首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We employ a niching genetic algorithm to invert ∼30,000 differential ScS/S attenuation values for a new spherically symmetric radial model of shear quality factor (Qμ) with high sensitivity to the lower mantle. The new radial Qμ model, QLM9, possesses greater sensitivity to Qμ at large mantle depths than previous studies. On average, lower mantle Qμ increases with depth, which supports models of increasing viscosity with depth [B.M. Steinberger, A.R. Calderwood. Mineral physics constraints on viscous flow models of mantle flow, J. Conf. Abs., 6, 2001., 2001.]. There are two higher-Qμ regions at ∼1000 and ∼2500 km depth, which roughly correspond to high-viscosity regions observed by Forte and Mitrovica [A.M. Forte and J.X. Mitrovica, Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data, Nature 410, 1049–1056, 2001.]. There is a lower-Qμ layer at the core–mantle boundary and a relatively low-Qμ region in the mid-lower mantle. With several caveats, we infer a divergence of the solidus and geotherm in the lower mantle and a convergence within Dʺ by relating Qμ to homologous temperature.  相似文献   

2.
A worldwide study of short-period teleseismic body wave spectra shows that the high frequency falloff rates of spectra are correlated with the tectonic type of the source and receiver regions and with source depth. The data indicate, in a consistent manner, that the main cause for such variations is the lateral variation of Q in the upper mantle as well as change of Q with depth. Using the internal consistency checks provided by redundancies in the data set other effects such as crustal, site dependent distortion of the spectra, source effects and instrument non-linearity can be ruled out as significant factors influencing the t1 estimates obtained. The results indicate high attenuation in the upper mantle under tectonic regions and new oceans. Long-period regional attenuation studies indicate similar variations in mantle Q among the types of regions mentioned but yield significantly lower Q estimates in all areas. The short- and long-period attenuation results can be reconciled only by assuming a frequency dependent Q that increases with frequency along all types of paths, such that the relative differences in Q along various types of paths retain the same sign over the short- and long-period bands.  相似文献   

3.
—Investigations of the spectral characteristics of teleseismic body waves revealed that the spectral falloff rate between 1 Hz and 10 Hz is primarily controlled by anelastic attenuation along the path. In addition, the amount of high-frequency energy in teleseismic body waves is far above the level expected on the basis of Q estimates at low frequencies, thus leading to the idea of frequency dependence in Q. Q variations in the earth’s mantle can be investigated by mapping out the variations of high frequency (4 - 10 Hz) energy relative to the low frequency (1 - 3 Hz) energy in teleseismic P waves, and similar ratios at lower frequencies in teleseismic S waves. Because of the extreme sensitivity of spectral content of short-period body waves to Q variations, large uncertainties in other factors affecting spectral content can be tolerated in such studies. With the increasing number and density of broadband seismic stations recording at high sampling rates, tomographic studies of Q at high frequencies become possible.  相似文献   

4.
36 pairs of multiply-reflected ScS waves from deep earthquakes around Japan are analyzed to investigate the anelastic properties of the mantle on the continental and oceanic sides of the dipping slab. The average Q-value for shear waves passing through the mantle on the oceanic side is found to be 226 in the frequency range 10–40 mHz. This Q-value is in good agreement with the Q models SL8 (Anderson and Hart, 1978) and QBS (Sailor and Dziewonski, 1978) which have been derived from free oscillation data. Assuming that the Q-value for the mantle deeper than 400 km on the continental side of the Japanese Arc is the same as that for the model SL8, we obtain a value of Q = 53 in the upper mantle above the dipping slab beneath the Sea of Japan. Higher Q-values are obtained for the mantle behind the northern Izu-Bonin arc.  相似文献   

