首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the initial period of mining activities in the Idrija basin (the16th and the first half of the17th centuries), Hg ore processing was performed at various small-scale roasting sites in the woods surrounding Idrija, by roasting ore in earthen vessels. The recovery rate of this method was very low; about half of Hg was lost, causing soil contamination and considerable amounts of waste material that could potentially leach Hg into the surrounding environment. The main aims of present geochemical study were to determine the contents, vertical distribution and speciation of Hg in soils at the roasting site at Frbej?ene trate in order to verify the extreme pollution of ancient Hg ore roasting sites in the Idrija area and to establish their significance in the wider spatial contamination of soils and aquatic systems. Soil sampling was performed at the area of the former roasting site. The organic matter-rich surface soil layer (SOM) and underlying mineral soil were sampled at 63 sampling locations. Mercury speciation was performed using Hg thermo-desorption-AAS to distinguish cinnabar from potentially bioavailable forms. The results indicate extremely high Hg concentrations with a maximum of 37,000 mg/kg in SOM and 19,900 mg/kg in mineral soil. The established Hg median in soil was 370 mg/kg and in SOM 96.3 mg/kg. Spatial distributions of Hg in SOM and soil showed very high Hg contents in the central area and decreased rapidly with distance. The results of Hg thermo-desorption measurements indicated the presence of cinnabar (HgS) and Hg bound to organic or mineral soil matter. A significant portion (35–40%) of Hg in the investigated soil and SOM samples was comprised of non-cinnabar compounds, which are potentially bioavailable. It has been shown that soils contain high amounts of potentially transformable non-cinnabar Hg, which is available for surface leaching and runoff into the surrounding environment. Therefore, contaminated soils and roasted residues at the studied area are important for persistent Hg release into the aquatic ecosystem.  相似文献   

2.
The Idrija mine was the second largest Hg mine in the world surpassed only by the Almaden mine in Spain. It has been estimated that almost 145,000 tons of Hg was produced during operation (1490-1995) of the mine. In the first decade of Hg mining in Idrija the ore was roasted in piles; after that it was roasted for 150 years, until 1652, in earthen vessels at various sites in the woods around Idrija. Pšenk is one out of 21 localities of ancient roasting sites established on the hills surrounding Idrija and one of the largest localities of roasting vessel fragments. The unique way of roasting very rich Hg ore at this site has resulted in soil contamination and considerable amounts of waste material that potentially leach Hg into the surrounding environment. The main aim of this study was to determine the distribution and the forms of Hg in contaminated soils in order to evaluate potential environmental risk. Detailed soil sampling was performed on 37,800 m2 area to establish the extent of Hg pollution and to investigate Hg transformations and transport characteristics through the 400 a-long period. A total of 156 soil (0-15 cm and 15-30 cm) and SOM (soil organic matter) samples were collected from 73 sampling points. Three soil profiles were sampled to determine vertical distribution of Hg. The main Hg phases were determined by the Hg-thermo-desorption technique. The measured Hg contents in soil samples in the study area vary from 5.5 to almost 9000 mg/kg with a median of 200 mg/kg. In SOM, Hg contents range from 1.4 to 4200 mg/kg with a median of 20 mg/kg. Extremely high Hg contents were found in soil profiles where the metal reaches 37,020 mg/kg. In general, Hg concentrations in all three profiles show a gradual decrease with depth with the minimum values between 140 mg/kg and 1080 mg/kg. The Hg-thermo-desorption curves indicate the presence of Hg in the form of cinnabar and that of Hg bound to organic or mineral soil matter. The distribution of Hg species in soil and SOM samples show almost equal distribution of cinnabar and non-cinnabar Hg compounds. The non-cinnabar fraction shows a little increase with depth, but cinnabar represents a high portion of total Hg (about 40%). Large amounts of potentially mobile and transformable non-cinnabar Hg compounds exist at the roasting site, which are potentially bioavailable.  相似文献   

