Córdoba. An improved model for the development of the Eastern Sierras Pampeanas in the area between the Sierras de Córdoba and the Puncoviscana Formation is provided. This gives new insights into the late Pampean development of the Sierra de San Luis and the complex development of the Eastern Sierras Pampeanas. This new model explains the younger detrital ages in the Puncoviscana Formation compared with the older ages of the Sierras de Córdoba. Another model of the Sierra de San Luis explains the younger depositional ages of the Pringles Metamorphic Complex and the San Luis Formation when compared to the Nogolí Metamorphic Complex and the Conlara Metamorphic Complex. Additionally, the rather fast change of the high-grade metamorphic conditions in the Pringles Metamorphic Complex and the low-grade metamorphic conditions in the San Luis Formation is explained by extension, the ascent of (ultra) mafic material and later folding and erosion.  相似文献   

7.
We present a gravity model of the crustal structure in southern Mexico based on interpretation of a detailed marine gravity profile perpendicularly across the Middle America Trench offshore from Acapulco, and a regional gravity transect extending into continental Mexico across the Sierra Madre del Sur, the central sector of the Trans-Mexican Volcanic Belt, the Sierra Madre Oriental, the Coastal Plain, and into the Gulf of Mexico. The elastic thickness of the Cocos lithospheric plate was found to be 30 km. In agreement with a previous seismic refraction study, no major differences in crustal structure were observed on both sides of the O’Gorman Fracture Zone. The gravity high seaward of the trench is interpreted as due to the incipient flexure and crustal thinning. The gravity low at the axis of the trench is explained by the increase in water depth and the existence of low-density accreted or continental-derived sediments (2.25 and 2.40 g/cm3). A gravity high of 50 mGal extending about 100 km landward is interpreted as caused by local shoaling of the Moho. The crust attains a thickness of 42 km under the Trans-Mexican Volcanic Belt but thins beneath the Coastal Plain and the continental slope of the Gulf of Mexico. Gravity highs around the Sierra de Tamaulipas are interpreted in terms of relief of the lower–upper crustal interface, implying a shallow basement.  相似文献   

8.
Provenance studies have been performed utilising major and trace elements, Nd systematics, whole rock Pb–Pb isotopes and zircon U/Pb SHRIMP data on metasedimentary rocks of the Sierra de San Luis (Nogolí Metamorphic Complex, Pringles Metamorphic Complex, Conlara Metamorphic Complex and San Luis Formation) and the Puncoviscana Formation of the Cordillera Oriental. The goal was the characterisation of the different domains in the study area and to give insights to the location of the source rocks. An active continental margin setting with typical composition of the upper continental crust is depicted for all the complexes using major and trace elements. The Pringles Metamorphic Complex shows indications for crustal recycling, pointing to a bimodal provenance. Major volcanic input has to be rejected due to Th/Sc, Y/Ni and Cr/V ratios for all units. The εNd(540 Ma) data is lower for the San Luis Formation and higher for the Conlara Metamorphic Complex, as compared to the other units, in which a good consistency is given. This is similar to the TDM ages, where the metapsammitic samples of the San Luis Formation are slightly older. The spread of data is largest for the Pringles Metamorphic Complex, again implying two different sources. The whole rock 207Pb/206Pb isotopic data lies in between the South American and African sources, excluding Laurentian provenances. The whole rock Pb–Pb data is almost indistinguishable in the different investigated domains. Only the PMC shows slightly elevated 208Pb/204Pb values. Possible source rocks for the different domains could be the Quebrada Choja in the Central Arequipa–Antofalla domain, the Southern domain of the Arequipa–Antofalla basement, the Brazilian shield or southern Africa. Zircon SHRIMP data point to a connection between the Puncoviscana Formation and the Conlara Metamorphic Complex. Two maxima around 600 Ma and around 1000 Ma have been determined. The Nogolí Metamorphic Complex and the Pringles Metamorphic Complex show one peak of detrital zircons around 550 Ma, and only a few grains are older than 700 Ma. The detrital zircon ages for the San Luis Formation show age ranges between 590 and 550 Ma. A common basin can be assumed for the Conlara Metamorphic Complex and the Puncoviscana Formation, but the available data support different sources for the rest of the Complexes of the Sierra de San Luis. These share the diminished importance or the lack of the Grenvillian detrital peak, a common feature for the late Cambrian–early Ordovician basins of the Eastern Sierras Pampeanas, in contrast to the Sierras de Córdoba, the PVF and the Conlara Metamorphic Complex.  相似文献   

