首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A steady-state radial heat flux method is used to determine the apparent, lattice and radiative, thermal conductivity and its p, T-dependence up to 6 GPa and over a wide temperature range from 300 to 1600 K. The method employs a differential thermocouple to resolve small changes in temperature gradient due to a line source placed in a sample space subjected to well-defined uniform test temperatures. Measurements are made using an on-line computer. The method is shown to be eminently suitable for determining: (1) the p, T-dependence of the phonon conductivity of cubic single crystals and polycrystalline samples; (2) minima in the apparent thermal conductivity marking the onset of radiative contributions; (3) isolation of phonon and radiative components at high T; (4) conductivity variations caused by progressive polymorphic structure transformations; and (5) conductivity variations through high-pressure melting points into the liquid phase.Results for cubic structures such as MgO and NaCl give good agreement with existing standard values at low temperatures. The conductivity of MgO goes with the inverse of the temperature which is expected from 3-phonon processes. The conductivity of NaCl is of the form λαT?1.32 with the deviation most likely due to thermal expansion effects.At higher temperatures, a radiative contribution was observed in NaCl and CaCO3. Calculated values of the extinction coefficient of NaCl increase slightly with pressure.  相似文献   

2.
The thermal diffusivity of synthetic polycrystalline stishovite was determined by the Ångstrom method in the temperature range 300–550 K at 1 atm. The calculated thermal conductivity of stishovite at 300 K is 0.086 W cm?1 K?1 which is comparable to that for TiO2-rutile but much lower than for GeO2 and SnO2. The observed thermal conductivities of rutile-structure oxides increase systematically with increasing density, in contrast with the expected behavior for isostructural compounds.  相似文献   

3.
The melting curves of the structural analogues SiO 2, BeF 2 and GeO 2 have been studied at pressures ?40 kbar in a piston-cylinder apparatus. The initial slopes dTm/dP of the β-quartz-liquid boundaries for SiO 2 and BeF 2 are ~35° while the slope of the rutile-liquid boundary for GeO 2 is approximately 32°C/kbar. These large values of dT/dP reflect the unusually low entropies of fusion for these compounds in which strong structural similarities exist between the crystalline phases and the melt. Implications for the extended phase diagram of silica are discussed and it is concluded that either: (1) a maximum exists on the coesite melting curve, or (2) estimates of the melting temperature of stishovite need to be revised upwards.  相似文献   

4.
Solvi and liquidi for various LiFMgF2 mixtures have been determined at pressures up to 40 kbar by differential-thermal-analysis in a piston-cylinder high-pressure device. The melting curves of pure LiF and MgF2 were also studied and the initial slopes (dTm/dP)P = 0 were found to be 11.2 and 8.3°C/kbar, respectively. The eutectic composition (LiF)0.64(MgF2)0.36 is independent of pressure to 35 kbar and the eutectic temperature rises approximately 6.3°C per kbar. Initial slopes of 11°C/kbar and 35°C/kbar are inferred for the melting curves of MgO and SiO2 (stishovite) respectively, on the basis of data for their structural analogue compounds. The observed solid solution of LiF in MgF2 and other evidence suggest the possibility of solid solution in the system (Mg,Fe)OSiO2 (stishovite) under mantle conditions which may have important consequences for the elastic properties of a “mixed-oxide” zone of the earth's mantle.  相似文献   

5.
High temperature calorimetric measurements of the enthalpies of solution in molten if2 PbO · B2O3 of α- and γ-Fe2SiO4 and α-, β-, and γ-Co2SiO4 permit the calculation of phase relations at high pressure and temperature. The reported triple point involving α-, β-, and γ-Co2SiO4 is confirmed to represent stable equilibrium. The curvature in the α?β phase boundary in Co2SiO4 and of an α?γ boundary in Fe2SiO4 at high temperature is explained in part by the effects of compressibility and thermal expansion, but better agreement with the observed phase diagram is obtained when one considers the effect of small amounts of cation disorder in the spinel and/or modified spinel phases. The calculated ΔH0 and ΔS0 values for the α?β, α?γ, and β?γ transitions show that enthalpy and en changes both vary strongly in the series Mg, Fe, Co, and Ni, and are of equal importance in determining the stability relations. The disproportionation of Fe2SiO4 and Co2SiO4 spinel to rocksalt plus stishovite is calculated to occur in the 170–190 kbar region; cation disorder and/or changes in wüstite stoichiometry can affect the P?T slope. The calorimetric data for CoSiO3 and FeSiO3 are in good agreement with the observed phase boundary for pyroxene formation from olivine and quartz. The decomposition of pyroxene to spinel and stishovite at pressures near the coesite-stishovite transition is predicted in both iron and cobalt systems. The use of calorimetric data, obtained from small samples of high pressure phases, is very useful in predicting equilibrium phase diagrams in the 50–300 kbar range.  相似文献   