3.
The influence of geomorphological factors to Hg contamination of the Idrijca River alluvial sediments because of the historical mining and ore roasting activities has been studied. Main source of Hg in alluvial sediments was dumping of ore roasting residues and mining waste into the river channel and its erosion downstream. The position of the material in relation to the geomorphological properties is highly related with its Hg content. Floodplains were found to be the most contaminated geomorphological units (mean Hg content 335 mg/kg), with Hg concentration rapidly dropping in the first terrace (155 mg/kg). The least contaminated material was found in the higher terraces (3.8 mg/kg). Sampling upstream Idrija (average Hg content is 22.1 mg/kg) shows that not only mine and ore roasting plant increased Hg levels in alluvial deposits but also contaminated sites upstream Idrija contribute to Hg contamination. Geochemical background for alluvial sediments for this area is estimated to be 0.75 mg/kg. Downstream Idrija, 9 hotspots were determined where highly contaminated material is actively eroded and carries a high risk of further contamination of the So?a River and northern Adriatic Sea ecosystems.  相似文献   

4.
Concentrations of total Hg (T-Hg) were measured in mine waste, stream water, soil and moss samples collected from the Tongren area, Guizhou, China to identify potential Hg contamination to local environments, which has resulted from artisanal Hg mining. Mine waste contained high T-Hg concentrations, ranging from 1.8 to 900 mg/kg. High concentrations of Hg were also found in the leachates of mine waste, confirming that mine waste contains significant water-soluble Hg compounds. Total Hg distribution patterns in soil profiles showed that top soil is contaminated with Hg, which has been derived from atmospheric deposition. Data suggest that organic matter plays an important role in the binding and transport of Hg in soil. Elevated T-Hg concentrations (5.9–44 mg/kg) in moss samples suggest that atmospheric deposition is the dominant source of Hg to local terrestrial ecosystems. Concentrations of T-Hg were highly elevated in stream water samples, varying from 92 to 2300 ng/L. Particulate Hg in water constituted a large proportion of the T-Hg and played a major role in Hg transport. Methyl–Hg (Me–Hg) concentrations in the water samples was as high as 7.9 ng/L. Data indicate that Hg contamination is dominantly from artisanal Hg mining in the study area, but the extent of Hg contamination is dependent on the mining history and the scale of artisanal Hg mining.  相似文献   

5.
Wanshan mercury mine is the largest cinnabar deposit in Guizhou, China. Few effective methods had been achieved to remedy Hg heavily contaminated field soils. In this paper, a modified EK method with approaching cathodes (AC-EK) and an I/I2 lixiviant was described to remedy mercury-contaminated field soils near Wanshan mercury mine. Paddy Soil I and Paddy Soil II were sampled and contained 576.73 ± 45.50 and 491.35 ± 4.73 mg/kg Hg, respectively. Although they contained 6.9 and 9.4% organic matter respectively, more than 92 and 89% Hg were removed by AC-EK within 5 days. Removal ratio increased by 0.21 and 0.68 times using EK process with ACs over that with one single cathode (SC-EK). AC-EK method saved nearly 26.4–28.1% electric power as compared to SC-EK method. As an I/I2 lixiviant solution was used to solubilize HgS(HgO) during EK process, the bonding of Hg to organic functional S groups should be less important than the binding to inner sites of organic matter in soil. The relationship between EK remediation effect and soil organic matter content was fitted to a linear model. It turned out that when soil OM increased by 1.0%, EK removal ratio (%) of Hg would decrease by 2.63%.  相似文献   

6.
This study aims at assessing the extent of total mercury (Hg) contamination in urban and agricultural soils under long-term influence of a chlor-alkali plant, located at about 1 km away from a town centre. Moreover, it aims at identifying the main factors controlling Hg contents’ distribution and associated potential hazards to environment and human health. The median value of total Hg for soil surface layer (0–10 cm) was 0.20 mg/kg (data ranging from 0.050 to 4.5 mg/kg) and for subsurface layer (10–20 cm) 0.18 mg/kg (data ranging from 0.046 to 3.0 mg/kg). The agricultural area showed higher Hg concentrations (ranging from 0.86 to 4.5 mg/kg) than urban area (ranging from 0.05 to 0.61 mg/kg), with some results exceeding target values set by the Dutch guidelines. Mercury concentrations observed in the studied area are more likely to be associated with the influence of the chlor-alkali plant and with the use of historically contaminated sludges and water from a nearby lagoon in agriculture, than to the impacts of urban development. The statistical correlations between Hg concentrations and soil properties suggest that anthropogenic metal sources should influence the spatial distribution more than the geological properties. Although the Hg emissions were drastically reduced 10 years ago, the area under influence of the chlor-alkali plant is still facing potential health and environmental threats arising from soil contamination.  相似文献   

