首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analyses of stream sediment and soil samples from the Bushveld Complex, South Africa have revealed enhanced precious metal concentrations, which can be related both to mining activities and the presence of hidden concentrations of platinum-group elements (PGEs) and gold. The economically important PGE deposits hosted by the Upper Critical Zone of the Rustenburg Layered Suite are revealed by a high PGE and Au content in the overlying soils. A second zone of elevated precious metal concentrations straddles the boundary between the Main and Upper Zones and has to date been traced for more than 100 km. This zone follows the igneous layering of the Rustenburg Layered Suite and is offset by the Brits Graben. It is therefore thought to be the reflection of a magmatic PGE-Au mineralisation. Received: 31 May 1996 / Accepted: 7 January 1997  相似文献   

2.
Compositional data on apatite, phlogopite, and amphibole indicatethat the high-temperature hydrothermal fluids which affectedthe lower portions of the Stillwater and Bushveld Complexeswere Cl-rich. Apatites from the platinum-group element (PGE)ore zones from both complexes are enriched in Cl relative toother cumulus and noncumulus apatites in these intrusions andto apatites from the Skaergaard and Kiglapait Intrusions andthe Great Dyke. Apatites from all five intrusions can be groupedinto three distinct compositional fields: (a) Cumulus apatitesare essentially fluorapatites with molar Cl/(Cl+OH+F) <0?03;(b) noncumulus apatites, with the exception of those from thePGE ore zones of the Stillwater and Bushveld Complexes, haveCl/(Cl+OH+F) <0?20; (c) Cl-rich apatites associated withPGE-rich zones have Cl/(Cl+OH+F) between 0?45 and 1?0. The REEcontent of noncumulus and Cl-rich apatites also show a positivecorrelation with Cl concentration. It is argued that becauseCl is less soluble in silicate melts than F and because meltswith extremely high Cl/F ratios are unknown, the Cl-rich apatitesequilibrated with Cl-rich hydrothermal fluids exsolved duringsolidification of the cumulate sequence. The Cl, F, and OH contents of phlogopites and amphiboles aremore variable. Compositional heterogeneity is due to crystal-chemicalcontrols on halogen contents, variation in the halogen contentof the original melt/fluid phase and subsolidus re-equilibrationduring cooling with both surrounding mineral phases and lowtemperature fluids. However, both the Stillwater and Bushveldphlogopites are enriched in Cl compared to those from the Skaergaardand Kiglapait Intrusions. The compositions of coexisting minerals from the platinum depositof Olivine-Bearing Subzone I of the Stillwater Complex are usedto compute a fluid composition. The fluid is rich in alkalisand iron as well as HCl, and the solution composition is consistentwith fluid compositions deduced for the PGE-bearing secondaryhortonolite pipes of the Bushveld Complex. The high (Pt+Pd)/Irratios of these deposits are also consistent with a hydrothermalorigin, as both Pt and Pd are more soluble in Cl-complexingfluids than Ir.  相似文献   

3.
We report the first Nd isotopic data on the cumulate rocks of the Bushveld Complex, South Africa. We analysed 17 whole-rock samples covering 4700 m of stratigraphy through the Lower, Critical and Main Zones of the intrusion at Union Section, north-western Bushveld Complex. The basal ultramafic portions of the complex have markedly higher ɛNd(T) (−5.3 to −6.0) than the gabbronoritic Main Zone (ɛNd(T) −6.4 to −7.9). The rocks of the Upper Critical Zone have intermediate values. These results are in agreement with new Nd isotope data on marginal rocks and sills in the floor of the complex that are generally interpreted as representing chilled parental magmas, and with published Sr isotopic data, all of which show a larger crustal component in the upper part of the intrusion. In contrast, the concentrations of many highly incompatible trace elements are decoupled from the isotopic signatures. The basal portions of the complex have higher ratios of incompatible to compatible trace elements than the upper portions. The variations of isotopic and trace-element compositions are interpreted in terms of a change in the nature of the crustal material that contaminated Bushveld magmas. Those magmas that fed into the lower part of the complex had assimilated a relatively small amount of incompatible trace-element-rich partial melt of upper crust, whereas magmas parental to the upper part of the complex had assimilated a higher proportion of the incompatible trace-element-poor residue of partial melting. Received: 5 October 1999 / Accepted: 7 July 2000  相似文献   

4.
Detailed mineralogical investigations of chromite in the Lower and Critical Zones in the northwestern sector of the Bushveld Complex have revealed significant compositional variations with regard to modal proportions, host-rock lithology, and stratigraphic height. Superimposed on these variations are long-range systematic trends in the composition of chromite in the massive layers. These long-range trends are closely linked with the evolution of the silicate cumulates. The massive chromitite layers are divided into two types. Type 1 comprises the chromitites hosted entirely within ultramafic cumulates, while Type 2 chromitites are within cyclic units in which plagioclase cumulates occur. The types are also distinguishable by their respective contents of platinum-group elements (PGEs) and distribution patterns thereof, viz. the ratios between Ru + Os + Ir and Pt + Pd + Rh, or relative element proportions, both of which display a systematic change with height in accordance with chromite composition. The relation between silicate geochemistry, chromite composition, and PGE tenor, leads to the development of a model explaining the formation of PGE-mineralized, sulphide-poor chromitite layers in the Critical Zone of the Bushveld Complex. Presented at the International Conference for Applied Mineralogy, Pretoria, September 1991  相似文献   