9.

The Early Devonian Bindook Volcanic Complex consists of a thick silicic volcanic and associated sedimentary succession filling the extensional Wollondilly Basin in the northeastern Lachlan Fold Belt. The basal part of the succession (Tangerang Formation) is exposed in the central and southeastern Wollondilly Basin where it unconformably overlies Ordovician rocks or conformably overlies the Late Silurian to Early Devonian Bungonia Limestone. Six volcanic members, including three new members, are now recognised in the Tangerang Formation and three major facies have been delineated in the associated sedimentary sequence. The oldest part of the sequence near Windellama consists of a quartz turbidite facies deposited at moderate water depths together with the shallow‐marine shelf Windellama Limestone and Brooklyn Conglomerate Members deposited close to the eastern margin of the basin. Farther north the shelf facies consists of marine shale and sandstone which become progressively more tuffaceous northwards towards Marulan. The Devils Pulpit Member (new unit) is a shallow‐marine volcaniclastic unit marking the first major volcanic eruptions in the region. The overlying shallow‐marine sedimentary facies is tuffaceous in the north, contains a central Ordovician‐derived quartzose (?deltaic) facies and a predominantly mixed facies farther south. The initial volcanism occurred in an undefined area north of Marulan. A period of non‐marine exposure, erosion and later deposition of quartzose rocks marked a considerable break in volcanic activity. Volcanism recommenced with the widespread emplacement of the Kerillon Tuff Member (new unit), a thick, non‐welded rhyolitic ignimbrite followed by dacitic welded ignimbrite and air‐fall tuff produced by a large magnitude eruption leading to caldera collapse in the central part of the Bindook Volcanic Complex, together with an additional small eruptive centre near Lumley Park. The overlying Kerrawarra Dacite Member (new unit) is lava‐like in character but it also has the dimensions of an ignimbrite and covers a large part of the central Bindook Volcanic Complex. The Carne Dacite Member is interpreted as a series of subvolcanic intrusions including laccoliths, cryptodomes and sills. The Tangerang Formation is overlain by the extensive crystal‐rich Joaramin Ignimbrite (new unit) that was erupted from an undefined centre in the central or northern Bindook Volcanic Complex. The volcanic units at Wombeyan and the Kowmung Volcaniclastics in the northwestern part of the complex are probably lateral time‐equivalents of the Tangerang Formation and Joaramin Ignimbrite. All three successions pre‐date the major subaerial volcanic plateau‐forming eruptions represented by the Barrallier Ignimbrite (new unit). The latter post‐dated folding and an extensive erosional phase, and unconformably overlies many of the older units in the Bindook Volcanic Complex. This ignimbrite was probably erupted from a large caldera in the northern part of the complex and probably represents surface expressions of part of the intruding Marulan Batholith. The final volcanic episode is represented by the volcanic units at Yerranderie which formed around a crater at the northern end of the exposed Bindook Volcanic Complex.  相似文献   