6.
Samples of Ni2SiO4 in both olivine and spinel phases have been compressed to pressures above 140 kbar in a diamond-anvil cell and heated to temperatures of 1400–1800°C using a continuous YAG laser. After quenching and releasing pressure, X-ray diffraction examination indicates that the samples disproportionate to a mixture of stishovite (SiO2) and bunsenite (NiO) at pressures between 140 and 190 kbar. The exact disproportionation pressure is not certain due to transient increases in pressure during the local and rapid heating. However, thermodynamic calculations suggest that the transition pressure is about 192 ± 4 kbar at 1545°C and that the equation of the spinel-mixed oxides phase boundary isP(kbar) = 121 + (0.046 ± 0.020) T (°C).  相似文献   

7.
Ferromagnesian silicate olivines, pyroxenes and garnets with Mg/(Mg + Fe)?0.3 (molar) have been found to transform to high-pressure phases characterized by the orthorhombic perovskite structure when compressed to pressures above 250 kbar in a diamond-anvil press and heated to temperatures above 1,000°C with a YAG laser. The zero-pressure density of the perovskite phase of (Mg,Fe)SiO3 is about 3–4% greater than that of the close-packed oxides, rocksalt plus stishovite. For (Mg,Fe)2SiO4 compounds, the perovskite plus rocksalt phase assemblage is 2–3% denser than the mixed oxides. The experimental synthesis of such high-density perovskite phases in olivine, pyroxene and garnet compounds suggests that (Mg,Fe)SiO3-perovskite is the dominant mineral phase in the earth's lower mantle.  相似文献   

8.
High temperature solution calorimetry of synthetic quartz, coesite and stishovite provides enthalpies of transition. ΔH9750 for quartz-coesite and ΔH2980 for coesite-stishovite transition are 320 ± 70 and 11700 ± 410 cal mol?1, respectively. The present transformation enthalpy data represent a small but significant revision of those of Holm et al. Using the published phase equilibrium data, thermal expansivity, compressibility and heat capacity data, ΔS9750 for the quartz-coesite and ΔS2980 for the coesite-stishovite transition are ?1.2 ± 0.1 and ?1.0 ± 0.4 cal K?1 mol?1, respectively. These thermochemical data are used to calculate phase boundaries of the transitions. The calculated quartz-coesite transition boundary agrees well with the one determined experimentally by Bohlen and Boettcher. The calculated coesite-stishovite boundary is generally consistent with data by Yagi and Akimoto and by Suito.  相似文献   

9.
Co2SiO4 spinel has been found to disproportionate into its isochemically mixed oxides with rocksalt and rutile structures at pressures between 170 and 190 kbar and temperatures between 1400 and 1800°C in a diamond-anvil press. The exact disproportionation pressure is not certain due to transient increases in pressure during the local and rapid heating by a continuous YAG laser. The slope of the phase boundary between the spinel phase and the mixed oxides is calculated to be?33 ± 20bar/deg. This negative slope is consistent with the observed anomalously large entropy of CoO (relative to its isostructural oxides) in entropy vs.(MV)?1/2 systematics, whereM is the formula weight andV the molar volume. The sign of the slope for a phase boundary in the disproportionation of spinel depends on the values of entropy of the rocksalt oxides as well as the inverse character exhibited in the spinel phases. The normal entropy of MgO suggests that the phase boundary for the disproportionation of Mg2SiO4 spinel has positive slope.  相似文献   

10.
Viscosity of anhydrous albite melt, determined by the falling-sphere method in the solid-media, piston-cylinder apparatus, decreases with increasing pressure from 1.13 × 105 P at 1 atm to 1.8 × 104 P at 20 kbar at 1400°C. The rate of decrease in viscosity is larger between 12 and 15 kbar than in other pressure ranges examined. The density of the quenched albite melt increases with increasing pressure of quenching from 2.38 g/cm3 at 1 atm to 2.53 g/cm3 at 20 kbar. The rate of increase in density is largest at pressures between 15 and 20 kbar. The melting curve of albite shows an inflexion at about 16 kbar. These observations strongly suggest that structural changes of albite melt would take place effectively at pressures near 15 kbar. Melt of jadeite (NaAlSi2O6) composition shows very similar changes in viscosity and density and a melting curve inflexion at pressures near 10 kbar. Difference in pressure for the suggested effective structural changes of albite and jadeite melts is 5–6 kbar, which is nearly the same as that between the subsolidus reaction curves nepheline + albite= 2jadeite and albite=jadeite + quartz. The structural changes of the melts are, however, continuous and begin to take place at pressures lower than those of the crystalline phases.  相似文献   

