首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Srinivas N. Mohan 《Icarus》1979,40(2):317-330
The global distribution of existing lunar topography suffers from a lack of measurements of far-side radii because of the sparsity of data types in the nonequatorial regions. This paper presents determinations of far-side lunar radii based on the reduction of photogrammetric measurements derived from selected Apollo 16 trans-Earth phase photographs. The regions covered in this analysis lie west of Mare Moscoviense between longitudes 90 and 130°E and latitudes 10 and 60°N. The determinations are made using control points appearing on both NASA topographic orthophoto maps and the Apollo 16 photographs. The estimated lunar radii are referred to these control points and determined with a relative accuracy of 500 m. The new lunar radii are used to generate a topographic map covering the area investigated. The map shows that, with the given spatial density of surface festures measured, basin-sized features can be resolved. In particular, the far-side craters Fabry, Riemann, and Szilard comprise a topographically depressed region about 500 km in diameter centered at 120°E and 38.5°N. The floor of this basin is 2.4 to 3.4 km below the reference sphere of 1738.0 km and 4.8 to 5.8 km below the northern rim of the basin. A comparison of the depth of the unfilled basin with the depths of maria-filled front-side basins leads to the conclusion that basalt fill of the near-side maria may be 2 km deep. The topographic map shows good correlation with geologic provinces of young plains and cratered terra in the far-side highland region investigated. Lack of correlation between sampled values of the state-of-the-art 16th-order and 16th-degree harmonic gravity field model and corresponding topographical values leads to the conclusion that the far-side region investigated is isostatically compensated.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Zdenek Sekanina 《Icarus》1978,33(2):415-427
A model is proposed for single close encounters between two small masses, m1and m2, which orbit a much larger mass, M. The main new feature of the model is the assumption of conic motion of the center of mass of m1and m2 in the gravitational field of M. Comparisons of the model with the three-body equations of motion indicate that the model is a useful approximation for m1, m2 ? 10?5M. The model is therefore applicable for encounters between bodies of the order of an earth mass or smaller in the presence of the sun. Comparisons are also made of outcomes obtained by the model with outcomes of numerical integration for a large variety of close encounters. The above comparisons reveal that for many purposes the model is an adequate approximation for those encounters with ? ≥ 4, where ? is the eccentricity of the hyperbolic orbit of m1about m2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号