首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 828 毫秒
1.
球面波PP反射系数的频变特征研究   总被引:1,自引:1,他引:0       下载免费PDF全文
与平面波反射系数相比,球面波反射系数可以更精确地描述实际地震波的反射特征.近些年关于球面波的研究主要聚焦于球面波反射系数随入射角的变化规律,很少对球面波反射系数随频率的变化(频变)做详细研究.为了更全面地了解球面波的反射机制,本文研究了两层弹性介质中球面波PP反射系数(幅值和相位)的频变规律.文中基于经典的Sommerfeld积分构造球面波PP反射系数,通过自适应的Gauss-Kronrod求积算法对其进行稳定的数值计算.数值试验发现,对于不同的介质参数,球面波反射系数表现出了复杂的频变规律.尤其是当平面波反射系数为零时,对应的球面波反射系数是非零的,且球面波反射系数的相位随频率增加在高频趋近于90°或-90°,即此时球面反射波相对于入射波会有90°的相位旋转.对四类AVO模型的测试表明,球面波反射系数与平面波反射系数在临界角附近和低频时差异很大.  相似文献   

2.
本文从波动方程出发,推导了平面波在砂泥岩薄互层VTI介质中界面上的反射系数和相位特征;结果表明反射系数与反射系数的相位有关,以及反射系数会发生接近-90°相位旋转,理论上证明了Zeng[6,7]的结论.模型数值试验及实际资料处理结果均表明,地震反射波的薄层与厚层的响应特征存在明显的差异.因此当前广泛应用的AVO及波阻抗反演等储层预测和油气检测技术等,均需要充分考虑并完善薄层的影响效应.  相似文献   

3.
TTI介质qP波入射精确和近似反射透射系数   总被引:8,自引:5,他引:3       下载免费PDF全文
介质各向异性是影响振幅随炮检距变化(AVO)的重要因素之一本文将Aki和Richards以及Rüger的方法进行推广,推导出两个弹性倾斜横向各向同性(TTI)介质密接条件下平面波反射和透射系数及其近似式.从位移波函数出发,利用位移连续和应力连续边界条件,建立了TTI介质qP波人射的拟Zoeppritz方程,求解得到精确...  相似文献   

4.
介质密度反演偏导矩阵的精确计算方法   总被引:2,自引:1,他引:1       下载免费PDF全文
实现反演偏导矩阵的计算是基于导数最优化反演方法的关键,然而目前的地震反演几乎都是基于Zoeppritz方程近似实现的,使计算精度和适应范围受到限制.本文利用Zoeppritz方程建立了反射系数对地层介质密度比偏导方程,导出了Zoeppritz方程矩阵元对介质密度比的导数.通过求解偏导方程获得了反射系数对介质密度比偏导数的精确计算(考虑了速度中含介质密度的问题).利用数值算例分析了反射系数对介质密度比偏导数的变化特点.本文采用直接解法求解偏导矩阵方程组,获得了快的计算速度和高的计算精度,为实现地层介质密度反演(包括大角度反演)提供了偏导矩阵的计算方法.  相似文献   

5.
叠前地震数据的平面波深度偏移法   总被引:7,自引:3,他引:7       下载免费PDF全文
提出了一套基于平面波分解的波动方程叠前地震数据深度偏移方法. 通过对共炮点道集和共偏移距道集地震数据的平面波分解,分别得到适用于单平方根波场外推方程和双平方根波场外推方程的共ps(炮点坐标平面波参数)平面波道集和共ph(偏移距坐标平面波参数)平面波道集. 在对共炮点道集和共偏移距道集地震数据的平面波分解时,不需要进行通常意义下的τ p变换计算. 通过对共ps平面波道集和共ph平面波道集的偏移效果对比,我们认为在速度弱横向变化介质中,两种平面波道集偏移方法的效果相当,但对于速度强横向变化介质,共ps平面波道集偏移方法的效果要优于共ph平面波道集偏移方法. 在计算效率方面,共ps平面波道集偏移方法与共ph平面波道集偏移方法基本相同.  相似文献   