11.
Data in the literature and additional measurements on the thermal diffusivities of granites, granulites and ultrabasic rocks at temperatures up to 1000 K and pressures to 2 GPa, have been used to propose a new model for thermal diffusivity distribution in the crust and upper mantle.The laboratory measurements were made using a pulse method or the Angstroem method with cylindrical heat flow. After making particular assumptions about the pressure and temperature distribution within the top 60 km the pressure and temperature dependencies of diffusivity were transformed into a depth dependence.The model is characterised by a continuous decrease of diffusivity to a depth of ~30 km where there is a small but rapid increase to a nearly constant value of 7.3 × 10?3 cm2 s?1.  相似文献   

12.
Natural marokite (CaMn2O4) has been studied at high pressures and temperatures using a diamond-anvil press coupled with laser heating in the pressure range 100–250 kbar. A mixture of marokite, CaMnO3 (perovskite) and MnO (rocksalt) has been observed in all runs in the above pressure range by X-ray diffraction study of the quenched samples. It was interpreted that marokite disproportionates into the mixture CaMnO3 (perovskite) + MnO (rocksalt) at pressures below 100 kbar. A general comparison of the molar volume for all known compounds having the marokite-related structures (including CaFe2O4 and CaTi2O4) with those for a mixture of perovskite plus rocksalt structures suggested that the mixture is more stable than the marokite-related structures at high pressures, as confirmed by the present experimental result. The CaFe2O4-modification of common nepheline (NaAlSiO4) is also suggested to be unstable relative to the component oxides of α-NaAlO2 + SiO2 (stishovite) at high pressures.  相似文献   

13.
Phase transformations in baddeleyite (ZrO2) and zircon (ZrSiO4) have been investigated in the pressure range between 100 and 300 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. Baddeleyite has been found to transform to an orthorhombic cotunnite-type structure at pressures greater than 100 kbar, and is the first oxide known to adopt this structure. The lattice parameters of the cotunnite-type ZrO2 at room temperature and atmospheric pressure area = 3.328 ± 0.001 ,b = 5.565 ± 0.002 , andc = 6.503 ± 0.003A? withZ = 4 , and its volume is 14.3% smaller than baddeleyite and 7.6% smaller than the fluorite-type ZrO2. It is suggested that all the polymorphic structures of ZrO2 are possible high-pressure models for the post-rutile phase of SiO2. The polyhedral coordination in these model structures varies from 7 to “9”, compared with 6 for stishovite. If SiO2 were to adopt any of these structures in the deep mantle, Birch's hypothesis of a mixed-oxide lower mantle may still be viable, but the primary coordination of silicon would be greater than 6. Zircon has been found to transform to a scheelite-type structure at about 120 kbar as noted earlier. The scheelite-type ZrSiO4 was found to decompose further into a mixture of ZrO2 (cotunnite-type) plus SiO2 (stishovite) in the pressure range 200–250 kbar. As implied by the transitions in zircon, the large cations of U and Th in the earth's deep mantle are most likely to occur in dioxides with structures such as the cotunnite-type, rather than to occur in silicates.  相似文献   

14.
Synthetic crystalline (wollastonite) and glass forms of CaSiO3 have been compressed to loading pressures above 160 kbar and heated to about 1500° C by a laser in a diamond-anvil cell. After cooling, an X-ray diffraction study carried out whilst the sample was maintained at high pressure revealed that it had transformed to a cubic perovskite-type 3olymorph with a = 3.485 ± 0.008A?. After release of pressure, however, the sample showed a mixture of glass plus a few weak lines corresponding to ε-CaSiO3 which is thus interpreted as a retrogressive transition product. The density of the perovskite polymorph of CaSiO3 is about 9.2% greater than that of an isochemical mixture of CaO + SiO2 (stishovite) at about 160 kbar.  相似文献   

15.
CO2 has been investigated up to 514 kbar at23 ± 2°C by both optical and in situ X-ray diffraction studies using a diamond-anvil pressure cell. CO2 solidifies in an unknown structure in the pressure range 5 to 23 kbar, and transforms to ordinary dry-ice structure above 23 kbar at room temperature. Isothermal compression data for dry ice have been obtained above about 24 kbar. These appear to be the first data at room temperature known in the literature. The data fitted to the Birch equation of state yieldK0 = 29.3 ± 1.0kbar andK0 = 7.8 assuming the volume of the hypothetical dry ice at zero-pressure and room temperature is 31.4 ± 0.2 cm3/mole. The isothermal bulk modulus(K0) thus derived is consistent with the compression data and compressibilities for dry ice obtained at low temperatures using dilatometry and ultrasonic techniques, respectively, reported in the literature. By comparing shock-wave data for relevant materials, it is suggested that CO2 is not likely to transform to one of the crystalline forms of SiO2 which is otherwise expected from empirical grounds, but may instead decompose into C (diamond) + O2, at high pressures.  相似文献   