10.
New stratigraphic and petrographic data and zircon U–Pb geochronology from sandstones and volcanic rocks in the states of Queretaro and Guanajuato in central Mexico indicate an important provenance change between Late Triassic and latest Jurassic–Early Cretaceous time. The Upper Triassic El Chilar Complex consists of pervasively deformed, deep-marine olistostromes, and debris-flow deposits of arkosic and subarkosic composition. Detrital-zircon populations range from latest Palaeoproterozoic (1.65 Ga) to Middle Triassic (240 Ma), all predating the depositional age of the strata. The detrital-zircon populations are similar to those previously reported from turbidites of the Potosi fan complex of north-central Mexico and interpreted as derived from Grenville and Pan-African (Maya block) basement and Permo-Triassic arc of continental Mexico directly to the east of the basin. A single sample with a dominant Proterozoic population at ~1.65–1.30 Ga was likely derived either from the Rio Negro-Juruena province of the Amazonian craton or from a local source in the Huiznopala Gneiss, and indicates that El Chilar strata were likely deposited in the proximal part of a submarine-fan system separate from the Potosi fan.

Uppermost Jurassic–Lower Cretaceous strata of the San Juan de la Rosa Formation unconformably overlie the El Chilar Complex and likewise consist of deep-marine olistostromes, slump deposits, debris-flow deposits, and proximal fan-channel fills, but are volcanogenic litharenites with abundant felsic and vitric volcanic lithic fragments. Detrital-zircon populations are dominated by Early Cretaceous grains (150–132 Ma) with no known sources in eastern Mexico. Abundant young grains indicate a maximum depositional age of ~134 Ma (Valanginian–Hauterivian). The San Juan de la Rosa Formation is overlain by deepwater carbonates with interbedded siliciclastic beds of the Peña Azul Formation, which contains detrital-zircon ages as young as ~130 Ma, indicating possible equivalence with similar strata of the Las Trancas Formation, with a maximum depositional age of ~127 Ma and lying to the east in the Zimapan Basin, now part of the Sierra Madre Oriental fold and thrust belt. Decreasing content of volcaniclastic strata eastward indicates a volcanic source to the west. Upper Cretaceous marine strata in the Mineral de Pozos area to the northwest in the state of Guanajuato contain litharenites with a maximum depositional age near 92 Ma, and are thus part of a younger depositional system.

Composition and detrital-zircon content of the Upper Triassic and Lower Cretaceous successions in central Mexico indicates an important shift from Gondwanan continental sediment sources in the Triassic to western volcanic sources, probably on the edge of the newly opened Arperos basin, by the end of the Jurassic. This important sediment-dispersal change records the break-up of Pangea and concomitant development of arc-related sedimentary basins on the western edge of Mexico.  相似文献   

11.
The obsidian hydration dating of prehistoric sites requires that each type of natural glass be identified on the basis of its elemental constituents in order that the appropriate hydration rate constants may be applied. In New Mexico, obsidian occurs in the form of in situ flows and as secondarily deposited detrital material in the sediments of ancestral watercourses. the chemical analysis of 153 geological and archaeological samples from both contexts has resulted in the identification of nine major obsidian sources. the hydration rates for New Mexican obsidians developed by different researchers are compared and evaluated in light of current knowledge on glass-water interaction. It is argued that a hydration rate developed in silica saturated solution or at 100% relative humidity are the preferred conditions for laboratory hydration rate development.  相似文献   

12.
Important copper-gold (± molybdenum) porphyry deposits occur in the northwest region of Argentina, part of the Central Andes. This paper provides new isotope information on two of these deposits, Bajo de la Alumbrera and Agua Rica, the latter having an epithermal overprint event. The two deposits are genetically associated with the Miocene Farallón Negro Volcanic Complex. Whole rock and sulfide samples were analyzed for Pb, Sr and Nd isotopes to characterize the sources of magma and mineralization of both deposits. Sr and εNd data made it possible to divide the samples into three distinct groups. Most samples are slightly differentiated, have OIB (Ocean Island Basalts) isotope characteristics, and show some Nd fractionation. Lead isotope also shows distinct groups with an enrichment trend in radiogenic lead. In both deposits, the sulfides are more radiogenic than the host rocks, but are clearly related to them because all plot on a single trend. A crustal contribution to the deposits is suggested on the basis of lead isotope signatures. The similarity on the Pb isotope signatures suggests the same magmatic fluid source, although at Agua Rica the crustal component is more evident than at Bajo de la Alumbrera, possibly because of the assimilation of Paleozoic country rocks at Agua Rica.  相似文献   