6.
实际地震采集中的点震源激发产生球面波场,反射界面处球面波前曲率的改变会导致反射波的振幅和相位随频率而变化,而基于高频远场近似的常规平面波勘探忽略了球面波前曲率的低频频变效应.为此,本文首先利用高精度的数值积分法和有限差分法模拟了柱坐标系下的反射波记录,揭示了球面波反射系数的低频频变特征.为解决常规叠前反演需要多个偏移距...  相似文献   

7.
基于Zoeppritz方程对介质密度偏导数所建立的偏导方程的精确解,构造了多角度反演地层介质密度的反演方程,在偏导数求解过程中考虑了介质密度对波速度的影响因素,并由此实现了利用反射系数梯度精确解计算地层密度的多角度联合反演.通过数值算例考察了计算方法,结果显示:反演方法对层状地层模型不论反射波是否存在相干现象均获得了较好的反演结果,反演迭代10次后计算结果的最大相对误差能够收敛到1%之内;随着反演角度的增加地层介质密度反演的精度逐步提高,反演具有自动校正能力,有快的计算速度.本方法克服了传统AVO(Amplitude Versus Offset)基于Zoeppritz方程近似所遇到的困难,不受反演角度大小及反射界面对波反射强弱的限制,为地层介质密度的多角度包括大角度反演提供了一种新的快速有效的计算方法.  相似文献   

8.
基于Zoeppritz方程对介质密度偏导数所建立的偏导方程的精确解,构造了多角度反演地层介质密度的反演方程,在偏导数求解过程中考虑了介质密度对波速度的影响因素,并由此实现了利用反射系数梯度精确解计算地层密度的多角度联合反演.通过数值算例考察了计算方法,结果显示:反演方法对层状地层模型不论反射波是否存在相干现象均获得了较好的反演结果,反演迭代10次后计算结果的最大相对误差能够收敛到1%之内;随着反演角度的增加地层介质密度反演的精度逐步提高,反演具有自动校正能力,有快的计算速度.本方法克服了传统AVO(Amplitude Versus Offset)基于Zoeppritz方程近似所遇到的困难,不受反演角度大小及反射界面对波反射强弱的限制,为地层介质密度的多角度包括大角度反演提供了一种新的快速有效的计算方法.  相似文献   

9.
基于等效Thomsen参数的P-SV波AVO属性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
在等效Thomsen各向异性参数的P-SV波反射系数近似公式基础上研究了反射系数的多种AVO(振幅随炮检距变化)属性特征,针对不同的属性特征构建了多属性AVO交绘图;并利用反射系数公式对三类含气砂岩AVO的特征进行分析.结果表明P-SV波反射系数公式可以有效的区分第三类含气砂岩;岩石的孔隙度、流体饱和度等信息是影响地震波AVO的重要因素.利用Gassmann方程进行了对上层为HTI介质,下层为孔隙储层的介质模型进行了流体替换计算,分析了孔隙度、含气饱和度和各向异性参数变化对地层AVO的影响.  相似文献   

10.
虑传播效应的多波保幅AVO正演(英文)   总被引:1,自引:1,他引:0  
传统的AVO正演只考虑了单一界面的反射系数对地震波波场振幅的影响,忽略了地震波在介质中传播的各种传播效应。通过引入地震波在介质中传播的几何扩散、吸收衰减以及透射损失等传播效应,提出了基于射线理论的水平层状介质多波保幅AVO正演方法。推导了水平层状介质多波几何扩散校正公式,来描述多波在介质中传播的几何扩散效应。通过直接引入复旅行时,而无需借助复速度,建立了复旅行时与品质因子的关系,来描述粘弹介质的吸收衰减。直接求解Zoeppritz方程计算多波的透射系数,用于描述多波在介质中传播时的透射损失。数值计算表明,几何扩散、吸收衰减以及透射损失对多波振幅的影响是随偏移距变化而变化的,多波保幅AVO正演需要考虑波传播效应对反射波振幅的改造。  相似文献   