16.
The thermal conductivity of a simulated Apollo 12 lunar soil sample was measured with a needle probe under vacuum. The result showed that the sample, with bulk densities of 1.70–1.85 g cm?3 held in a vertical cylinder (2.54 cm in diameter and 6.99 cm long) has a thermal conductivity ranging from 8.8 to 10.9 mW m?1 K?1. This is comparable to the lunar regolith's thermal conductivity as determined in situ. Besides the dense packing of the soil particles, an enhanced intergranular thermal contact, due to the self-compression of the sample, is necessary to raise the sample's thermal conductivity from the level of loose soil (< 5 mW m?1 K?1) to that of the lunar regolith deeper than 35 cm (~ 10 mW m?1 K?1). A model of the lunar regolith, a thin layer of loose soil resting on a compacted self-compressed substratum, is consistent with the lunar regolith's surface structure as deduced from an observation of the lunar surface's brightness temperature. Martian regolith surface structure is similar, except that its surface layer may be missing in places because of aeolian activity. Measurements of thermal conductivity under simulated martian surface conditions showed that the thermal properties of loose and compacted soils agreed with the two peak values of the martian surface's thermal inertia as observed from “Viking” orbiters, suggesting that drifted loose soil and exposed compacted soil are responsible for the bimodal distribution of the martian surface's thermal inertia near zero elevation. For compacted soil exposed to the martian surface to have the same thermal conductivity as that buried under the surface layer, a cohesion of the soil particles must be assumed.  相似文献   

17.
Phase behaviour in the system diopside-jadeite (CaMgSi2O6NaAlSi2O6) have been investigated in the pressure region 100–300 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. The omphacite solid solution extends from 30 to at least 200 kbar for the entire system. Omphacites, ranging in composition from pure diopside to more than 40 mole % jadeite, transform to diopside (II) at pressures greater than 230 kbar. Diopside (II), which probably possesses a perovskite-type structure, cannot be preserved when experiments are quenched to ambient conditions. Jadeite-rich omphacites were found to decompose into an assemblage of NaAlSiO4(CaFe2O4-type structure) + stishovite + diopside (II) (?) at pressures greater than about 260 kbar. These results suggest that an eclogitic model mantle would not display the 400-km seismic discontinuity. Moreover, sodium in the transition zone and lower mantle would most likely be accommodated in phases of omphacite and diopside (II).  相似文献   

18.
Calculations of thermal effects of oxidation-reduction reactions in the open systems for the undifferentiated earth have been carried out up to 2000 kbar. It is shown that a change in the sign of the thermal effect occurs with increase of pressure in these open systems: endothermal reactions which occur at pressures Ps < Pc become exothermal at pressures Ps > Pc and vice versa. At a certain critical pressure Ps = Pc the enthalpy of reaction is equal to zero.The results of calculations show that the central part of the earth and the deep interior could become warm due to reduction processes (for example reduction of ferromagnesian silicates and oxides, and stishovite) during core formation. Reducing conditions in the undifferentiated earth during core formation imply that a large fraction of the total heat of chemical reactions was released in the deep interior and was absorbed in the upper parts of the planet.  相似文献   

19.
Abstract The amphibolites occur sporadically as thin layers and blocks throughout the Sulu Terrane, eastern China. All analyzed amphibolite from outcrop and drill cores from prepilot drill hole CCSD‐PP1 and CCSD‐PP2, Chinese Continental Scientific Drilling Project in the Sulu Terrane, are retrograded eclogites overprinted by amphibolite‐facies retrograde metamorphism, with characteristic mineral assemblages of amphibole + plagioclase + epidote ± quartz ± biotite ± ilmenite ± titanite. However, coesite and coesite‐bearing ultrahigh‐pressure (UHP) mineral assemblages are identified by Raman spectroscopy and electron microprobe analysis as inclusions in zircons separated from these amphibolites. In general, coesite and other UHP mineral inclusions are preserved in the cores and mantles of zircons, whereas quartz inclusions occur in the rims of the same zircons. The UHP mineral assemblages consist mainly of coesite + garnet + omphacite + rutile, coesite + garnet + omphacite, coesite + garnet + omphacite + phengite + rutile + apatite, coesite + omphacite + rutile and coesite + magnesite. Compositions of analyzed mineral inclusions are very similar to those of matrix minerals from Sulu eclogites. These UHP mineral inclusion assemblages yield temperatures of 631–780°C and pressures of ≥2.8 × 103 MPa, representing the P–T conditions of peak metamorphism of these rocks, which are consistent with those (T = 642–726°C; P ≥ 2.8 × 103 MPa) deduced from adjacent eclogites. These data indicate that the amphibolites are the retrogressive products of UHP eclogites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号