首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple box model of the circulation into and inside the ocean cavern beneath an ice shelf is used to estimate the melt rates of Antarctic glaciers and ice shelves. The model uses simplified cavern geometries and includes a coarse parameterization of the overturning circulation and vertical mixing. The melting/freezing physics at the ice shelf/ocean interface are those usually implemented in high-resolution circulation models of ice shelf caverns. The model is driven by the thermohaline inflow conditions and coupling to the heat and freshwater exchanges at the sea surface in front of the cavern. We tune the model for Pine Island Glacier and then apply it to six other major caverns. The dependence of the melting rate on thermohaline conditions at the ice shelf front is investigated for this set of caverns, including sensitivity studies, alternative parameterizations, and warming scenarios. An analytical relation between the melting rate and the inflow temperature is derived for a particular model version, showing a quadratic dependence of basal melting on small values of the temperature of the inflow, which changes to a linear dependence for larger values. The model predicts melting at all ice shelf bases in agreement with observations, ranging from below a meter per year for Ronne Ice Shelf to about 25 m/year for the Pine Island Glacier. In a warming scenario with a one-degree increase of the inflow temperature, the latter glacier responds with a 1.4-fold increase of the melting rate. Other caverns respond by more than a tenfold increase, as, e.g., Ronne Ice Shelf. The model is suitable for use as a simple fast module izn coarse large-scale ocean models.  相似文献   

2.
When a hot basaltic magma is emplaced into continental crust or a pre-existing silicic magma chamber, the processes of assimilation with fractional crystallization (AFC) are likely to control the liquid line of descent of the magma. These processes are particularly important at the floor of the magma chamber because evolved light liquids generated by floor melting readily mix with the overlying basaltic magma. In order to clarify the effects of temperature and composition of the floor on the AFC processes, we experimentally investigated simultaneous melting and crystallization of a NH4Cl–H2O binary eutectic system. In the experiments, evolution of temperature and compositional profiles of a hot solution overlying a cold solid mixture of variable initial temperatures and compositions were measured. The initial NH4Cl concentrations of solid and liquid are chosen to be higher than the eutectic composition, such that the density change of the experimental material by crystallization and melting is qualitatively the same as that of natural magmas and crusts. The results show that a mushy layer forms at the floor due to simultaneous crystallization and (partial) melting and that the liquid evolves due to mixing with liquids released by crystallization and melting. The ratio of melting mass to crystallization mass (M/C ratio) depends on the initial floor temperature and composition. As the initial floor temperature decreases, the rate of melting largely decreases, so that the M/C ratio becomes smaller. As the initial NH4Cl concentration of the solid floor decreases, the degree of partial melting of the floor increases; however, it does not necessarily result in an increase in the M/C ratio. The higher melt fraction of the mushy layer increases permeability within the mushy layer, so that vertical exchange between the liquid in the mushy layer and the more concentrated overlying liquid is enhanced. This effect promotes crystallization in the mushy layer, and decreases the M/C ratio. It is suggested that the M/C ratio during AFC processes depends on details of the mixing process in the liquid layer such as spacing and meandering of buoyant plumes.  相似文献   

3.
目前存在有多种地幔热导率模型,不同模型在数值和随温压变化的特征上有明显的差异.为探究不同热导率模型对动力学数值模拟结果的影响,本文对不同模型下的岩石圈张裂过程进行模拟研究,探讨地幔热导率对岩石圈热传输、变形和熔融过程的影响及其作用机理.结果显示,不同热导率模型下,岩石圈的变形和熔融特征表现出明显差异.高热导率模型下,岩石圈破裂较晚,形成陆缘较为宽阔,地壳熔融强烈而地幔熔融较弱;低热导率模型下,岩石圈破裂较早,形成陆缘较为狭窄,地幔熔融强烈而地壳熔融较弱.这种差异源于不同地幔热导率下岩石圈和地幔热状态的变化及相应力学性质的改变.高热导率下,热传导的增温效应显著,岩石圈呈现较热的状态,其强度整体较低,壳幔耦合减弱;而低热导率下,热对流的增温效应显著,岩石圈呈较冷的状态,其强度整体较高,壳幔耦合增强.基于模拟结果,本文认为地幔热导率的选取对动力学模拟的结果有着较为显著的影响,相对于随温压的变化,热导率数值的差异对动力学数值模拟的结果影响更大,尤其是对于地幔熔融过程的影响.  相似文献   