13.
Biological communities in Mexico experienced profound changes in species composition and structure as a consequence of the environmental fluctuations during the Pleistocene. Based on the recent and fossil Mexican mammal checklists, we determine the distribution, composition, diversity, and community structure of late Pleistocene mammalian faunas, and analyze extinction patterns and response of individual species to environmental changes. We conclude that (1) differential extinctions occurred at family, genus, and species level, with a major impact on species heavier than 100 kg, including the extinction all proboscideans and several ruminants; (2) Pleistocene mammal communities in Mexico were more diverse than recent ones; and (3) the current assemblages of species are relatively young. Furthermore, Pleistocene relicts support the presence of biogeographic corridors; important refugia existed as well as centers of speciation in isolated regions. We identified seven corridors: eastern USA–Sierra Madre Oriental corridor, Rocky Mountains–Sierra Madre Occidental corridor, Central United States–Northern Mexico corridor, Transvolcanic Belt–Sierra Madre del Sur corridor, western USA–Baja California corridor, Tamaulipas–Central America gulf lowlands corridor, and Sonora–Central America Pacific lowlands corridor. Our study suggests that present mammalian assemblages are very different than the ones in the late Pleistocene.  相似文献   

14.
The Fishguard Volcanic Complex represents an important volcanic episode which occurred within the Welsh sector of the British Caledonide region during early Ordovkian times. A variety of extrusive and contemporaneous intrusive rocks are present, ranging in composition from basic, through intermediate to acidic. Mineral and whole-rock chemical analyses have been determined on a representative suite of rocks from the complex and, despite secondary alteration effects, the original tholeiitic characteristics of the suite can be discerned. The variation observed is considered to result largely from low-pressure crystal fractionation, although the origin of the acidic magma remains speculative in view of subsequent extensive recrystallization. The rocks of the Fishguard Volcanic Complex formed in the Welsh Basin, which has been likened by earlier workers to a marginal basin. Comparison of the geochemical characteristics of the Fishguard Volcanic Complex with that of documented marginal basin rocks appears to favour this contention.  相似文献   

15.
Nine SHRIMP U/Pb ages on zircon and two Pb/Pb single zircon ages have been determined from Late Paleozoic volcanic rocks from Saxony and northern Bohemia. Samples came from the Teplice-Altenberg Volcanic Complex, the Meissen Volcanic Complex, the Chemnitz Basin, the Döhlen Basin, the Brandov-Olbernhau Basin, and the North Saxon Volcanic Complex. The Teplice-Altenberg Volcanic Complex is subdivided into an early Namurian phase (Mikulov Ignimbrite, 326.8 ± 4.3 Ma), thus older than assumed by previous studies, and a late caldera-forming phase (Teplice Ignimbrite, 308.8 ± 4.9 Ma). The age of the latter, however, is not well constrained due to a large population of inherited zircon and possible hydrothermal overprint. The Leutewitz Ignimbrite, product of an early explosive volcanic episode of the Meissen Volcanic Complex yielded an age of 302.9 ± 2.5 Ma (Stephanian A). Volcanic rocks intercalated in the Brandov-Olbernhau Basin (BOB, 302 ± 2.8 Ma), Chemnitz Basin (CB, 296.6 ± 3.0 Ma), Döhlen Basin (DB, 296 ± 3.0 Ma), and the North Saxon Volcanic Complex (NSVC, c. 300–290 Ma) yielded well-constrained Stephanian to Sakmarian ages. The largest Late Paleozoic ignimbrite-forming eruption in Central Europe, the Rochlitz Ignimbrite, has a well-defined middle Asselian age of 294.4 ± 1.8 Ma. Ages of palingenic zircon revealed that the Namurian-Westphalian magmatism assimilated larger amounts of crystalline basement that formed during previous Paleozoic geodynamic phases. The Precambrian inherited ages support the chronostratigraphic structure assumed for the Saxo-Thuringian Zone of the Variscan Orogen. The present results help to improve the chronostratigraphic allocation of the Late Paleozoic volcanic zones in Central Europe. At the same time, the radiometric ages have implications for the interbasinal correlation and for the geodynamic evolution of the Variscan Orogeny.  相似文献   