5.
The northern lobe of the Bushveld Complex is currently a highly active area for platinum-group element (PGE) exploration. This lobe hosts the Platreef, a 10–300-m thick package of PGE-rich pyroxenites and gabbros, that crops out along the base of the lobe to the north of Mokopane (formerly Potgietersrus) and is amenable to large-scale open pit mining along some portions of its strike. An early account of the geology of the deposit was produced by Percy Wagner where he suggested that the Platreef was an equivalent PGE-rich layer to the Merensky Reef that had already been traced throughout the eastern and western lobes of the Bushveld Complex. Wagner’s opinion remains widely held and is central to current orthodoxy on the stratigraphy of the northern lobe. This correlates the Platreef and an associated cumulate sequence that includes a chromitite layer—known as the Grasvally norite-pyroxenite-anorthosite (GNPA) member—directly with the sequence between the UG2 chromitite and the Merensky Reef as it is developed in the Upper Critical Zone of the eastern and western Bushveld. Implicit in this view of the magmatic stratigraphy is that similar Critical Zone magma was present in all three lobes prior to the development of the Merensky Reef and the Platreef. However, when this assumed correlation is examined in detail, it is obvious that there are significant differences in lithologies, mineral textures and chemistries (Mg# of orthopyroxene and olivine) and the geochemistry of both rare earth elements (REE) and PGE between the two sequences. This suggests that the prevailing interpretation of the stratigraphy of the northern lobe is not correct. The “Critical Zone” of the northern lobe cannot be correlated with the Critical Zone in the rest of the complex and the simplest explanation is that the GNPA-Platreef sequence formed from a separate magma, or mixture of magmas. Chilled margins of the GNPA member match the estimated initial composition of tholeiitic (Main Zone-type) magma rather than a Critical Zone magma composition. Where the GNPA member is developed over the ultramafic Lower Zone, hybrid rocks preserve evidence for mixing between new tholeiitic magma and existing ultramafic liquid. This style of interaction and the resulting rock sequences are unique to the northern lobe. The GNPA member contains at least seven sulphide-rich horizons with elevated PGE concentrations. Some of these are hosted by pyroxenites with similar mineralogy, crystallisation sequences and Pd-rich PGE signatures to the Platreef. Chill zones are preserved in the lowest Main Zone rocks above the GNPA member and the Platreef and this suggests that both units were terminated by a new influx of Main Zone magma. This opens the possibility that the Platreef and GNPA member merge laterally into one another and that both formed in a series of mixing/quenching events involving tholeiitic and ultramafic magmas, prior to the main influx of tholeiitic magma that formed the Main Zone.  相似文献   

6.
A new geological map of the Rustenburg Layered Suite south of the Ysterberg–Planknek fault of the northern/Potgietersrus limb of the Bushveld Complex is presented, displaying features that were not available for publication in the past and are considered contributing to the complexity of this region. The northern limb is known for the Platreef, atypical mafic lithologies in sections of the layered sequence and the unusual development of the ultramafic Lower Zone as satellite bodies or offshoots at the base of the intrusion. The outcrop and suboutcrop pattern of Lower Zone Grasvally body and its relation to the surrounding geology of Main Zone, Critical Zone, and floor rocks is described. The extent of the base metal sulfide (BMS) and platinum-group element (PGE)-mineralized cyclic unit 11 of the Drummonlea harzburgite–chromitite sub zone is shown. Only that which is considered to be the equivalents of the mafic Upper Critical Zone has thus far been traced south of Potgietersrus/Mokopane. The Platreef is traced from the farm Townlands and further northwards. The presence of Platreef proper south of Potgietersrus/Mokopane appears to be speculative. However, Merensky Reef, UG 2, and equivalent layers outcrop or were intersected to the south of the town. The Kleinmeid Syncline comprising Main Zone/Critical Zone layers and its structure is discussed. The lateral lithological transfomation of the Merensky Reef/UG 2 and equivalent layers south of the Ysterberg–Planknek fault to Platreef north of this fault is recorded. Attenuation of both the Main Zone and Upper Zone is observed from the northwest towards the town and resulted in only the lower units being developed. The lateral change of Main Zone and Upper Zone lithologies from the northwest towards the town is described. The PGE and BMS economic potential south of the town are briefly tabulated.  相似文献   