4.
地幔柱是最可能形成大火成岩省的原因之一,同时地幔柱与岩石圈的相互作用也极大的影响着岩石圈的构造演化.本文主要集中研究地幔柱与岩石圈相互作用过程中熔融相关的问题.利用开源程序Ellipsis3D,基于质量守恒方程、动量守恒方程、能量守恒方程和岩石流变本构关系,以及不同的熔融损耗关系,通过有限元数值方法模拟得到地幔柱与岩石圈相互作用过程中熔融程度的动态变化.数值模拟结果显示,地幔柱与岩石圈相互作用的熔融相关过程分为三个阶段:地幔柱的初融阶段,地幔柱自身熔融占主导,减压熔融为主因;地幔柱与岩石圈的纵向作用阶段,岩石圈地幔开始熔融,地幔柱以减压熔融为主,岩石圈地幔以升温熔融为主;地幔柱的横向展平阶段,随着地幔柱的扩展岩石圈地幔熔融范围增加,以升温熔融为主,地幔柱自身熔融程度减小.最后基于数值模拟结果及现场资料对峨嵋山大火成岩省地幔柱的发展演化以及峨眉山大火成岩省的形成进行了讨论.  相似文献   

5.
Basic magma generation in the mantle at the present stage of earth history probably begins most commonly in metamorphosed garnet peridotite at those points where the four major phases meet; the solidus defines the spatial limits of the region of melting at the site of origin. On the basis of the forsterite-diopside-pyrope system and the melting relations of natural garnet peridotite at high pressures, the melting is invariant-like up to about 30% liquid. If the melt is fractionally removed, melting temporarily ceases after this limit is reached, terminating the production of liquid of invariant-like composition. Because one phase is eventually consumed at the invariant-like point, melting might be resumed at a higher temperature, generating a different liquid of more basic composition at the invariant-like point governing the assemblage of remaining phases. The garnet peridotite becomes permeable to melt almost immediately after the melting process begins, as has been demonstrated by the large increase in measured electrical conductivity. A large volume of relatively homogeneous liquid can, therefore, be extracted as it is produced. Continuous heating of the parental material by conduction from a hot source below results in a series of liquid compositions, determined predominantly by the thermal gradient, with the greater degree of melting at the bottom. Conversely, heating of the parental material by adiabatic rise also results in a series of liquid compositions, determined predominantly by the pressure gradient, with the greater degree of melting at the top. Tapping from the top of parental materials partially melted in these two different ways results in successions of lavas having opposite sequences of magma composition. Segregation of the melt occurs under small stress differences, and the melt penetrates the plastic envelope around the magma chamber by means of ephemeral, slowly propagating, ductile faults. The envelope may extend out to a physical boundary at about 0.8 of the temperature of the beginning of melting. The boundary of the zone characterized by plastic behavior may be either sharp or gradual depending on the strain rate. In the brittle region outside the plastic region, magmafracting (similar to hydrofracting) takes place and the cracks are propagated episodically, producing earthquakes. If a liquid is extracted fractionally under small stress differences from host rocks with temperature or pressure gradients, convective mixing at the site of origin or in an auxiliary chamber may be necessary to account for the limited variation of trace elements in some large-volume extrusions. Isotopic variations between local magma may result from small-scale heterogeneity in the mantle, but is not likely to be due to disequilibrium melting.  相似文献   