16.
Characterizing raw material of stone tools used by Late Neolithic and Copper Age communities is important for interpreting access to available sources and establishing regional routes of distribution. Ichnological analysis may be used to help characterize lithic material and determine the source of artifacts. Here we report for the first time the existence of trace fossils in artifacts from the Late Neolithic and Copper Age of southern Spain. Ichnological analysis indicates a trace fossil assemblage consisting of relatively scarce small‐sized Chondrites and abundant Phycosiphon. A regional survey of natural outcrops and chert quarries indicates the presence of discrete trace fossils only in the samples from geological formations that are part of the Campo de Gibraltar Complex. Ichnological composition in these samples is similar to that discerned in the artifacts and suggests that this was the probable source of the chert used in tool manufacture. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Recent exploratory studies have suggested the potential of magnetic susceptibility (MS) as a rapid and low‐cost sourcing technique for lithic archaeological materials. Most commercially available susceptibility instruments, however, do not have the sensitivity to characterize weakly susceptible cherts and silicified woods. Comparative results from nine chert, two silicified wood, a porcellanite, and four obsidian sources using a highly sensitive, calibrated, and magnetically‐shielded instrument allow exploration of MS variability within and between geological sources. Color, texture, grain size, and large inclusions of cherts and obsidians are not straightforward determinants of MS. Weathering rinds (patinas) and cortex from a variety of cherts yield reduced MS values, as does a recrystalized cobble of Rio Maior flint, indicating that magnetic mineral removal during chemical weathering and diagenesis is more prevalent than staining or other mineral penetration of cobbles. In situations of multiple overlapping MS ranges, analysis is limited to discriminating cherts with high or low MS range distributions, for example in an atypicality index. Some silicified woods, obsidians, and porcellanites possess a much greater range of intersource variability, and thus sourcing analysis is more likely to be broadly successful using the susceptibility of these materials. Unexpected results from an archaeological test using a historic lithic assemblage from Azinheira, Portugal, indicate that assemblage MS may be influenced by practices of raw material selection. Understanding variability in lithic MS has relevance for the design of most source geochemical sampling, as well as the behavioral interpretations that result from such investigations. © 2002 Wiley Periodicals, Inc.  相似文献   

18.
The contact between the Guerrero and Sierra Madre tectonostratigraphic terranes has been proposed to lie in the Mesa Central, east of the city of Zacatecas. Marine Triassic units have been assigned to the Guerrero Terrane. It is here proposed that this contact occurs to the west of the city of Zacatecas and the Triassic marine sequence assigned to the Sierra Madre Terrane.We analyzed the stratigraphic record and structural features of pre-Late Jurassic sequences at four localities in the Mesa Central. They contain a marine turbiditic Triassic unit, which includes La Bellena, Taray, and Zacatecas Formations, and a continental unit of probable Middle Jurassic age. Triassic sandstones were derived from a cratonic area, without the influence of arc volcanism. The sequences were affected by two phases of deformation. The Triassic formations are unconformably overlain by a continental volcano-sedimentary sequence that contains fragments of sandstones derived from the underlying unit. Sedimentologic characteristics of the Triassic unit fit a submarine fan model. The submarine fan developed at the continental margin of Pangaea during Triassic times. Turbidite associations in the San Rafael Area indicate a middle fan depositional environment, while in the Real de Catorce Area, they correspond to the distal part (basin plain facies). At La Ballena and Zacatecas the turbidite associations occur in the middle part and perhaps the external part of the fan.  相似文献   