5.
Short-period seismograms are synthesized for PKP phases in anelastic Earth models. The synthetics were constructed using a synthetic technique valid at grazing incidence, a source-time function appropriate for deep-focus earthquakes, and an instrument response for either a short-period WWSSN or SRO seismograph. The agreement between predicted and observed amplitudes and spectral ratios requires neither a low-Qα zone at 0.2–2 Hz nor a low or negative P-velocity gradient at the bottom of the outer core. Thin low-Qα zones beneath the inner core boundary fit spectral ratio data that sample the upper 200 km of the inner core but fail to fit data that sample the lower inner core. Only a model having Qα?1?[0.003, 0.004] at 0.2–2 Hz, nearly constant with depth in the inner core, satisfies all of the spectral ratio and amplitude data. The assumption of a bulk viscosity of 10-103 Pa s for the liquid phase of a partially molten inner core combined with the observation of low shear attenuation in the inner core at frequencies less than 0.005 Hz limit the physical parameters associated with two possible attenuation mechanisms: (1) fluid flow and viscous relaxation due to ellipsoidally shaped inclusions of melt, and (2) the solid-liquid phase transformation induced by the stress change during the passage of a seismic wave. Both mechanisms require an order of 0.1% partial melt to reproduce the observed Qα?1. In the outer core, the time constant of the mechanism of phase transformation is predicted to be 104–106 s. Confirmation of small shear attenuation in the inner core in the frequency band of seismic body waves would favor the mechanism of phase transformation.  相似文献   

6.
The lower mantle and outer core are subjected to tests for homogeneity and adiabaticity. An earth model is used which is based on the inversion of body waves and Q-corrected normal-mode data. Homogeneous regions are found at radii between 5125 and 4825 km, 4600 and 3850 km, and 3200 and 2200 km. The lower mantle and outer core are inhomogeneous on the whole and are only homogeneous in the above local regions.Finite-strain and atomistic equations of state are fit to the homogeneous regions. The apparent convergence of the finite-strain relations is examined to judge their applicability to a given region. In some cases the observed pressure derivatives of the elastic moduli are used as additional constraints. The effect of minor deviations from adiabaticity on the extrapolations is also considered. An ensemble of zero-pressure values of the density and seismic velocities are found for these regions. The range of extrapolated values from these several approaches provides a measure of uncertainties involved.  相似文献   

7.
Thermal models of subduction zones often base their slab–wedge geometry from seismicity at mantle depths and, consequently, cannot be used to evaluate the relationship between seismicity and structure. Here, high-resolution seismic observations from the recent Broadband Experiment Across the Alaska Range (BEAAR) constrain, in a rare instance, the subducting slab geometry and mantle wedge temperature independent of seismicity. Receiver functions reveal that the subducting crust descends less steeply than the Wadati-Benioff Zone. Attenuation tomography of the mantle wedge reveals a high Q and presumably cold region where the slab is less than 80 km deep. To understand these two observations, we generate thermal models that use the improved wedge geometry from receiver functions and that incorporate temperature- and strain-rate-dependent olivine rheology. These calculations show that seismicity within the subducting crust falls in a narrow belt of pressure–temperature conditions, illuminating an effective Clapeyron slope of 0.1 K/MPa at temperatures of 450–750 °C. These conditions typify the breakdown of high-pressure hydrous minerals such as lawsonite and suggest that a single set of dehydration reactions may trigger intermediate-depth seismicity. The models also require that the upper, cold nose of the mantle wedge be isolated from the main flow in the mantle wedge in order to sustain the cold temperatures inferred from the Q tomography. Possibly, sufficient mechanical decoupling occurs at the top of the downgoing slab along a localized shear zone to 80 km depth, considerably deeper than inferred from thrust zone seismicity.  相似文献   

8.
A Frequency-dependent Relation of Coda Qc for Koyna-Warna Region, India   总被引:1,自引:0,他引:1  
—Attenuation properties of the lithosphere around the Koyna-Warna seismic zone is studied by estimating the coda-Q c from 30 local earthquakes of magnitude varying from 1.5 to 3.8. An average lapse time of 65 sec used in the single scattering model sampled a circular area with an average radius of 114 km. The estimated Q c values show a frequency-dependent relation, Q c =169 f?0.77, and range from 169 at 1 Hz to 1565 at 18 Hz. A comparison of worldwide Q studies reveals that for a large frequency range the Q for active regions is low as compared to that for stable regions. However, South Carolina and Norway are exceptions in that their Q is low in the low frequency range while New England and North Iberia are exceptions as they have a Q value similar to that for active regions like Spain, Turkey, Italy and Garhwal Himalaya (STIH), in the higher frequency range. In contrast to this, the Q for the Koyna-Warna area, which belongs to a stable region, is low in the entire frequency range as compared to the stable regions and similar to the active STIH regions.  相似文献   