7.
Samples of topsoil together with reference samples of subsurface soil from a depth of 80–90 cm were collected in the central-northern part of the Zambian Copperbelt to distinguish lithogenic sources of metals from anthropogenic contamination of soils caused by fallout of dust from mining operations, flotation ore treatment plants, tailings dams, smelters and slag dumping grounds. The total sulphur, Cu and Co contents were found to be significantly higher in topsoil relative to subsurface soil over a large part of the surveyed area, and Zn, Pb, As and Hg contents showed a definite increase in the close neighbourhood of smelters and in the direction of prevailing winds. This indicates that the increase of these elements in the topsoil is due to anthropogenic activities. The areal extent and degree of anthropogenic contamination of topsoil can be expressed by an enrichment index (EI) based on the average ratio of the actual and median concentrations of the given contaminants. Although the contamination of soil by dust fallout decreases progressively with depth in the soil profile, in areas strongly affected by mining and mineral processing the anthropogenic contamination by sulphur and copper can be traced to a depth of 80–90 cm. In contrast, the concentration of elements such as Cr, Ni, and V, that show a direct correlation with the content of iron in the soils, increases in the subsurface soil relative to the topsoil. This is particularly evident in areas underlain by rocks of the Katanga Supergroup.  相似文献   

8.
This study was carried out to analyze the distribution and soil–plant transfer of selected potential harmful elements (PHEs: As, Hg and Zn) in soils and in two edible horticultural crops (cabbage, Brassica oleracea L., and tomato, Lycopersicon esculentum Mill). randomly sampled in kitchen gardens/small farms around one of the most important and old Portuguese industrial areas (Estarreja Chemical Complex-ECC). The results show that 46% and 11.5% of the soils present high total As (12–532 mg/kg) and Hg (6.6–13.65 mg/kg) concentrations that exceed protective health Canadian soil quality guidelines. Soil As and Zn available fractions are also of concern for groundwater and crops contamination as more than 84% of the samples were above the trigger value proposed by the German legislation for both elements (0.4 and 2 mg/kg, respectively). In the horticultural crops the cabbage leaves concentrate more the PHEs (max.: 3.5, 0.08 and 746 mg/kg dw for As, Hg and Zn, respectively) than the tomato fruit (max.: 0.4, 0.02 and 82 mg/kg dw, respectively). The highest concentration of the study PHEs in soils and horticultural crops were found near sewage outlets that are chiefly related to historical industrial activities mostly from arsenopyrite roasting and a chloralkali plant. The values of estimated bioaccumulation and bioconcentration coefficients suggested exclusion mechanisms for transfer of As to edible cabbage and tomato tissues and cabbage Zn tolerance capacity. The concentration of the PHEs in the edible horticultural crops tissues were not directly related with respective soil total concentration or available fractions, specially for As and Hg. Sampling locations with the highest concentrations of As, Hg, Zn in soil and vegetable foodstuffs should be sites to foregoing research and human daily intakes should be investigated in order to evaluate potential health risks.  相似文献   

