首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The geometry of the open flux area in the polar region is computed by superposing a uniform interplanetary magnetic field (IMF) with various orientation angles to a model of the magnetosphere. It is confirmed that the IMF By component is as important as the Bz component in “opening” the magnetosphere. It is also shown that the computed area of open field lines is remarkably similar to the observed ones which were determined by using the entry of solar electrons. In particular, when the IMF vector is confined in the X-Z-plane and the Bz component has a large positive value, the open area becomes crescent-shaped, coinciding approximately with the cusp region.  相似文献   

2.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

3.
Analysis of interplanetary data has been made to evaluate the influence of the Biny component of the IMF on the magnitude of the AL index, especially with reference to the contribution of By in the reconnection process between the IMF and geomagnetic fields in the dayside part of the magnetosphere. The results of the analysis showed that the effect of Biny on AL is predominantly of a different type from that expected by the current theory of reconnection, and the By effect of the latter type was found to be much less significant in magnitude than the theory predicts. The discrepancy may be resolved if the region where the reconnection takes place has an elongated shape.  相似文献   

4.
The autocorrelation functions of the solar wind velocity and of the IMF components as well as of the geomagnetic activity indices are studied for two periods: August–December, 1965 and January–May, 1974. The vertical component of the IMF is shown to exhibit a rather definite recurrency relatively independent of the recurrency of the solar wind velocity.The daily mean values of the Z-component of the IMF are shown to correlate ( = -0.5) with the intensity of the meridional component of the large scale solar magnetic field with time delay of about 5 days with respect to the latter. This result is interpreted as an evidence for the Z- component of the IMF to be carried away by the solar wind from the Sun.  相似文献   

5.
Relationships between the North-South asymmetry of the geomagnetic activity associated with the sector polarity of the interplanetary magnetic field (IMF) and various solar wind parameters are examined using the subauroral zone magnetic activity indices an and as. It is found that: (1) the effect of the sector polarity of IMF on the North-South asymmetry is due to the By-component of IMF, not to the Bx-component; (2) the asymmetry appears only when IMF is directed southward, being augmented by the increment of the magnitudes of the southward component and the solar wind velocity.  相似文献   

6.
The correlation between the polar cap geomagnetic variations (H-traces) and the changes of the azimuthal (YSE) and vertical (ZSE) components of the interplanetary magnetic field (IMF) during undisturbed periods is examined. It is shown that peak-to-peak correlation between YSE and geomagnetic horizontal component variations may be generally observed in the daytime cusp region, independently of the magnitude and polarity of the ZSE. The existence of the DP3 disturbances associated with the northward component ZSE > 0 is confirmed. It is shown that the disturbances due to the vertical component of the IMF dominate in the region near the pole. In so far as the southward component of the IMF generates both polar cap disturbances and geomagnetic substorms, the disturbances in the region near the pole, associated with ZSE < 0, may be regarded as a precursor of a substorm. On this basis a new index of the polar cap magnetic activity PCL, characterizing the changeability of the magnetic field is proposed. It is shown that the increase of the PCL index is followed in 1–2 hr by a substorm in 70% of events considered.  相似文献   

7.
Auroral boundary variations and the interplanetary magnetic field   总被引:1,自引:0,他引:1  
This paper describes a DMSP data set of 150 auroral images during magnetically quiet times which have been analyzed in corrected geomagnetic local time and latitudinal coordinates and fit to offset circles. The fit parameters R (circle radius) and (X, Y) (center location) have been compared to the hourly interplanetary magnetic field (IMF) prior to the time of the satellite scan of the aurora. The results for variation of R with Bz, agree with previous works and generally show about a 1° increase of R with increase of southward Bz by 1 nT. The location of the circle center also has a clear statistical shift in the Southern Hemisphere with IMF By such that the southern polar cap moves towards dusk (dawn) with By > (By < 0).  相似文献   