7.
The Lower Zone of the Eastern Bushveld Complex in the Olifants River Trough   总被引:4,自引:4,他引:4  
The Lower Zone of the Eastern Bushveld Complex in the OlifantsRiver Trough reaches 1584 m in thickness and is divisible intoBasal subzone, Lower Bronzitite, Harzburgite subzone, and UpperBronzitite. The Lower Zone is directly and conformably overlainby the Critical Zone; there is no break between the two. The principal cumulus minerals in the Lower Zone are bronziteand olivine. Chromite is an accessory cumulus mineral in peridotites,especially in the Harzburgite subzone, and cumulus plagioclaseoccurs in two thin units in the Basal subzone. Elsewhere plagioclase,with or without chromian augite, is postcumulus in origin. Electron microprobe analyses show that the range in En and Focontents of bronzite and olivine, respectively, is only a fewper cent over the entire rock sequence. Highest values of bothare found in the Harzburgite subzone. From modal and mineralanalyses the bulk composition of the Lower Zone (wt. per cent)is calculated as SiO2—53.94, TiO2—0.08, Cr2O3—0.55,V2O3—0.01, Al2O3—2.64, NiO—0.09, FeO (totalFe as FeO)—9.62, MnO—0.20, MgO—31.72, CaO—1.48,K2O—0.1, Na2O—0.13. This composition is unlike thatof any magma type, indicating that the Lower Zone is indeeda pile of crystal cumulates. From the data for the Lower Zone, together with available datafor the Critical, Main, and Upper Zones, the average MgO contentof the Eastern Bushveld Complex is calculated as about 13 percent, the Cr content as in excess of 1000 ppm. Even if the Complexformed from a single body of magma, the magma cannot have beentholeiitic, but rather olivine tholeiitic or picritic. An hypothesis of evolution of the Lower Zone is presented. Shiftsin total pressure are inferred to have been a major factor inproducing the succession of rock types and in producing theextraordinarily persistent chromitites of the overlying CriticalZone. It is suggested that the extraordinary richness in chromiteof the Bushveld is related to its formation not from tholeiiticmagma, but from more Mg-rich, chromium-rich magma drawn froma deeper level of the mantle than that which has yielded thetholeiitic basalts.  相似文献   

8.
The Lower Zone–Critical Zone boundary of the BushveldComplex is an intrusion-wide, major stratigraphic transitionfrom ultramafic harzburgite and pyroxenite in the Lower Zoneto increasingly plagioclase-rich pyroxenites and norites inthe Critical Zone. Quantitative textural and compositional datafor 29 samples through this transition show the following: LowerZone orthopyroxene grains are larger, have higher aspect ratios,are better foliated and have a lower trapped liquid componentthan those of the Critical Zone. The larger grain size of theLower Zone results in crystal size distribution plots that arerotated to lower slopes and intercepts relative to those inthe Critical Zone. Although all rocks show differing amountsof foliation, mineral lineations are weak to absent. These dataare consistent with significant compaction-driven recrystallizationin the study section. Numerical modeling of concurrent compactionand crystallization provides a quantitative model of how theLower Zone–Critical Zone transition may have formed: plagioclaseis rare in the Lower Zone because compaction removes interstitialliquid before it reaches plagioclase saturation. However, asthe crystal pile grows, plagioclase saturation is reached inthe interstitial liquid before compaction is complete in moreevolved pyroxenites, producing more abundant but still modestamounts of plagioclase characteristic of the Lower CriticalZone. It is concluded that both the textures and the modal mineralogyare largely controlled by compaction and compaction-driven recrystallization;primary magmatic textures are not preserved. KEY WORDS: Bushveld Complex; compaction; crystal size distributions; crystal aging; igneous textures  相似文献   