9.
This study investigates the concentration and spatial distribution of Cu, Zn, Hg and Pb in the surface (0–2 cm) soils of a regional city in Australia. Surface soils were collected from road sides and analysed for their total Cu, Zn, Hg and Pb concentrations in the <180 μm and <2 mm grain size fractions. The average metal concentration of surface soils, relative to local background soils at 40–50 cm depth, are twice as enriched in Hg, more than three times enriched in Cu and Zn, and nearly six times as enriched in Pb. Median surface soil metal concentration values were Cu – 39 mg/kg (682 mg/kg max), Zn – 120 mg/kg (4950 mg/kg max), Hg – 44 μg/kg (14,900 μg/kg max) and Pb – 46 mg/kg (3490 mg/kg max). Five sites exceeded the Australian NEPC (1999) 300 mg/kg guideline for Pb in residential soils. Strong positive correlations between Cu, Zn and Pb, coupled with the spatial distribution of elevated soil concentrations towards the city centre and main roads suggest traffic and older housing as major sources of contamination. No spatial relationships were identified between elevated metal loadings and locations of past or present industries.  相似文献   

10.
Speciation and colloid transport of arsenic from mine tailings   总被引:2,自引:0,他引:2  
In addition to affecting biogeochemical transformations, the speciation of As also influences its transport from tailings at inoperative mines. The speciation of As in tailings from the Sulfur Bank Mercury Mine site in Clear Lake, California (USA) (a hot-spring Hg deposit) and particles mobilized from these tailings have been examined during laboratory-column experiments. Solutions containing two common, plant-derived organic acids (oxalic and citric acid) were pumped at 13 pore volumes d−1 through 25 by 500 mm columns of calcined Hg ore, analogous to the pedogenesis of tailings. Chemical analysis of column effluent indicated that all of the As mobilized was particulate (1.5 mg, or 6% of the total As in the column through 255 pore volumes of leaching). Arsenic speciation was evaluated using X-ray absorption spectroscopy (XAS), indicating the dominance of arsenate [As(V)] sorbed to poorly crystalline Fe(III)-(hydr)oxides and coprecipitated with jarosite [KFe3(SO4, AsO4)2(OH)6] with no detectable primary or secondary minerals in the tailings and mobilized particles. Sequential chemical extractions (SCE) of <45 μm mine tailings fractions also suggest that As occurs adsorbed to Fe (hydr)oxides (35%) and coprecipitated within poorly crystalline phases (45%). In addition, SCEs suggest that As is associated with 1 N acid-soluble phases such as carbonate minerals (20%) and within crystalline Fe-(hydr)oxides (10%). The finding that As is transported from these mine tailings dominantly as As(V) adsorbed to Fe (hydr)oxides or coprecipitated within hydroxysulfates such as jarosite suggests that As release from soils and sediments contaminated with tailings will be controlled by either organic acid-promoted dissolution or reductive dissolution of host phases.  相似文献   

11.
王美华 《现代地质》2022,36(3):941-952
为系统研究石煤矿山周边耕地富硒土壤地球化学特征及影响因素,在浙江省常山县辉埠石煤矿山周边耕地采集了表层土壤样品144件、农产品甘蔗样20件、土壤垂向剖面土壤样6件、岩石样5件和地表水样3件。通过样品Se、有机质、As、Cd、Cu、Pb、Zn、Ni、Hg、Cr等元素含量指标测定和统计,探究了该区富硒土壤地球化学特征。结果表明:区内表层土壤硒含量主要集中于0.47~1.34 mg/kg之间,平均含量0.87 mg/kg,远高于浙江省平均值,且硒含量高值区与辉埠石煤矿的走向一致;硒含量随着土壤深度增加而逐渐下降;89.58%的土壤样品和65%的甘蔗样品达到富硒标准,但存在土壤和农产品Cd等主要重金属元素含量超标的生态风险。土壤硒含量均值在寒武系下统荷塘组最高(1.31 mg/kg),奥陶系中—下统最低(0.64 mg/kg);旱地硒均值略高于水田,但差异不显著(p>0.05);硒含量均值高低变化为粗骨土>石灰岩土>水稻土>红壤。研究认为,土壤硒含量受地质背景、土壤类型和有机质等因素的影响,含石煤层黑色岩系和碳酸盐岩等富硒地层是形成富硒土壤的主要因素,小部分与矿山开采等人类活动有关。  相似文献   