9.
On the basis of data of long period Rayleigh surface wave, we select 43 two-station paths which cover the eastern China thoroughly. By using the improved method of multi-filtration, we obtain the group velocity and amplitude spectrum, and then get attenuation factor for each paths. We employ Talentola inversion method to get local attenuation factor, and further invert the three-dimension Q β image under the crust and upper mantle in the eastern Chinese continent. The Q β image shows the following basic characters. There is correlation between the seismic activity and Q β structure under the crust and upper mantle in North China region. The Yangtze block begins to collide with and subduct to the North China block from the southern border of the Qinling in the southern Shaanxi. In the large part of Yangtze quasi-platform appear an obvious high Q β area at 88 km deep. In the east of Sichuan depression platform, the juncture of Sichun and Guizhou, and the Jiangnan block near the juncture of Guizhou and Hunan, the lateral variation of Q β in the crust is little, and there is a high-Q β layer no thinner than 40 km in the top mantle. In the Dian-Qian fold and fracture region between Yunnan and Guizhou, the vertical variation of Q β at the region of the crust and upper mantle is little, there is a low-Q β layer in the top mantle, about 40 km thick, low-Q β layer of the upper mantle begins to appear at about 95 km deep. In the east of Yangtze quasi-platform and the central and eastern part of the South China fold system, the Moho is smooth, the lateral variation of Q β in the crust is also little, low-Q β layer of the upper mantle begins to appear at about 85 km deep.  相似文献   

10.
—Measurements of seismic attenuation (Q ?1) can vary considerably when made from different parts of seismograms or using different techniques, particularly at high frequencies. These discrepancies may be methodological, or may reflect earth processes. To investigate this problem, we compare body wave with coda Q ?1 results utilizing three common techniques i) parametric fit to spectral decay, ii) coda normalization of S waves, and iii) coda amplitude decay with lapse time. Q ?1 is measured from both body and coda waves beneath two mountain ranges and one platform, from recordings made at seismic arrays in the Caucasus and Kopet Dagh over paths ≤ 4° long. If Q is assumed frequency independent, spectral decay fits show Q s and Q coda near 700–800 for both mountain paths and near 2100–2200 for platform paths. Similar values are determined with the coda normalization technique. However, frequency-dependent parameterizations fit the data significantly better, with Q s ?(1 Hz) and Q coda?(1 Hz) near 200–300 for mountain paths and near 500–600 for platform paths. Lapse decay measurements are close to the frequency-dependent values, showing that both spectral and lapse decay methods can give similar results when Q has comparable parameterizations. Above 6 Hz, coda measurements suggest some enrichment relative to body waves, perhaps due to scattering, but intrinsic absorption appears to dominate at lower frequencies. All approaches show sharp path differences between the Eurasian platform and adjacent mountains, and all are capable of resolving spatial variations in Q.  相似文献   

11.
Based on the single scattering model of seismic coda waves, we have calculated theQ-factor in Beijing and its surrounding regions by means of calculating the power density spectrum in frequency domain with a fixed time window. The digital seismic data of 69 earthquakes from Beijing Telemetered Seismographic Network are used. These earthquakes were recorded from January 1, 1989 to December 31, 1990 at 20 stations. This paper shows the variations of the codaQ-factors in the studied region with different sites, frequency and lapse time, and the temporal change of the codaQ-factors in these two years. The results indicate that codaQ-factor depends strongly on the lapse time and frequency. It is assumed that whenQ C=Q 0fη, for the three time windows of 15–30s, 30–60s and 60–90s, the average values ofQ 0 are 48, 115 and 217; and the average values ofη are 0. 89, 0.91 and 0.74, respectively.  相似文献   