9.
“His mind was like a soup dish—wide and shallow; ...” - Irving Stone on William Jennings Bryan
A compilation of the Sr-isotopic stratigraphy of the Bushveld Complex, shows that the evolution of the magma chamber occurred in two major stages. During the lower open-system Integration Stage (Lower, Critical and Lower Main Zone), there were numerous influxes of magma of contrasting isotopic composition with concomitant mixing, crystallisation and deposition of cumulates. Larger influxes correspond to the boundaries of the zones and sub-zones and are marked by sustained isotopic shifts, major changes in mineral assemblages and development of unconformities. During the upper, closed system Differentiation Stage (Upper Main Zone and Upper Zone), there were no major magma additions (other than that which initiated the Upper Zone), and the thick magma layers evolved by fractional crystallisation. The Lower and Lower Critical Zones are restricted to a belt that runs from Steelpoort and Burgersfort in the northeast, to Rustenburg and Northam in the west and an outlier of the Lower and Lower Critical Zone, up to the LG4 chromitite layer, in the far western extension north of Zeerust. It is only in these areas that thick harzburgite and pyroxenite layers are developed and where chromitites of the Lower Critical Zone occur. These chromitites include the economically important c. 1 m thick LG6 and MG1 layers exposed around both the Eastern and Western lobes of the Bushveld Complex. The Upper Critical Zone has a greater lateral extent than the Lower Critical Zone and overlies but also onlaps the floor-rocks to the south of the Steelpoort area . The source of the magmas also appears to have been towards the south as the MG chromitite layers degrade and thin northward whereas the LG layers are very well represented in the North and degrade southward. Sr and Os isotope data indicate that the major chromitite layers including the LG6, MG1 and UG2 originated in a similar way. Extremely abrupt and stratigraphically restricted increases in the Sr isotope ratio imply that there was massive contamination of intruding melt which “hit the roof” of the chamber and incorporated floating granophyric liquid which forced the precipitation of chromite (Kruger 1999; Kinnaird et al. 2002). Therefore, each chromitite layer represents the point at which the magma chamber expanded and eroded and deformed its floor. Nevertheless, this was achieved by in situ contamination by roof-rock melt of the intruding Critical Zone liquids that had an orthopyroxenitic to noritic lineage. The Main Zone is present in the Eastern and Western lobes of the Bushveld Complex where it overlies the Critical Zone, and onlaps the floor-rocks to the south, and the north where it is also the basal zone in the Northern lobe. The new magma first intruded the Northern lobe north of the Thabazimbi–Murchison Lineament, interacted with the floor-rocks, incorporated sulphur and precipitated the “Platreef” along the floor-rock contact before flowing south into the main chamber. This exceptionally large influx of new magma then eroded an unconformity on the Critical Zone cumulate pile, and initiated the Main Zone in the main chamber by precipitating the Merensky Reef on the unconformity. The Upper Zone magma flowed into the chamber from the southern “Bethal” lobe as well as the TML. This gigantic influx eroded the Main Zone rocks and caused very large-scale unconformable relationships, clearly evident as the “Gap” areas in the Western Bushveld Complex. The base of this influx, which is also coincident with the Pyroxenite Marker and a troctolitic layer in the Northern lobe, is the petrological and stratigraphic base of the Upper Zone. Sr-isotope data show that all the PGE rich ores (including chromitites) are related to influxes of magma, and are thus related to the expansion and filling of the magma chamber dominantly by lateral expansion; with associated transgressive disconformities onto the floor-rocks coincident with major zone changes. These positions in the stratigraphy are marked by abrupt changes in lithology and erosional features over which succeeding lithologies are draped. The outcrop patterns and the concordance of geochemical, isotopic and mineralogical stratigraphy, indicate that during crystallisation, the Bushveld Complex was a wide and shallow, lobate, sill-like sheet, and the rock-strata and mineral deposits are quasi-continuous over the whole intrusion.
F. Johan KrugerEmail:
  相似文献   

10.
The petrology of base metal sulfides and associated accessory minerals in rocks away from economically significant ore zones such as the Merensky Reef of the Bushveld Complex has previously received only scant attention, yet this information is critical in the evaluation of models for the formation of Bushveld-type platinum-group element (PGE) deposits. Trace sulfide minerals, primarily pyrite, pyrrhotite, pentlandite, and chalcopyrite are generally less than 100 microns in size, and occur as disseminated interstitial individual grains, as polyphase assemblages, and less commonly as inclusions in pyroxene, plagioclase, and olivine. Pyrite after pyrrhotite is commonly associated with low temperature greenschist alteration haloes around sulfide grains. Pyrrhotite hosted by Cr- and Ti-poor magnetite (Fe3O4) occurs in several samples from the Marginal to Lower Critical Zones below the platiniferous Merensky Reef. These grains occur with calcite that is in textural equilibrium with the igneous silicate minerals, occur with Cl-rich apatite, and are interpreted as resulting from high temperature sulfur loss during degassing of interstitial liquid. A quantitative model demonstrates how many of the first-order features of the Bushveld ore metal distribution could have developed by vapor refining of the crystal pile by chloride–carbonate-rich fluids during which sulfur and sulfide are continuously recycled, with sulfur moving from the interior of the crystal pile to the top during vapor degassing.  相似文献   