19.
ABSTRACT

The early and middle Miocene andesitic lavas of the Sierra de Angangueo (MALSA) represent one of the most prominent landforms of intermediate magmatism in Central Mexico. In this paper, we present new petrological, geochemical, thermobarometric, and geochronological data in order to discuss the conditions of MALSA’s emplacement in the lithosphere.

MALSA comprises a voluminous eroded early Miocene andesitic structure, emplaced on a Mesozoic basement. MALSA shows a wide variety of textures, from glassy and aphanitic to porphyritic, mainly composed of plagioclase (An10-55), clinopyroxene (Wo60-65; En35-40), amphibole (Mg-hornblende/edenite), and rarely olivine (Fo75–86) or orthopyroxene (En72-80). Major and trace elements plots follow a typical calc-alkaline trend with relatively increasing fractionation.

The 87Sr/86Sr isotopic signatures range between 0.703343 and 0.704459 and εNd values from +1.37 to +4.84; apparently without a significant contribution of an old, thick, or highly radiogenic continental crust. Lead isotope values 206Pb/204Pb vary between 18.68 and 18.83, 207Pb/204Pb from 15.57 to 15.65, and 208Pb/204Pb from 38.39 to 38.67, suggesting contamination of magmas by juvenile crust. Thermodynamic calculations indicate equilibrium conditions at ≤900°C and ~2 kbar and an average log ?O2 ≈ ?10.

Ar–Ar and K–Ar dating carried out on whole rock, matrix, amphibole, and plagioclase phenocrysts yielded ages between 13.0 ± 0.5 and 23.9 ± 0.3 Ma. These dates indicate a series of pulses with maximum magmatic activity between 24 and 18 Ma.

The geochemical and petrologic data suggest partial melting processes in the lower or middle crust associated with possible magma mixing during its ascent; such a mechanism could explain a hybrid mantle-lower crust origin of this large volume of andesites. The MALSA, as well as the early to middle Miocene magmatism from Western Mexico, could represent two coeval and independent magmatic arcs prior to the present Trans-Mexican Volcanic Belt (TMVB) in Central Mexico.  相似文献   

20.
North‐northwest normal faults intersect ENE normal faults in the vicinity of Querétaro City, in central México, affecting the Miocene–Pliocene northern‐central sector of the Mexican Volcanic Belt province. This intersection produced an orthogonal arrangement of grabens, half‐grabens and horsts that include the Querétaro graben. The NNW faults are part of the Taxco–San Miguel de Allende fault system, which is proposed here as part of the southernmost Basin and Range province in México. The ENE to E–W faults are part of the E–W oriented Chapala–Tula fault zone, which has been interpreted as an active intra‐arc fault system of the Mexican Volcanic Belt. Seventy‐four normal faults were mapped, of which the NNW faults are the largest and have the best morphological expression in the region. More numerous, although shorter, are the ENE faults. Total length of the ENE faults is greater than the total length of the NNW faults. Both sets are dominantly normal faults, indicating ENE extension for the NNW set and NNW extension for the ENE set. Field data indicate that displacement on the two fault sets has overlapped in time, as some NNW faults are younger than some ENE faults, which are supposed to be the younger ones. Seismicity in 1998 on a NNW fault indicates ENE active extension on the NNW faults. These observations support our interpretation that the northern Mexican Volcanic Belt lies on the boundary between the Basin and Range province, which is undergoing ENE extension, and the central Mexican Volcanic Belt province, which is undergoing northerly extension. The apparent overlap in space and time of displacements on the two fault sets reflects the difference in stress regime between the two provinces. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号