6.
通过对采自青藏高原的六种地壳岩石,包括花岗闪长岩、混合岩、片麻岩、玄武岩、辉橄岩及斜长角闪岩等,进行高温高压纵波速度测量,发现绝大多数地壳岩石其纵波速度在压力高于0.2-0.3GPa时基本上随压力线性增加。在固定压力下随温度升高而降低,但在温度较低时这一现象并不明显,随温度的程式高波速出现明显降低。通过对实验后的样品进行显微薄片分析,发现含水矿物的脱水和部分熔融是造成岩石波迅速降低的主要原因。在实验过程中还发现高压下温度较高时,接收到的超声波振幅会增大。对实验中发现的这些现象本文进行了初步的分析和讨论。  相似文献   

7.
A Morse-stretch potential charge equilibrium force field for silica system has been employed to simulate the thermodynamics of stishovite with the molecular dynamics (MD) method. The equation of state, thermal expansivity and melting curve of stishovite have been obtained. This simple force field yielded results in accordance with the static and dynamic experiments. The stishovite melting simulation appears to validate the interpretation of superheating of the solid along the Hugoniot in the shock melting experiments. MD simulations show that the thermal expansivity of stishovite at lowermost mantle conditions is a weak function of temperature. The phase diagram of silica up to the mega bar regime is proposed based on the experimental and theoretical studies. The related physical and geophysical implications are addressed.  相似文献   

8.
研究青藏高原东缘地区的深部物质结构对于理解青藏高原的隆升及扩张机制具有重要的科学意义.本文将青藏高原东缘实测大地电磁测深剖面反演所得的岩石圈电性结构模型与高温高压岩石物理实验测得的上地幔矿物和熔融体导电性定量关系相结合,通过Hashin-Shtrikman(HS)边界条件建立上地幔电导率与温度、熔融百分比等参数的定量关系,在此基础上计算得到了青藏高原东缘上地幔热结构及熔融百分比分布模型.研究结果表明在青藏高原东缘地区通过大地电磁测深方法所探测到的上地幔低阻体可以解释为由高温作用所产生的局部熔融区域.其中,松潘—甘孜地块上地幔高导体对应的温度介于1300~1500℃之间,熔融百分比可高达10%,支持前人将松潘—甘孜地块内部的低阻体解释为局部熔融的观点.龙门山断裂带以东、四川盆地西缘的上地幔高导体温度介于1200~1400℃之间,熔融百分比介于1%~5%左右,表明扬子克拉通的西缘可能正在经历一定程度的活化作用.龙门山断裂带下方的上地幔高阻体温度介于1100℃附近,基本没有发生局部熔融,具有较冷的刚性块体特征,与该区域频发的地震活动相吻合.四川盆地东部的扬子上地幔温度介于800~900℃之间,没有发生局部熔融,符合古老稳定的克拉通块体的基本特征.  相似文献   

9.
Electrical conductivity σ of two ultramafic rocks (a spinel lherzolite and a garnet peridotite) has been investigated to melting temperature at 1 bar under known oxygen fugacity environment. The electrical conductivity of the two rocks is found to increase with degree of partial melting and an ~ 15% melt fraction is necessary for the electrical conductivity to increase by ~ 1 order of magnitude. For a given melt fraction electrical conductivity of a spinel lherzolite is lower than that of a garnet peridotite and may be attributed to the differences in the composition of the melts formed.  相似文献   

10.
高喜马拉雅淡色花岗岩形成的热模拟   总被引:10,自引:0,他引:10       下载免费PDF全文
地壳物质重熔形成高喜马拉雅淡色花岗岩需要在中地壳深度20多百万年前达到650℃以上的温度,但如何解释冷的印度板块向欧亚大陆俯冲时会产生这样的高温是一个难题,单一因素的解释往往不能解释全部地质观测事实.本文通过有限单元法定量化计算,提出多种因素的综合作用的假说,认为较合理的估计包括逆掩断层的幕式活动和间歇、摩擦剪切生热、高放射性元素含量和低热导率岩石的存在、高抬升剥蚀速度等因素.这些因素的组合才造成高喜马拉雅淡色花岗岩既能成带,但又只是断续的出现.  相似文献   