11.
Most amplitude versus offset (AVO) analysis and inversion techniques are based on the Zoeppritz equations for plane‐wave reflection coefficients or their approximations. Real seismic surveys use localized sources that produce spherical waves, rather than plane waves. In the far‐field, the AVO response for a spherical wave reflected from a plane interface can be well approximated by a plane‐wave response. However this approximation breaks down in the vicinity of the critical angle. Conventional AVO analysis ignores this problem and always utilizes the plane‐wave response. This approach is sufficiently accurate as long as the angles of incidence are much smaller than the critical angle. Such moderate angles are more than sufficient for the standard estimation of the AVO intercept and gradient. However, when independent estimation of the formation density is required, it may be important to use large incidence angles close to the critical angle, where spherical wave effects become important. For the amplitude of a spherical wave reflected from a plane fluid‐fluid interface, an analytical approximation is known, which provides a correction to the plane‐wave reflection coefficients for all angles. For the amplitude of a spherical wave reflected from a solid/solid interface, we propose a formula that combines this analytical approximation with the linearized plane‐wave AVO equation. The proposed approximation shows reasonable agreement with numerical simulations for a range of frequencies. Using this solution, we constructed a two‐layer three‐parameter least‐squares inversion algorithm. Application of this algorithm to synthetic data for a single plane interface shows an improvement compared to the use of plane‐wave reflection coefficients.  相似文献   

12.
叠前同时反演是油气探测的一种有效工具.其理论基础是平面P波Zoeppritz方程计算的反射系数的近似,是入射角的函数.叠前同时反演可以利用三项或两项Fatti方程进行反演分析.本文针对实际油田的测井数据,利用反射率法模拟了仅包含P波一次反射记录,包含P波一次反射和P波层间多次波记录以及全波场地震记录,再利用叠前同时反演对合成地震记录进行反演研究.研究结果表明,在大偏移距处P波主要反射受到其它模式波的污染,从而影响了叠前同时反演结果的精度.对于薄互层介质当转换波影响严重时,使用小角度数据的两项AVO反演比使用大角度数据的三项AVO反演更合理可靠.  相似文献   

13.
AVO investigations of shallow marine sediments   总被引:2,自引:0,他引:2  
Amplitude‐variation‐with‐offset (AVO) analysis is based on the Zoeppritz equations, which enable the computation of reflection and transmission coefficients as a function of offset or angle of incidence. High‐frequency (up to 700 Hz) AVO studies, presented here, have been used to determine the physical properties of sediments in a shallow marine environment (20 m water depth). The properties that can be constrained are P‐ and S‐wave velocities, bulk density and acoustic attenuation. The use of higher frequencies requires special analysis including careful geometry and source and receiver directivity corrections. In the past, marine sediments have been modelled as elastic materials. However, viscoelastic models which include absorption are more realistic. At angles of incidence greater than 40°, AVO functions derived from viscoelastic models differ from those with purely elastic properties in the absence of a critical angle of incidence. The influence of S‐wave velocity on the reflection coefficient is small (especially for low S‐wave velocities encountered at the sea‐floor). Thus, it is difficult to extract the S‐wave parameter from AVO trends. On the other hand, P‐wave velocity and density show a considerably stronger effect. Attenuation (described by the quality factor Q) influences the reflection coefficient but could not be determined uniquely from the AVO functions. In order to measure the reflection coefficient in a seismogram, the amplitudes of the direct wave and the sea‐floor reflection in a common‐midpoint (CMP) gather are determined and corrected for spherical divergence as well as source and streamer directivity. At CMP locations showing the different AVO characteristics of a mud and a boulder clay, the sediment physical properties are determined by using a sequential‐quadratic‐programming (SQP) inversion technique. The inverted sediment physical properties for the mud are: P‐wave velocity α=1450±25 m/s, S‐wave velocity β=90±35 m/s, density ρ=1220±45 kg/m3, quality factor for P‐wave QP=15±200, quality factor for S‐wave QS=10±30. The inverted sediment physical properties for the boulder clay are: α=1620±45 m/s,β=360±200 m/s,ρ=1380±85 kg/m3,QP=790±660,QS=25±10.  相似文献   