12.
Vanadium adsorption by soils representing different soil types from Germany has been studied. For 30 soils ‘Freundlich’ type sorption isotherms have been deduced from laboratory vanadium(V) adsorption experiments. The native adsorbed vanadium quantity of a soil (S0) and the Freundlich parameters m and log k have been determined by non linear regression of the experimental data to the Freundlich model. Pronounced differences in vanadium adsorption of different soils exist and could be quantified. The vanadium adsorption data could be generalized by grouping the soils into four classes according to their vanadium adsorption properties. For each class (sandy soils, top soils, sub soils with pH < 5.5, and sub soils with pH > 5.5) mean Freundlich parameters m and log k have been calculated to be 0.59, 0.72, 0.52, 0.57 and 2.55, 2.89, 4.29, 3.41, respectively. These parameters can be used to estimate vanadium sorption properties of soils for which no vanadium sorption experiments are available. Aqua regia soluble vanadium contents of the studied soils (range 1.7–143 mg/kg; median 32 mg/kg) and leached vanadium concentrations from experiments without vanadium addition (range 0.08–37 µg/l; median 2.1 µg/l) are also given.  相似文献   

13.
Agricultural (Ap, Ap-horizon, 0–20 cm) and grazing land soil samples (Gr, 0–10 cm) were collected from a large part of Europe (33 countries, 5.6 million km2) at an average density of 1 sample site/2500 km2. The resulting more than 2 × 2000 soil samples were air dried, sieved to <2 mm and analysed for their Hg concentrations following an aqua regia extraction. Median concentrations for Hg are 0.030 mg/kg (range: <0.003–1.56 mg/kg) for the Ap samples and 0.035 mg/kg (range: <0.003–3.12 mg/kg) for the Gr samples. Only 5 Ap and 10 Gr samples returned Hg concentrations above 1 mg/kg. In the geochemical maps the continental-scale distribution of the element is clearly dominated by geology. Climate exerts an important influence. Mercury accumulates in those areas of northern Europe where a wet and cold climate favours the build-up of soil organic material. Typical anthropogenic sources like coal-fired power plants, waste incinerators, chlor-alkali plants, metal smelters and urban agglomerations are hardly visible at continental scales but can have a major impact at the local-scale.  相似文献   

14.
Mercury contamination of the environment is of worldwide concern because of its global presence and its potent neurotoxicity. Mining, smelting and the electronics industry are the main sources of Hg pollution. However, few studies have been performed to investigate systemic Hg contamination in metal mining regions. In this study, concentrations of Hg in air, farmland soil, and crops were measured in a Pb-Zn mining area in the karst region of Guangxi, China. Key factors that could affect Hg distribution, such as the fate of waste ore and waste residue, were analyzed. Geo-statistical methods were adopted to analyze the characteristics of spatial structure and distribution of Hg. The results show that Hg contamination in this region is serious. The total mercury (T-Hg) content is far higher than the Level II Limit Value of Chinese Soil Standards of 0.30 mg kg−1, showing obvious directional characteristics from WNW to ESE. Highest Hg concentrations were found in the WNW portion of the study area. The contamination of paddy soil is higher than that in dry farmland soil. The vertical distribution of T-Hg and its decrease with depth suggest that the important sources are waste water irrigation and the improper disposal of the waste ore and waste rock. The T-Hg concentrations in the agricultural products examined exceed the Chinese tolerance value (0.02 mg kg−1 for rice and 0.01 mg kg−1 for vegetables), indicating the seriousness of the problem. The ecological environment and the safety of food grown in this mining area are being affected, with the result that human health is possibly being affected.  相似文献   