12.
We inverted for laterally varying attenuation, absolute site terms, moments and apparent stress using over 460,000 Lg amplitudes recorded by the USArray for frequencies between 0.5 and 16 Hz. Corner frequencies of Wells, Nevada, aftershocks, obtained by independent analysis of coda spectral ratios, controlled the tradeoff between attenuation and stress, while independently determined moments from St. Louis University and the University of California constrained absolute levels. The quality factor, Q, was low for coastal regions and interior volcanic and tectonic areas, and high for stable regions such as the Great Plains, and Colorado and Columbia Plateaus. Q increased with frequency, and the rate of increase correlated inversely with 1-Hz Q, with highest rates in low-Q tectonic regions, and lowest rates in high-Q stable areas. Moments matched independently determined moments with a scatter of 0.2 NM. Apparent stress ranged from below 0.01 to above 1 MPa, with means of 0.1 MPa for smaller events, and 0.3 MPa for larger events. Stress was observed to be spatially coherent in some areas; for example, stress was lower along the San Andreas fault through central and northern California, and higher in the Walker Lane, and for isolated sequences such as Wells. Variance reduction relative to 1-D models ranged from 50 to 90 % depending on band and inversion method. Parameterizing frequency dependent Q as a power law produced little misfit relative to a collection of independent, multi-band Q models, and performed better than the omega-square source parameterization in that sense. Amplitude residuals showed modest, but regionally coherent patterns that varied from event to event, even between those with similar source mechanisms, indicating a combination of focal mechanism, and near source propagation effects played a role. An exception was the Wells mainshock, which produced dramatic amplitude patterns due to its directivity, and was thus excluded from the inversions. The 2-D Q plus absolute site models can be used for high accuracy, broad area source spectra, magnitude and yield estimation, and, in combination with models for all regional phases, can be used to improve discrimination, in particular for intermediate bands that allow coverage to be extended beyond that available for high frequency P-to-S discriminants.  相似文献   

13.
—?The digital data acquired by 16 short-period seismic stations of the Friuli-Venezia-Giulia seismic network for 56 earthquakes of magnitude 2.3–4.7 which occurred in and near NE Italy have been used to estimate the coda attenuation Q c and seismic source parameters. The entire area under study has been divided into five smaller regions, following a criterion of homogeneity in the geological characteristics and the constrains imposed by the distribution of available events. Standard IASPEI routines for coda Q c determination have been used for the analysis of attenuation in the different regions showing a marked anomaly in the values measured across the NE border between Friuli and Austria for Q 0 value. A large variation exists in the coda attenuation Q c for different regions, indicating the presence of great heterogeneities in the crust and upper mantle of the region. The mean value of Q c (f) increases from 154–203 at 1.5?Hz to 1947–2907 at 48?Hz frequency band with large standard deviation estimates.¶Using the same earthquake data, the seismic-moment, M 0, source radius, r and stress-drop, Δσ for 54 earthquakes have been estimated from P- and S-wave spectra using the Brune's seismic source model. The earthquakes with higher stress-drop (greater than 1?Kbar) occur at depths ranging from 8 to 14?km.  相似文献   

14.
The attenuation characteristics of Indian lithosphere and its comparison with different tectonic settings in the world are determined from the observations of the Q for Lg(QLg)-, and S(QS)-waves in the 1-30 Hz frequency range. The scattering is approximated with a Gaussian distribution of spherical scatterers. To approximate single scattering, we use Dainty's [Geophy. Res. Lett. 8 (11) (1981) 1126] model that attenuation is given by 1/Q(ω) = 1/Qi + g(ω)v/ω, where Qi is intrinsic Q due to anelastic attenuation, v is shear wave velocity, ω is angular frequency, g = ∫n(a)σ da is the total scattering coefficient for S-to-S scattering, n(a) da is the number of scattering spheres of radius a per unit volume, and σ is the scattering cross-section for the sphere. We find that if n(a) is described by a simple two parameter (a0 and c) Gaussian of amplitude c and standard deviation and mean a0, the attenuation data for different regions of the world are well approximated over the frequency band of seismic observations. Our major findings are: (1) the maximum effect of scattering on attenuation occurs at 0.84 Hz or a wavelength of 4.16 km; (2) the values of g are frequency dependent. Values of g are of the order of 10−3 km−1 at 1-30 Hz, varying from 0.0031 to 0.01 and 0.001 to 0.0083 km−1 for tectonically active and stable regions, respectively; (3) regions of active tectonics and seismicity generally have lower Qi values (1000) than that in stable regions (2000); and (4) regions of high Qi value exhibit low intensity of scattering.  相似文献   