11.
The temperature and degree of melting in an upwelling diapir in the mantle may be considerably less than that anticipated from an adiabatic cooling curve. Several geological and thermodynamic parameters may be incorporated to produce a more realistic melting model in diapirs. The latent heat of fusion of mantle material is the greatest buffer on degrees of melting. Models are presented which suggest that an uprising diapir intersecting the anhydrous solidus of mantle material at 50 kbars may be only 29% melted on reaching the surface. A diapir initiated at 100 kbars may be 69% melted. These are maximum values. These calculations imply that the generation of komatiitic liquids by diapiric uprise alone demands that the diapir originate at depths in excess of 300 km. Melting of mantle with an irregular geotherm is preferred for the origin of these liquids.  相似文献   

12.
与非冰封期水体相比,冰封期湖泊初级生产力的研究较为薄弱,一方面在于完整冰封期的调查观测数据仍然较少,而完整的冰下初级生产力变化过程对于理解冰下生态系统对环境因子的响应至关重要,另一方面物理过程与冰下生态的联系仍然有待明确。本研究于2021 2022年冬季期间在大辽河口沿岸的含章湖开展野外调查,通过垂向归纳模型(vertically generalized production model,VGPM)计算了冰下初级生产力,分析了冰封期中初级生产力完整的变化过程,并探讨了冰封期初级生产力的关键物理驱动因素。结果表明:冰封期初级生产力呈现波动爬升的趋势,平均值为0.20 g C/(m2·d);整个冰封期可以划分为3个时期,即结冰期、缓慢融冰期和快速融冰期,不同时期初级生产力的关键驱动因子不同,在结冰期水温是控制初级生产力的关键因素,在缓慢融冰期冰水界面光合有效辐射强度(photosynthetically active radiation,PAR)是控制初级生产力的关键因素,在快速融冰期水温和冰水界面PAR同时控制初级生产力。在结冰期冰下水体富营养化程度逐渐增加,在融冰期初级生产力随着升温和...  相似文献   

13.
A new technique actively controls thermal radiation and monitors sample properties during laser-heating in a diamond anvil cell. The technique can be described as a qualitative application of thermal analysis. Discontinuities in temperature, laser power, visible thermal radiation, or in their derivatives as functions of time can be associated with the enthalpy of phase transitions (such as melting) or with changes in maternal properties (such as emissivity).The technique is illustrated with melting experiments on iron-magnesium-silicate perovskite. Temperature corrections associated with these experiments are discussed and the results are briefly reviewed.  相似文献   

14.
A series of water-deficient partial melting experiments on a low-K tholeiite were carried out under lower crustal P–T–H2O conditions (900–1200 °C, 0.7–1.5 GPa, 2 and 5 wt% H2O added) using a piston-cylinder apparatus. With increasing temperature at 1.0 GPa, supersolidus mineral assemblages vary from amphibolitic to pyroxenitic. Garnet crystallizes in the higher pressure runs (> 1.2 GPa). Melt compositions show low-K calc-alkalic trends, and are classified as metaluminous or peraluminous tonalite. These features are similar to the felsic rocks in the Izu–Bonin – Mariana (IBM) arc, for example Tanzawa plutonic rocks. The anatectic origin of Tanzawa tonalites is consistent with geochemical modeling, which demonstrates that the rare earth element (REE) characteristics of Tanzawa plutonic rocks (which represent the middle crust of the IBM arc) can be generated by partial melting of amphibolite in the lower crust (∼ 50% melting at 1050 °C and below 1.2 GPa). Estimated densities of pyroxenitic restites (∼ 3.9 g/cm3) after extraction of andesitic melts are higher than that of mantle peridotite beneath the island arc (3.3 g/cm3). The high density of the restite could cause delamination of the IBM arc lower crust. Rhyolitic magmas in the IBM arc (e.g. Niijima) could be formed by low degrees of partial melting of the amphibolitic crust at a temperature just above the solidus (10% melting at or below 900 °C).  相似文献   