15.
 An integrated geochemical and toxicological assessment of environmental mercury contamination and attendant human exposure in Honda Bay, Palawan was undertaken in 1995 following a nationally reported pollution scare centered on a coastal jetty, Sitio Honda Bay, constructed using approximately 1 million tons of tailings and beneficiation waste from a cinnabar mine. Mercury (Hg) data for marine and fluvial sediments, fish tissues and human hair indicate that the toxicological hazard is considerably lower than initially reported by state environment and health officials. Typical Hg concentrations in surficial Honda Bay sediments were found to lie within the global background range (<60 μg/kg). Downcore profiles provide no evidence of enhanced Hg fluxes coincident with the onset of mining and/or coastal tailings disposal. The mean and median Hg concentrations recorded in tissues of six species of Honda Bay fish are compliant with thresholds established by the US Environmental Protection Agency (US-EPA) for marketable stocks. Earlier reports of 'Minamata range' Hg concentrations in fish and shellfish from Honda Bay remain unsubstantiated. Geochemical analyses of samples of the Sitio Honda Bay substrate have confirmed the prevalence of solid-phase Hg concentrations to ca. 340 mg/kg. The speciation of Hg is, however, dominated by secondary oxides of low bioavailability. The mean Hg concentration in hair from Sitio Honda Bay residents (4.41 mg/kg) was found to be statistically analogous to that for a neighbouring coastal community unimpacted by the coastal disposal of mine waste. A negligible residential exposure factor is thus inferred for the former. Relatively high hair Hg burdens prevail throughout the coastal Honda Bay population, consistent with significant methyl Hg ingestion through daily fish consumption. The data presented provide no environmental or toxicological justification for immediate remedial action. Received: 14 May 1998/Accepted: 1 September 1998  相似文献   

16.
A soil geochemical survey was conducted in a 27,000-km2 study area of northern California that includes the Sierra Nevada Mountains, the Sacramento Valley, and the northern Coast Range. The results show that soil geochemistry in the Sacramento Valley is controlled primarily by the transport and weathering of parent material from the Coast Range to the west and the Sierra Nevada to the east. Chemically and mineralogically distinctive ultramafic (UM) rocks (e.g. serpentinite) outcrop extensively in the Coast Range and Sierra Nevada. These rocks and the soils derived from them have elevated concentrations of Cr and Ni. Surface soil samples derived from UM rocks of the Sierra Nevada and Coast Range contain 1700–10,000 mg/kg Cr and 1300–3900 mg/kg Ni. Valley soils west of the Sacramento River contain 80–1420 mg/kg Cr and 65–224 mg/kg Ni, reflecting significant contributions from UM sources in the Coast Range. Valley soils on the east side contain 30–370 mg/kg Cr and 16–110 mg/kg Ni. Lower Cr and Ni concentrations on the east side of the valley are the result of greater dilution by granitic sources of the Sierra Nevada.Chromium occurs naturally in the Cr(III) and Cr(VI) oxidation states. Trivalent Cr is a non-toxic micronutrient, but Cr(VI) is a highly soluble toxin and carcinogen. X-ray diffraction and scanning electron microscopy of soils with an UM parent show Cr primarily occurs within chromite and other mixed-composition spinels (Al, Mg, Fe, Cr). Chromite contains Cr(III) and is highly refractory with respect to weathering. Comparison of a 4-acid digestion (HNO3, HCl, HF, HClO4), which only partially dissolves chromite, and total digestion by lithium metaborate (LiBO3) fusion, indicates a lower proportion of chromite-bound Cr in valley soils relative to UM source soils. Groundwater on the west side of the Sacramento Valley has particularly high concentrations of dissolved Cr ranging up to 50 μg L−1 and averaging 16.4 μg L−1. This suggests redistribution of Cr during weathering and oxidation of Cr(III)-bearing minerals. It is concluded that regional-scale transport and weathering of ultramafic-derived constituents have resulted in enrichment of Cr and Ni in the Sacramento Valley and a partial change in the residence of Cr.  相似文献   

17.
18.
The concentration of heavy metals such as Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn, Zr were studied in soils of Balanagar industrial area, Hyderabad to understand heavy metal contamination due to industrialization and urbanization. This area is affected by the industrial activities like steel, petrochemicals, automobiles, refineries, and battery manufacturing generating hazardous wastes. The assessment of the contamination of the soils was based on the geoaccumulation index, enrichment factor (EF), contamination factor, and degree of contamination. Soil samples were collected from Balanagar industrial area from top 10–50 cm layer of soil. The samples were analyzed using X-ray fluorescence spectrometer for heavy metals. The data revealed that the soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Cr (82.2–2,264 mg/kg), Cu (31.3–1,040 mg/kg), Ni (34.3–289.4 mg/kg), Pb (57.5–1,274 mg/kg), Zn (67.5–5819.5 mg/kg), Co (8.6–54.8 mg/kg), and V (66.6–297 mg/kg). The concentration of above-mentioned other elements was similar to the levels in the earth’s crust pointed to metal depletion in the soil as the EF was <1. Some heavy metals showed high EF in the soil samples indicating that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may results in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   