15.
Precise measurements of seismological Q are difficult because we lack detailed knowledge on how the Earth’s fine velocity structure affects the amplitude data. In a number of recent papers, Morozov (Geophys J Int 175:239–252, 2008; Seism Res Lett 80:5–7, 2009; Pure Appl Geophys, this volume, 2010) proposes a new procedure intended to improve Q determinations. The procedure relies on quantifying the structural effects using a new form of geometrical spreading (GS) model that has an exponentially decaying component with time, e ?γt·γ is a free parameter and is measured together with Q. Morozov has refit many previously published sets of amplitude attenuation data. In general, the new Q estimates are much higher than previous estimates, and all of the previously estimated frequency-dependence values for Q disappear in the new estimates. In this paper I show that (1) the traditional modeling of seismic amplitudes is physically based, whereas the new model lacks a physical basis; (2) the method of measuring Q using the new model is effectively just a curve fitting procedure using a first-order Taylor series expansion; (3) previous high-frequency data that were fit by a power-law frequency dependence for Q are expected to be also fit by the first-order expansion in the limited frequency bands involved, because of the long tails of power-law functions; (4) recent laboratory measurements of intrinsic Q of mantle materials at seismic frequencies provide independent evidence that intrinsic Q is often frequency-dependent, which should lead to frequency-dependent total Q; (5) published long-period surface wave data that were used to derive several recent Q models inherently contradict the new GS model; and (6) previous modeling has already included a special case that is mathematically identical to the new GS model, but with physical assumptions and measured Q values that differ from those with the new GS model. Therefore, while individually the previous Q measurements have limited precision, they cannot be improved by using the new GS model. The large number of Q measurements by seismologists are sufficient to show that Q values in the Earth are highly laterally variable and are often frequency dependent.  相似文献   

16.
Based on the Anapa (ANN) seismic station records of ~40 earthquakes (MW > 3.9) that occurred within ~300 km of the station since 2002 up to the present time, the source parameters and quality factor of the Earth’s crust (Q(f)) and upper mantle are estimated for the S-waves in the 1–8 Hz frequency band. The regional coda analysis techniques which allow separating the effects associated with seismic source (source effects) and with the propagation path of seismic waves (path effects) are employed. The Q-factor estimates are obtained in the form Q(f) = 90 × f 0.7 for the epicentral distances r < 120 km and in the form Q(f) = 90 × f1.0 for r > 120 km. The established Q(f) and source parameters are close to the estimates for Central Japan, which is probably due to the similar tectonic structure of the regions. The shapes of the source parameters are found to be independent of the magnitude of the earthquakes in the magnitude range 3.9–5.6; however, the radiation of the high-frequency components (f > 4–5 Hz) is enhanced with the depth of the source (down to h ~ 60 km). The estimates Q(f) of the quality factor determined from the records by the Sochi, Anapa, and Kislovodsk seismic stations allowed a more accurate determination of the seismic moments and magnitudes of the Caucasian earthquakes. The studies will be continued for obtaining the Q(f) estimates, geometrical spreading functions, and frequency-dependent amplification of seismic waves in the Earth’s crust in the other regions of the Northern Caucasus.  相似文献   

17.
This paper deals with characteristics of the short period S-wave attenuation field in the rupture zones of 37 large and great earthquakes with M s = 7.0–8.6, as well as in low seismicity areas. We estimate the effective quality factor from Sn and Lg coda envelopes in two time intervals (Q 1 and Q 2). The quantity Q 1 is a measure of shear wave attenuation in the uppermost mantle, at depths of down to approximately 200–250 km, while Q 2 is relevant to deeper horizons of the upper mantle. We studied variations in the attenuation field in the rupture zone of the 1950 Assam earthquake. We examined the parameters Q 1, Q 2, and Q 1/Q 2 as functions of the time ΔT elapsed after a large earthquake. It is shown that the parameter Q 2 in rupture zones is practically independent of ΔT, while the quantities Q 1 and Q 1/Q 2 increase until ΔT ~ 20–25 years, especially rapidly for normal, normal-oblique, and strike-slip earthquake mechanisms. This analysis provides evidence that, as ΔT increases, so does the quality factor in the upper mantle for shear waves. It is supposed that this is related to the rise of mantle fluids to the crust. Geodynamic mechanisms are discussed that can support a comparatively rapid “drying” of the upper mantle beneath earthquake rupture zones.  相似文献   