11.
Origin of the UG2 chromitite layer, Bushveld Complex   总被引:3,自引:0,他引:3  
Chromitite layers are common in large mafic layered intrusions.A widely accepted hypothesis holds that the chromitites formedas a consequence of injection and mixing of a chemically relativelyprimitive magma into a chamber occupied by more evolved magma.This forces supersaturation of the mixture in chromite, whichupon crystallization accumulates on the magma chamber floorto form a nearly monomineralic layer. To evaluate this and othergenetic hypotheses to explain the chromitite layers of the BushveldComplex, we have conducted a detailed study of the silicate-richlayers immediately above and below the UG2 chromitite and anotherchromitite layer lower in the stratigraphic section, at thetop of the Lower Critical Zone. The UG2 chromitite is well knownbecause it is enriched in the platinum-group elements and extendsfor nearly the entire 400 km strike length of the eastern andwestern limbs of the Bushveld Complex. Where we have studiedthe sequence in the central sector of the eastern Bushveld,the UG2 chromitite is embedded in a massive, 25 m thick plagioclasepyroxenite consisting of 60–70 vol. % granular (cumulus)orthopyroxene with interstitial plagioclase, clinopyroxene,and accessory phases. Throughout the entire pyroxenite layerorthopyroxene exhibits no stratigraphic variations in majoror minor elements (Mg-number = 79·3–81·1).However, the 6 m of pyroxenite below the chromitite (footwallpyroxenite) is petrographically distinct from the 17 m of hangingwall pyroxenite. Among the differences are (1) phlogopite, K-feldspar,and quartz are ubiquitous and locally abundant in the footwallpyroxenite but generally absent in the hanging wall pyroxenite,and (2) plagioclase in the footwall pyroxenite is distinctlymore sodic and potassic than that in the hanging wall pyroxenite(An45–60 vs An70–75). The Lower Critical Zone chromititeis also hosted by orthopyroxenite, but in this case the rocksabove and below the chromitite are texturally and compositionallyidentical. For the UG2, we interpret the interstitial assemblageof the footwall pyroxenite to represent either interstitialmelt that formed in situ by fractional crystallization or chemicallyevolved melt that infiltrated from below. In either case, themelt was trapped in the footwall pyroxenite because the overlyingUG2 chromitite was less permeable. If this interpretation iscorrect, the footwall and hanging wall pyroxenites were essentiallyidentical when they initially formed. However, all the modelsof chromitite formation that call on mixing of magmas of differentcompositions or on other processes that result in changes inthe chemical or physical conditions attendant on the magma predictthat the rocks immediately above and below the chromitite layersshould be different. This leads us to propose that the Bushveldchromitites formed by injection of new batches of magma witha composition similar to the resident magma but carrying a suspendedload of chromite crystals. The model is supported by the commonobservation of phenocrysts, including those of chromite, inlavas and hypabyssal rocks, and by chromite abundances in lavasand peridotite sills associated with the Bushveld Complex indicatingthat geologically reasonable amounts of magma can account foreven the massive, 70 cm thick UG2 chromitite. The model requiressome crystallization to have occurred in a deeper chamber, forwhich there is ample geochemical evidence. KEY WORDS: Bushveld complex; chromite; crystal-laden magma; crustal contamination; magma mixing; UG2 chromitite  相似文献   

12.
The Merensky Reef and the underlying Upper Group 2 chromitite layer, in the Critical Zone of the Bushveld Complex, host much of the world’s platinum-group element (PGE) mineralization. The genesis is still debated. A number of features of the Merensky Reef are not consistent with the hypotheses involving mixing of magmas. Uniform mixing between two magmas over an area of 150 by 300 km and a thickness of 3–30 km seems implausible. The Merensky Reef occurs at the interval where Main Zone magma is added, but the relative proportions of the PGE in the Merensky Reef are comparable to those of the Critical Zone magma. Mineral and isotopic evidence in certain profiles through the Merensky Unit suggest either mixing of minerals, not magmas, and in one case, the lack of any chemical evidence for the presence of the second magma. The absence of cumulus sulphides immediately above the Merensky Reef is not predicted by this model. An alternative model is proposed here that depends upon pressure changes, not chemical processes, to produce the mineralization in chromite-rich and sulphide-rich reefs. Magma was added at these levels, but did not mix. This addition caused a temporary increase in the pressure in the extant Critical Zone magma. Immiscible sulphide liquid and/or chromite formed. Sinking sulphide liquid and/or chromite scavenged PGE (as clusters, nanoparticles or platinum-group minerals) from the magma and accumulated at the floor. Rupturing of the roof resulted in a pressure decrease and a return to sulphur-undersaturation of the magma.  相似文献   

13.
The regional distribution and chemical composition of massive and disseminated chromitites through a Platreef sequence and along a strike distance of over ∼20 km were investigated to correlate them both within the framework of the northern limb and to the eastern and western limbs of the Bushveld Complex. The chromitite layers and seams of the Platreef form two main chromite-bearing zones: the Upper Chromitite that occurs as two to three discontinuous seams in feldspathic pyroxenite at approximately 20 m below the Platreef top contact and the Lower Chromitite that is composed of multiple seams in feldspathic harzburgite, pyroxenite and norite close to the bottom contact of the Platreef with footwall. Electron micro-probe analyses reveal that the chemical composition of chromite depends on the host rock type. Norite and pyroxenite host chromite with the highest Cr2O3 content while harzburgite-hosted chromites are Cr and Mg poor. The wide range in chromite compositions is explained by the influence of late-magmatic processes including post-cumulus growth and re-equilibration, interaction with fluid- and sulphide-saturated magmatic liquid and contact metamorphism. Each of these processes is characterised by its own distinct geochemical signature, but generally they lead to a decrease in Mg and Al and an increase in both di- and tri-valent Fe in the chromite. The occurrence of chromitite locally on the different distance from the contact between the upper Platreef sills and the overlying Main Zone magma suggests erosion of the upper Platreef by the Main Zone as it was emplaced. The localisation of chromitites supports an independent development of the northern limb during the Critical Zone emplacement although the chemical composition of chromite and co-existing silicates from ultramafic rocks suggest a Critical Zone affinity with the eastern and western limbs of the Bushveld Complex.  相似文献   