19.
Atmospheric mercury (Hg) is delivered to ecosystems via rain, snow, cloud/fog, and dry deposition. The importance of snow, especially snow that has passed through the forest canopy (throughfall), in delivering Hg to terrestrial ecosystems has received little attention in the literature. The snowpack is a dynamic system that links atmospheric deposition and ecosystem cycling through deposition and emission of deposited Hg. To examine the magnitude of Hg delivery via snowfall, and to illuminate processes affecting Hg flux to catchments during winter (cold season), Hg in snow in no-canopy areas and under forest canopies measured with four collection methods were compared: (1) Hg in wet precipitation as measured by the Mercury Deposition Network (MDN) for the site in Acadia National Park, Maine, USA, (2) event throughfall (collected after snowfall cessation for accumulations of >8 cm), (3) season-long throughfall collected using the same apparatus for event sampling but deployed for the entire cold season, and (4) snowpack sampling. Estimates (mean ± SE) of Hg deposition using these methods during the 91-day cold season in 2004–2005 at conifer sites showed that season-long throughfall Hg flux (1.80 μg/m2) < snowpack Hg (2.38 ± 0.68 μg/m2) < event throughfall flux (5.63 ± 0.38 μg/m2). Mercury deposition at the MDN site (0.91 μg/m2) was similar to that measured at other no-canopy sites in the area using the other methods, but was 3.4 times less than was measured under conifer canopies using the event sampling regime. This indicates that snow accumulated under the forest canopy received Hg from the overstory or exhibited less re-emission of Hg deposited in snow relative to open areas. The soil surface of field-scale plots were sprayed with a natural rain water sample that contained an Hg tracer (202Hg) just prior to the first snowfall to explore whether some snowpack Hg might be explained from soil emissions. The appearance of the 202Hg tracer in the snowpack (0–64% of the total Hg mass in the snowpack) suggests that movement of Hg from the soil into the snowpack is possible. However, as with any tracer study the 202Hg tracer may not precisely represent the reactivity and mobility of natural Hg in soils.  相似文献   

20.
《Applied Geochemistry》2003,18(3):371-381
The Nambija Mineral District (NMD) is located in the southeastern part of Ecuador, east of Zamora (Zamora Chinchípe's country), Ecuadorian Amazon. In this district, Au occurrences have been know since colonial and pre-colonial times, but only after the early 1980s has intensive artisanal Au mining activity been developed. Currently, the different NMD Au occurrences continue to be exploited by artisanal operations and are difficult to control in the study area. The environmental impacts due to Au mining are a consequence of the illegal situation and deficiency in controlling the techniques of ore exploitation. The Au extraction is carried out by outdoor amalgamation, so the indiscriminate use of Hg by artisanal miners, associated with careless methods of tailings disposal, has caused occupational exposure and environmental degradation. The present study evaluated the geochemical dispersion and concentrations of local contamination of metallic Hg in soils, stream sediments and mine tailings in the NMD area. This article aims to contribute to the discussion of environmental changes caused by the artisanal Au mining in the Nambija district. A total of 82 samples (32 soil, 40 stream sediment and 10 mine tailings) were analyzed. The results were compared with the Hg levels in soil and stream sediments considered not to be contaminated in the Nambija mining area and in other areas where Hg is mined in the Amazon basin. In this work, mean total Hg (T-Hg) concentrations of 1.7 μg g−1 in soils and 2.7 μg g−1 in stream sediments have been found. Mercury values in the mine tailing samples revealed values ranging from 89 to 1555 μg g−1. The results found for Hg in the different analyzed materials pointed to contamination of the studied area by this metal, while soil erosion is responsible for an increase in stream sediment's T-Hg concentrations in the different aquatic ecosystems of the Nambija Creek and Nambija River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号