18.
Long-range seismic sounding carried out during the last few years on the territory of the U.S.S.R. has shown a basic inhomogeneity of the uppermost mantle, as well as evidence of regularities in the distribution of its seismic parameters. The following data were used: times and apparent velocities of P- and S-waves for investigation of mantle velocities, converted waves for seismic discontinuity model studies and wave attenuation for Q-factor estimation. Strong regularities were distinguished in the distribution of average seismic velocities for the uppermost mantle, in their dependence on the age and type of geostructure and on their position relative to the central part of the continent. Old platforms and the inner part of the continent are marked by velocities under the Mohorovi?i? discontinuity of more than 8.2–8.3 km s?1, young platforms and outer parts of the continent by 8.0–8.2 km s?1, and orogenic and rift zones by 7.8–8.0 km s?1. The difference becomes more pronounced at a depth of about 100–200 km: for the old platform mantle velocities of 8.5–8.6 km s?1 are typical; beneath the orogenic and rift areas, inversion zones with velocities less than 7.8 km s?1 are observed.The converted waves show fine inhomogeneities of the crust and uppermost mantle, the presence of many discontinuities with positive and negative changes of velocity, and anisotropy of seismic waves in some of the layers. Wave attenuation allowed the determination of the Q-factor in the mantle. It varied from one region to another but a close relation between Q and P-wave velocity is the main cause of its variation.  相似文献   

19.
The availability of accelerometric data for the Montenegro earthquake of 15th April 1979 makes it possible to investigate seismic Q of the lithosphere in that region, in particular, its dependence on frequency, on the depth reached by seismic waves, and on the length of time windows in which signals are processed. Two different spectral methods, S phase energy ratio and coda envelope decay, are applied, respectively, to direct and scattered shear waves. Similar results are obtained using different portions of the recordings, i.e., coda waves for the envelope decay fit and the S wave train, with a significant duration of ~ 10 s, for the energy ratios. The same apparent Q (Q ~ 40 f, where f is the frequency expressed in Hz) that is found for other neighbouring central Mediterranean regions (e.g., Ancona, on the central Italian Adriatic coast; Valnerina, in the central Apennines; Irpinia, in the southern Apennines) is also found for the southern Yugoslavian coast, in the band 1–25 Hz up to a maximum range of ~ 120 km from the focus. This strong frequency dependence is probably connected with the type of small-scale heterogeneity and the same geological age and level of tectonic activity peculiar to all these seismotectonic areas.In order to compare the apparent Q of the whole S wave train, ~ 10 s long, with the (intrinsic) apparent Q of the single direct S wave (usually 1 s or less), the maximum entropy method is applied in the energy spectrum computation for shorter wave trains. The use of shorter time windows does not reveal any significant variation in the tendency of Q to increase linearly with frequency as the length of the time window containing the sample of the S waves decreases. This seems to indicate that scattering-dependent Q is generally inseparable from intrinsic Q in the lithosphere when estimates based on variations with distance of the seismic signal spectrum are used. While the type of linear growth with frequency does not seem to undergo any variations (it remains of the Q = qf type), the data show there are a considerable decrease in the coefficient of proportionality Q with decreasing duration of the window of S waves analysed, probably as a result of variations in seismic attenuation with depth.  相似文献   

20.
—A microphysical model of seismic wave attenuation is developed to provide a physical basis to interpret temperature and frequency dependence of seismic wave attenuation. The model is based on the dynamics of dislocation motion in minerals with a high Peierls stress. It is proposed that most of seismic wave attenuation occurs through the migration of geometrical kinks (micro-glide) and/or nucleation/migration of an isolated pair of kinks (Bordoni peak), whereas the long-term plastic deformation involves the continuing nucleation and migration of kinks (macro-glide). Kink migration is much easier than kink nucleation, and this provides a natural explanation for the vast difference in dislocation mobility between seismic and geological time scales. The frequency and temperature dependences of attenuation depend on the geometry and dynamics of dislocation motion both of which affect the distribution of relaxation times. The distribution of relaxation times is largely controlled by the distribution in distance between pinning points of dislocations, L, and the observed frequency dependence of Q, Q, Q∝ωα is shown to require a distribution function of P(L)L -m with m=4-2α The activation energy of Q ?1 in minerals with a high Peierls stress corresponds to that for kink nucleation and is similar to that of long-term creep. The observed large lateral variation in Q ?1 strongly suggests that the Q ?1 in the mantle is frequency dependent. Micro-deformation with high dislocation mobility will (temporarily) cease when all the geometrical kinks are exhausted. For a typical dislocation density of ~ 108 m?2, transient creep with small viscosity related to seismic wave attenuation will persist up to the strain of ~ 10?6, thus even a small strain (~ 10?6?10?4) process such as post-glacial rebound is only marginally affected by this type of anelastic relaxation. At longer time scales continuing nucleation of kinks becomes important and enables indefinitely large strain, steady-state creep, causing viscous behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号