14.
Based on the empirical Gardner equation describing the relationship between density and compressional wave velocity, the converted wave reflection coefficient extrema attributes for AVO analysis are proposed and the relations between the extrema position and amplitude, average velocity ratio across the interface, and shear wave reflection coefficient are derived. The extrema position is a monotonically decreasing function of average velocity ratio, and the extrema amplitude is a function of average velocity ratio and shear wave reflection coefficient. For theoretical models, the average velocity ratio and shear wave reflection coefficient are inverted from the extrema position and amplitude obtained from fitting a power function to converted wave AVO curves. Shear wave reflection coefficient sections have clearer physical meaning than conventional converted wave stacked sections and establish the theoretical foundation for geological structural interpretation and event correlation. "The method of inverting average velocity ratio and shear wave reflection coefficient from the extrema position and amplitude obtained from fitting a power function is applied to real CCP gathers. The inverted average velocity ratios are consistent with those computed from compressional and shear wave well logs.  相似文献   

15.
根据非均匀电磁波在导电媒质中传播时其相移常数和振幅衰减常数方向的不一致性,利用低频非均匀电磁波在导电地层界面反射时的反射系数导出了电场偏振化方向在入射面内的低频电磁波类全反射相角.  相似文献   

16.
基于Russell近似的纵横波联合反演方法研究   总被引:1,自引:1,他引:0       下载免费PDF全文
PP波和PS波联合反演方法作为有效的地震技术,比单纯纵波反演精度要高,能够提高地震储层识别的精度.以Russell近似理论为基础,推导了新的转换波AVO近似公式,双层模型界面的反射特征数值模拟显示,新公式具有较高的近似精度,且具备直接反演流体因子f、剪切模量μ和密度ρ等参数的优势,有效避免间接反演带来的误差.结合纵横波联合反演理论,提出了基于贝叶斯理论的新型联合反演算法.在实际应用中,对纵波和转换波角道集进行同相轴匹配处理,综合利用纵波和转换波资料携带的信息,实现基于Russell近似的多波联合反演.模型数据和实际资料测试结果表明,反演结果与真实值或测井结果匹配度较高,证实该方法真实有效.  相似文献   

17.
弱各向异性介质中的P-SV波近似反射系数计算   总被引:3,自引:0,他引:3  
We introduce the Thomsen anisotropic parameters into the approximate linear reflection coefficient equation for P-SV wave in weakly anisotropic HTI media. From this we get a new, more effective, and practical reflection coefficient equation. We performed forward modeling to AVO attributes, obtaining excellent results. The combined AVO attribute analysis of PP and PS reflection data can greatly reduce ambiguity, obtain better petrophysical parameters, and improve parameter accuracy.  相似文献   

18.
声波在两种多孔介质界面上的反射和透射   总被引:11,自引:1,他引:11       下载免费PDF全文
本文导出了声波在两种多孔介质界面上反射、透射的一般计算公式.作为例子,数值计算了P1波入射于界面时,P1、P2和S波的反射、透射系数与声波频率、入射角等量之间的关系.结果表明,各种模式波的反射、透射系数与入射角、多孔介质性质有关,在Biot特征频率附近与频率有关,并用界面两侧的法向能流相等验证了结果的正确性.若把多孔介质当作均匀固体处理,将会得到显著不同的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号