15.
Petrogeochemical data indicate that after the end of seafloor spreading,residual magmatic activity still exists in the deep basin of the South China Sea.By using different viscous structure models beneath the fossil spreading center of the Southwest sub-basin we simulated the amount of melt produced,the length of the melting period,and the thermal evolution process in terms of geothermics and the buoyant decompression melting mechanism.We compared the results of our model with observed heat flow,seismic,and petrogeochemistry data.The results show that depletion buoyancy induced by buoyant decompression melting plays an important role in the melting process,while retention buoyancy,thermal buoyancy,and viscous shear force have only a weak influence on the melting process.From the length of the melting period,we determined that for the three viscous structures models the magmatic activity lasted about 5,12,and 15 Ma.Under the effect of buoyant depression melting,local high-temperature areas will develop under the basin,which can explain the low-velocity layer detected by seismic exploration in the middle and upper lithosphere of the Southwest sub-basin.We also simulated the possible lithology distribution beneath the fossil spreading center with the physical conditions of different viscous structure,different temperature structure,and different melting fraction,which provided a greater understanding of the rock petrogeochemical data of the deep sea basin in the South China Sea.  相似文献   

16.
The melting curve of forsterite has been studied by static experiment up to a pressure of 15 GPa. Forsterite melts congruently at least up to 12.7 GPa. The congruent melting temperature is expressed by the Kraut-Kennedy equation in the following form: Tm(K)=2163 (1+3.0(V0 ? V)/V0), where the volume change with pressure was calculated by the Birch-Managhan equation of state with the isothermal bulk modulus K0 = 125.4 GPa and its pressure derivative K′ = 5.33. The triple point of forsterite-β-Mg2SiO4-liquid will be located at about 2600°C and 20 GPa, assuming that congruent melting persists up to the limit of the stability field of forsterite. The extrapolation of the previous melting data on enstatite and periclase indicates that the eutectic composition of the forsterite-enstatite system should shift toward the forsterite component with increasing pressure, and there is a possibility of incongruent melting of forsterite into periclase and liquid at higher pressure, although no evidence on incongruent melting has been obtained in the present experiment.  相似文献   

17.
Streamflow simulation is often challenging in mountainous watersheds because of incomplete hydrological models, irregular topography, immeasurable snowpack or glacier, and low data resolution. In this study, a semi-distributed conceptual hydrological model (SWAT-Soil Water Assessment Tool) coupled with a glacier melting algorithm was applied to investigate the sensitivity of streamflow to climatic and glacial changes in the upstream Heihe River Basin. The glacier mass balance was calculated at daily time-step using a distributed temperature-index melting and accumulation algorithm embedded in the SWAT model. Specifically, the model was calibrated and validated using daily streamflow data measured at Yingluoxia Hydrological Station and decadal ice volume changes derived from survey maps and remote sensing images between 1960 and 2010. This study highlights the effects of glacier melting on streamflow and their future changes in the mountainous watersheds. We simulate the contribution of glacier melting to streamflow change under different scenarios of climate changes in terms of temperature and precipitation dynamics. The rising temperature positively contributed to streamflow due to the increase of snowmelt and glacier melting. The rising precipitation directly contributes to streamflow and it contributed more to streamflow than the rising temperature. The results show that glacial meltwater has contributed about 3.25 billion m3 to streamflow during 1960–2010. However, the depth of runoff within the watershed increased by about 2.3 mm due to the release of water from glacial storage to supply the intensified evapotranspiration and infiltration. The simulation results indicate that the glacier made about 8.9% contribution to streamflow in 2010. The research approach used in this study is feasible to estimate the glacial contribution to streamflow in other similar mountainous watersheds elsewhere.  相似文献   