14.
R. Grant Cawthorn   《Lithos》2007,95(3-4):381-398
Large layered intrusions are almost certainly periodically replenished during their protracted cooling and crystallization. The exact composition(s) of the replenishing magma(s) in the case of the Bushveld Complex, South Africa, has been debated, mainly on the basis of major element composition and likely crystallization sequences. The intrusion is dominated by orthopyroxene and plagioclase, and so their Cr and Sr contents, and likely partition coefficient values, can be used to re-investigate the appropriateness of the various proposed parental magmas. One magma type, with about 12% MgO, 1000 ppm Cr and 180 ppm Sr, can explain the genesis of the entire Lower and Critical Zones. A number of other magma compositions proposed to produce the Critical Zone fail to match these trace-element constraints by being too poor in Cr. A fundamentally different magma type was added at the base of the Main Zone, but none of the proposed compositions is consistent with the trace-element requirements. Specifically, the Cr contents are higher than predicted from pyroxene compositions. A further geological constraint is demonstrated from a consideration of the Cr budget at this level. There is an abrupt decrease from about 0.4% to 0.1% Cr2O3 in orthopyroxene across this Critical Zone–Main Zone transition. No realistic proportions of mixing between the residual magma at the top of the Critical Zone and any proposed added magma composition can have produced a composition that could have crystallized these low-Cr orthopyroxenes. Instead, it is suggested that the resident magma from the Upper Critical Zone was expelled from the chamber, possibly as sills into the country rocks, during influx of a dense, differentiated magma. Near the level of the Pyroxenite Marker in the Main Zone, there is further addition of a ferrobasaltic magma, with 6% MgO, 111 ppm Cr and 350 ppm Sr, that is consistent with the geochemical requirements.  相似文献   

15.
In the present study, we document the nature of contact-style platinum-group element (PGE) mineralization along >100 km of strike in the northern lobe of the Bushveld Complex. New data from the farm Rooipoort are compared to existing data from the farms Townlands, Drenthe, and Nonnenwerth. The data indicate that the nature of the contact-style mineralization shows considerable variation along strike. In the southernmost portion of the northern Bushveld, on Rooipoort and adjoining farms, the mineralized sequence reaches a thickness of 700 m. Varied-textured gabbronorites are the most common rock type. Anorthosites and pyroxenites are less common. Chromitite stringers and xenoliths of calcsilicate and shale are largely confined to the lower part of the sequence. Layering is locally prominent and shows considerable lateral continuity. Disseminated sulfides may reach ca. 3 modal % and tend to be concentrated in chromitites and melanorites. Geochemistry indicates that the rocks can be correlated with the Upper Critical Zone. This model is supported by the fact that, in a down-dip direction, the mineralized rocks transform into the UG2-Merensky Reef interval. Between Townlands and Drenthe, the contact-mineralized sequence is thinner (up to ca. 400 m) than in the South. Chromitite stringers occur only sporadically, but ultramafic rocks (pyroxenites, serpentinites, and peridotites) are common. Xenoliths of calcsilicate, shale, and iron formation are abundant indicating significant assimilation of the floor rocks. Sulfides may locally form decimeter- to meter-sized massive lenses. PGE grades tend to be higher than elsewhere in the northern Bushveld. The compositions of the rocks show both Upper Critical Zone and Main Zone characteristics. At Nonnenwerth, the mineralized interval is up to ca. 400 m thick. It consists largely of varied-textured gabbronorites, with minor amounts of igneous ultramafic rocks and locally abundant and large xenoliths of calcsilicate. Layering is mostly weakly defined and discontinuous. Disseminated sulfides (<ca. 3 modal %) occur throughout much of the sequence. Geochemistry indicates that the rocks crystallized mainly from tholeiitic magma and thus have a Main Zone signature. The implication of our findings is that contact-style PGE mineralization in the northern lobe of the Bushveld Complex cannot be correlated with specific stratigraphic units or magma types, but that it formed in response to several different processes. At all localities, the magmas were contaminated with the floor rocks. Contamination with shale led to the addition of external sulfur to the magma, whereas contamination with dolomite may have oxidized the magma and lowered its sulfur solubility. In addition to contamination, some of the magmas, notably those of Upper Critical Zone lineage present at the south-central localities, contained entrained sulfides, which precipitated during cooling and crystallization.  相似文献   