8.
We study the interplanetary features and concomitant geomagnetic activity of the two high-speed streams (HSSs) selected by the Whole Heliosphere Interval (WHI) campaign participants: 20 March to 16 April 2008 in Carrington rotation (CR) 2068. This interval was chosen to perform a comprehensive study of HSSs and their geoeffectiveness during this ??deep?? solar minimum. The two HSSs within the interval were characterized by fast solar-wind speeds (peak values >?600 km?s?1) containing large-amplitude Alfvénic fluctuations, as is typical of HSSs during normal solar minima. However, the interplanetary magnetic field (IMF) magnitude [B o] was exceptionally low (??3??C?5 nT) during these HSSs, leading to lower than usual IMF B z values. The first HSS (HSS1) had favorable IMF polarity for geomagnetic activity (negative during northern Spring). The average AE and Dst for the HSS1 proper (HSS1P) were +?258 nT and ??21 nT, respectively. The second HSS (HSS2) had a positive sector IMF polarity, one that is less favorable for geomagnetic activity. The AE and Dst index averages were +?188 nT and ??7 nT, both lower than corresponding numbers for the first event, as expected. The HSS1P geomagnetic activity is comparable to, and the HSS2P geomagnetic activity lower than, corresponding observations for the previous minimum (1996). Both events?? geomagnetic activities are lower than HSS events previously studied in the declining phase (in 2003). In general, V sw was faster for the HSSs in 2008 compared to 1996. The southward IMF B z was lower in the former. The product of these two parameters [V sw and IMF B z ] comprises the solar-wind electric field, which is most directly associated with the energy input into the magnetosphere during the HSS intervals. Thus the combined effects led to the solar wind energy input in 2008 being slightly less than that in 1996. A detailed analysis of magnetic-field variances and Alfvénicity is performed to explore the characteristics of Alfvén waves (a central element in the geoeffectiveness of HSSs) during the WHI. The B z variances in the proto-CIR (PCIR) were ???30 nT2 and <?10 nT2 in the high speed streams proper.  相似文献   

9.
One year of magnetic field data from the geostationary spacecraft ATS 6 have been analysed for effects associated with the equatorial plane components of the interplanetary magnetic field (IMF). It is shown that perturbation fields in the Y (dawn to dusk) direction appear in association with the Y component of the IMF, in agreement with previous theoretical suggestions. On average a fraction 0.28 ± 0.02 of the IMF Y field appears at geostationary orbit, such that the average ATS 6 By field is 1.9 ± 0.4 nT larger when IMF By is positive than when it is negative. The perturbation field magnitudes are also found to depend strongly on local time, however, with largest effects appearing in the midnight and dawn quadrants, where the average perturbation fields are nearly half the simultaneous IMF Bv. field. At noon this fraction drops to one fifth, and no average effect occurs in the dusk quadrant. Both the daily mean perturbation fields and the diurnal modulation are also found to depend upon the level of magnetic disturbance as measured by KP, or equivalently upon IMF Bz, and upon season of the year. Overall stronger daily mean perturbation fields occur when KP is low or when IMF Bz is positive, than when KP is high or when IMF Bz is negative. This effect is not linear, however, and there is also a trend in the data towards increasing perturbation fields with IMF Bz negative and decreasing. On dividing the data according to season, increasingly strong daily mean effects are found in the order winter, summer and equinox for both quiet and disturbed magnetospheres. Diurnal modulations of the perturbation field magnitudes for low KP (IMF Bz > 0) take the form of large amplitude quasi-sinusoidal variations about mean values which are very marked in the equinox data, are present to a lesser degree during summer and are absent during winter conditions. When Kp is high (IMF Bz < 0) significant deviations from mean perturbation field values occur generally only during nightside hours and little seasonal dependence is evident. Finally, it is shown that the highest correlation between the IMF data and the ATS 6 perturbation fields occurs with zero time delay between the two data sets, showing that a prompt response to IMF conditions occurs at geostationary orbit within the 1 h time resolution available in this study. Although many details of the above ATS 6 response remain to be understood, these results overall demonstrate in a very direct manner the magnetically “open” nature of the Earth's magnetosphere.  相似文献   

10.
We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H?? observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H?? observations revealed two successive ejections (of speeds ???350 and ???100 km?s?1), originating from the same filament channel, which were associated with two high speed CMEs (???1223 and ???1660 km?s?1, respectively). These two ejections generated propagating fast shock waves (i.e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun?CEarth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst peak=?472 nT) on the Earth.  相似文献   

11.
The interplanetary magnetic field (IMF) changes and the associated responses of the magnetosphere on November 1, 1972, are examined. IMF Bz changes consisted of a sudden southward turning, a slow northward turning, and a subsequent steady northward sense. Magnetospheric substorms occurred throughout this period.  相似文献   

12.
We employ annually averaged solar and geomagnetic activity indices for the period 1960??C?2001 to analyze the relationship between different measures of solar activity as well as the relationship between solar activity and various aspects of geomagnetic activity. In particular, to quantify the solar activity we use the sunspot number R s, group sunspot number R g, cumulative sunspot area Cum, solar radio flux F10.7, and interplanetary magnetic field strength IMF. For the geomagnetic activity we employ global indices Ap, Dst and Dcx, as well as the regional geomagnetic index RES, specifically estimated for the European region. In the paper we present the relative evolution of these indices and quantify the correlations between them. Variations have been found in: i) time lag between the solar and geomagnetic indices; ii) relative amplitude of the geomagnetic and solar activity peaks; iii) dual-peak distribution in some of solar and geomagnetic indices. The behavior of geomagnetic indices is correlated the best with IMF variations. Interestingly, among geomagnetic indices, RES shows the highest degree of correlation with solar indices.  相似文献   