18.
基于2019—2020期间在盘锦市含章湖利用浮式观测平台开展湖冰原型观测试验,分析不同因素对湖冰变化造成的影响.结果表明:99 d冰期内湖冰的生消过程可概述为:湖泊封冻(3 d)—稳定生长(62 d)—冰厚稳定(7 d)—加速消融(24 d)—破碎分解(3d).生长期冰厚的平均增长速率为0.4 cm/d,最大冰厚为30.7 cm;不同深度(5~17 cm)冰温对气温变化的响应存在滞后性,滞后时间为70~158 min,冰温与气温的最大相关系数为0.52~0.89;降雨过程造成冰面反照率由0.22降至0.09,影响了冰内温度以及冰下40 cm以内的浅层水温,但14 mm的降雨量并未引起表面冰厚增加;降雪过程造成冰面反照率由0.25升至0.90,同时阻碍了 5 cm以内的浅层冰温对气温变化的响应,但风速长时间大于8 m/s时会导致冰面积雪被吹散,冰面重新裸露;消融期冰厚的衰减过程呈抛物线趋势,存在显著的加速过程,融化速率由0.3 cm/d逐渐增加到2.7 cm/d;湖冰生长期的冰底热通量均值为4.8 W/m~2;到消融期增加至8.1 W/m~2,为生长期的1.7倍;太阳辐射与湖冰边界侧向融化是导致湖冰加速融化的关键因素.本研究填补了国内湖冰冻融全过程实测资料的空缺,为湖冰热力学模型的改进提供了科学支撑.  相似文献   

19.
Model calculations are made in order to understand the characteristics and response to climate change of runoff from a cold glacier on the Tibetan Plateau. Some 20% of meltwater is preserved at the snow–ice boundary due to refreezing, since the glaciers in mid to northern Tibet are sufficiently cooled during the previous winter. Sensitivity to alterations in meteorological parameters has revealed that a change in air temperature would cause not only an increase in melting by sensible heat, but also a drastic increase in melting due to lowering of the albedo, since some of the snowfall changes to rainfall. In addition, it was suggested that a decrease in precipitation would cause a lowering of the surface albedo, with a resulting increase in the contribution of glacier runoff to the total runoff of river water. This study shows the first quantitative evaluation of the above effects, though they have been suggested qualitatively. The seasonal sensitivity of glacier runoff was examined by changing the dates given for a meteorological perturbation for a period of only 5 days. It was revealed that changes in both air temperature and precipitation during the melting season strongly affected glacier runoff by changing the surface albedo, though these perturbations only slightly altered the annual averages. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Unlike light oils, heavy oils do not have a well‐established scheme for modelling elastic moduli from dynamic reservoir properties. One of the main challenges in the fluid substitution of heavy oils is their viscoelastic nature, which is controlled by temperature, pressure, and fluid composition. Here, we develop a framework for fluid substitution modelling that is reliable yet practical for a wide range of cold and thermal recovery scenarios in producing heavy oils and that takes into account the reservoir fluid composition, grounded on the effective‐medium theories for estimating elastic moduli of an oil–rock system. We investigate the effect of fluid composition variations on oil–rock elastic moduli with temperature changes. The fluid compositional behaviour is determined by flash calculations. Elastic moduli are then determined using the double‐porosity coherent potential approximation method and the calculated viscosity based on the fluid composition. An increase in temperature imposes two opposing mechanisms on the viscosity behaviour of a heavy‐oil sample: gas liberation, which tends to increase the viscosity, and melting, which decreases the viscosity. We demonstrate that melting dominates gas liberation, and as a result, the viscosity and, consequently, the shear modulus of the heavy oils always decrease with increasing temperature. Furthermore, it turns out that one can disregard the effects of gas in the solution when modelling the elastic moduli of heavy oils. Here, we compare oil–rock elastic moduli when the rock is saturated with fluids that have different viscosity levels. The objective is to characterize a unique relation between the temperature, the frequency, and the elastic moduli of an oil–rock system. We have proposed an approach that takes advantage of this relation to find the temperature and, consequently, the viscosity in different regions of the reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号