16.
Summary All analysed massive chromitite layers of the Critical Zone of the Bushveld Complex are enriched in PGE's over their silicate host rocks. The concentration factor has been found to increase with stratigraphic height. The PGE-distribution of the Lower Group and Middle Group chromitites shows a systematic relationship to the chromite mineralogy of the chromitites. The LG1- to LG4-chromitite layers are characterized by the dominance of the Ru-group elements (Ru, Os, Ir). The LG5- to LG7-chromitite layers contain almost equal amounts of the two PGE-groups and in the MG-chromitites the elements of the Pt-group (Pt, Pd, Rh) are the most abundant. The chromite mineralogy subdivides the chromitites in a similar way.
PGE-Verteilung in den Lower und Middle Group Chromititen des westlichen Bushveld Complexes
Zusammenfassung Alle untersuchten massiven Chromitite der Critical Zone des Bushveld Complexes sind im Hangenden ihrer silikatischen Nebengesteine an PGE's angereichert. Es stellte sich heraus, dass der Konzentrationsfaktor innerhalb der stratigraphischen Abfolge zum Hangenden hin zunimmt.Die PGE Verteilung in den Lower und Middle Group Chromititen ändert sich systematisch mit der Mineralogie der Chromite in den Chromititen. Die LG 1 bis LG 4 Chromititlagen sind durch ein Vorherrschen der Elemente der Ru-Gruppe (Ru, Os, Ir) gekennzeichnet.Die LG 5 bis LG 7 Chromititlagen enthalten beinahe die gleichen Gehalte an Elementen beider PGE-Gruppen. In den MG-Chromititen sind die Elemente der Pt Gruppe (Pt, Pd, Rh) am weitesten verbreitet. Mit Hilfe der Mineralogie der Chromite können die Chromitite auf ähnliche Weise untergliedert werden.


With 11 Figures  相似文献   

17.
The Merensky Reef of the Bushveld Complex contains one of theworld’s largest concentrations of platinum-group elements(PGE). We have investigated ‘normal’ reef, its footwalland its hanging wall at Impala Platinum Mines. The Reef is 46cm thick and consists from bottom to top of leuconorite, anorthosite,chromitite and a very coarse-grained melanorite. The footwallis leuconorite and the hanging wall is melanorite. The onlyhydrous mineral present is biotite, which amounts to 1%, orless, of the rock. All of the rocks contain 0·1–5%interstitial sulphides (pyrrhotite, pentlandite and chalcopyrite),with the Reef rocks containing the most sulphides (1–5%).Lithophile inter-element ratios suggest that the magma fromwhich the rocks formed was a mixture of the two parental magmasof the Bushveld Complex (a high-Mg basaltic andesite and a tholeiiticbasalt). The Reef rocks have low incompatible element contentsindicating that they contain 10% or less melt fraction. Nickel,Cu, Se, Ag, Au and the PGE show good correlations with S inthe silicate rocks, suggesting control of the abundance of thesemetals by sulphides. The concentration of the chalcophile elementsand PGE in the silicate rocks may be modelled by assuming thatthe rocks contain sulphide liquid formed in equilibrium withthe evolving silicate magma. It is, however, difficult to modelthe Os, Ir, Ru, Rh and Pt concentrations in the chromititesby sulphide liquid collection alone, as the rocks contain 3–4times more Os, Ir, Ru, Rh and Pt than the sulphide-collectionmodel would predict. Two possible solutions to this are: (1)platinum-group minerals (PGM) crystallize from the sulphideliquid in the chromitites; (2) PGM crystallize directly fromthe silicate magma. To model the concentrations of Os, Ir, Ru,Rh and Pt in the chromitites it is necessary to postulate thatin addition to the 1% sulphides in the chromitites there isa small quantity (0·005%) of cumulus PGM (laurite, cooperiteand malanite) present. Sulphide liquids do crystallize PGM atlow fS2. Possibly the sulphide liquid that was trapped betweenthe chromite grains lost some Fe and S by reaction with thechromite and this provoked the crystallization of PGM from thesulphide liquid. Alternatively, the PGM could have crystallizeddirectly from the silicate magma when it became saturated inchromite. A weakness of this model is that at present the exactmechanism of how and why the magma becomes saturated in PGMand chromite synchronously is not understood. A third modelfor the concentration of PGE in the Reef is that the PGE arecollected from the underlying cumulus pile by Cl-rich hydrousfluids and concentrated in the Reef at a reaction front. Althoughthere is ample evidence of compaction and intercumulus meltmigration in the Impala rocks, we do not think that the PGEwere introduced into the Reef from below, because the rocksunderlying the Reef are not depleted in PGE, whereas those overlyingthe Reef are depleted. This distribution pattern is inconsistentwith a model that requires introduction of PGE by intercumulusfluid percolation from below. KEY WORDS: Merensky Reef; platinum-group elements; chalcophile elements; microstructures  相似文献   

18.
The Merensky Reef of the Bushveld Complex is one of the world'slargest resources of platinum group elements (PGE); however,mechanisms for its formation remain poorly understood, and manycontradictory theories have been proposed. We present precisecompositional data [major elements, trace elements, and platinumgroup elements (PGE)] for 370 samples from four borehole coresections of the Merensky Reef in one area of the western BushveldComplex. Trace element patterns (incompatible elements and rareearth elements) exhibit systematic variations, including small-scalecyclic changes indicative of the presence of cumulus crystalsand intercumulus liquid derived from different magmas. Ratiosof highly incompatible elements for the different sections areintermediate to those of the proposed parental magmas (CriticalZone and Main Zone types) that gave rise to the Bushveld Complex.Mingling, but not complete mixing of different magmas is suggestedto have occurred during the formation of the Merensky Reef.The trace element patterns are indicative of transient associationsbetween distinct magma layers. The porosity of the cumulatesis shown to affect significantly the distribution of sulphidesand PGE. A genetic link is made between the thickness of theMerensky pyroxenite, the total PGE and sulphide content, petrologicaland textural features, and the trace element signatures in thesections studied. The rare earth elements reveal the importantrole of plagioclase in the formation of the Merensky pyroxenite,and the distribution of sulphide. KEY WORDS: Merensky Reef; platinum group elements; trace elements  相似文献   

19.
Discordant ultramafic pipes cut most of the layered sequence of the Bushveld Complex. We have studied one pipe in detail, the Tweefontein pipe, which cuts the Critical Zone, eastern Bushveld Complex, because it is well-exposed in a new road cutting. Field relations suggest that these pipes were emplaced while the layered rocks were extremely hot and incapable of brittle failure. The existence of displaced chromitite and anorthosite fragments in this discordant body is suggestive of an intrusive magmatic, rather than metasomatic, mode of emplacement. Initial Sr isotopic ratios of plagioclase from the pipe are in the range 0.7073 to 0.7079, which contrast with typical ratios of 0.7055 to 0.7065 for the Critical Zone, and >0.708 for Main Zone. These data preclude an origin for the pipe as residual magmas from the adjacent layered rocks. The compositions of, and extensive exsolution in, pyroxenes in the pipe indicate temperatures of formation comparable to those of the layered sequence itself, and that they underwent slow cooling comparable to the surrounding layered rocks, such that they both have similar closure temperatures. Preferential replacement of leuconoritic layers suggests a temperature of emplacement in excess of the plagioclase–pyroxene cotectic temperature. The per mil δ18O difference between plagioclase and pyroxene (Δplag–px) for samples from within the pipes ranges from 0.4 to 1.0, and averages 0.7 (for nine pairs), compared to Δplag–px of 0.4 to 0.6 for host rocks, again consistent with magmatic temperatures of formation. Oxygen isotope ratios for plagioclase and pyroxene in the pipes and layered host rocks are comparable, and preclude a significant fluid contribution from metamorphosed sediments in the floor of the Bushveld Complex in the formation of the primary mineralogy. The presence of hornblende, and occasional higher Δplag–px values than in the normal layered sequence rocks suggest lower temperature equilibration in the pipe, probably in the presence of a fluid. Higher absolute δ18O values for both minerals in a few of the pipe and host samples suggest reaction with a later fluid. These discordant ultramafic pipes are considered to form by emplacement of magma batches, which are Sr-isotopically distinct from those which produced the adjacent layered rocks of the Bushveld Complex, but were nevertheless extremely closely related in time to the main intrusive events. Dissolution of host rocks, rather than purely mechanical dilation, provided the space for pipe emplacement. However, the pipe may have acted ultimately as a channelway for low-temperature hydrothermal fluids related to later faulting in the immediate vicinity. Received: 10 October 1998 / Accepted: 22 May 2000  相似文献   

20.
Progressive leaching of plagioclase for Sr isotopes and microdrilling for Sr and Pb isotopes from grains of plagioclase and orthopyroxene from the Critical Zone and the Lower Zone indicates that these minerals are not in isotopic equilibrium. Leaching suggests Critical Zone plagioclase either lost Rb or had a more radiogenic Sri rim relative to the core, whereas plagioclase from an Upper Zone sample is isotopically homogeneous for Sri. Microdrilling analyses of plagioclase from the Lower and Critical Zones consistently have a higher initial 87Sr/86Sr (Sri) and a less radiogenic modeled 238U/204Pb composition (μ2) than coexisting orthopyroxene. The range of calculated Sri for plagioclase and orthopyroxene is 0.70506–0.70662(34) and 0.70290–0.70654(36), respectively. The average difference in Sri between mineral pairs was 0.00095. The range of calculated μ2 for plagioclase and orthopyroxene is 9.42–10.30 (average 9.7) and 9.83–15.75 (average 10.1), respectively. The range of measured 208Pb/206Pb for plagioclase and orthopyroxene is 34.757–36.439(33) and 36.669–41.845(85), respectively. One orthopyroxenite without evidence for more than one population of crystal size distribution, nonetheless had Sri = 0.70654 (36) with calculated μ2 of 10.32 for larger grains as compared with Sri = 0.70290 (32) and calculated μ2 of 9.97 for smaller grain-size fractions. Isotopic results from this study demonstrate that whole-rock isotopic data may not provide the appropriate level of detail necessary to address some processes in the Bushveld Complex. However, systematic changes have the potential to elucidate the timing of contamination with regard to other processes (crystal aging, compaction-driven recrystallization, and mineral exsolution) occurring within a slowly cooled crystal–liquid–vapor mush system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号