13.
The effects of the orientation of the interplanetary magnetic field (IMF) on the structure of the distant magnetotail are studied by superposing a uniform magnetic field on a magnetospheric model. It is shown that a southward component of the IMF alone can reduce the closed field region in the magnetotail, while a northward turning of the IMF can produce a new closed field region. It is suggested that these two effects can explain thinning and thickening, respectively, of the plasma sheet during magnetospheric substorms without invoking internal instabilities.  相似文献   

14.
This paper presents the effect of geomagnetic storm on geomagnetic field components at Southern (Maitri) and Northern (Kiruna) Hemispheres. The Indian Antarctic Station Maitri is located at geom. long. 66.03° S; 53.21° E whereas Kiruna is located at geom. long. 67.52° N; 23.38° E. We have studied all the geomagnetic storms that occurred during winter season of the year 2004–2005. We observed that at Southern Hemisphere the variation is large as compared to the Northern Hemisphere. Geomagnetic field components vary when the interplanetary magnetic field is oriented in southward direction. Geomagnetic field components vary in the main phase of the ring current. Due to southward orientation of vertical component of IMF reconnection takes place all across the dayside that transports plasma and magnetic flux which create the geomagnetic field variation.  相似文献   

15.
This paper presents a correlative study between the peak values of geomagnetic activity indices (Dst, Kp, ap and AE) and the peak values of various interplanetary field (Bt, Bz, E and σB) and plasma (T, D, V, P and β) parameters along with their various products (BV, BzV and B2V) during intense geomagnetic storms (GMSs) for rising, maximum and decay phases as well as for complete solar cycle 23. The study leads to the conclusion that the peak values of different geomagnetic activity indices are in good correlation with Bt, Bz, σB, V, E, BV, BzV and B2V, therefore these parameters are most useful for predicting GMSs and substorms. These parameters are also reliable indicators of the strength of GMSs. We have also presented the lag/lead time analysis between the maximum of Dst and peak values of geomagnetic activity indices, various interplanetary field/plasma parameters for all GMSs. We have found that the average of peak values of geomagnetic activity indices and various field/plasma parameters are larger in decay phase compare to rising and maximum phases of cycle 23. Our analyses show that average values of lag/lead time lie in the ≈?4.00 h interval for Kp, ap and AE indices as well as for Bt, Bz, σB, E, D and P. For a more meaningful analysis we have also presented the above study for two different groups G1 (CME-driven GMSs) and G2 (CIR-driven GMSs) separately. Correlation coefficients between various interplanetary field/plasma parameters, their various products and geomagnetic activity indices for G1 and G2 groups show different nature. Three GMSs and associated solar sources observed during three different phases of this solar cycle have also been studied and it is found that GMSs are associated with large flares, halo CMEs and their active regions are close to the solar equator.  相似文献   

16.
We suggest geoeffective independent parameters that can be calculated on the basis of conventional measurements of the solar wind, which allows them to be used to forecast space weather. We present the results of our analysis of the ground variations in planetary geomagnetic activity (K p ) and geoeffective parameters calculated on the basis of solar wind and interplanetary magnetic field measurements in the Earth’s orbit for the period 1964–1996 by taking into account the change in the orientation of the geomagnetic moment during the Earth’s diurnal and annual motions.  相似文献   

17.
The geometry of the open field line region in the polar region is computed for a variety of the interplanetary magnetic field (IMF) orientation. The open field line region can be identified as the area bounded by the auroral oval, namely the polar cap. The polar cap geometry varies considerably with the orientation of the IMF and magnitude, particularly when the IMF Bz component is positive and large. The corresponding exit points of the open field lines on the magnetopause are also examined. The results will be a useful guide in interpreting various upper atmospheric phenomena in the highest latitude region of the Earth and also in observing chemical releases outside the magnetopause.  相似文献   

18.
A fluxgate digital magnetometer is used to study the variation of magnitude of H component during geomagnetic storm events of April, July and November 2004 at southern subauroral localized region at “MAITRI” (geom. lat. 62°S, long. 52.8°E). We also study the effect of vertical component of interplanetary magnetic field (IMF) on the variation of the magnitude of H component during storm time of April, July and November 2004. Results show that before sudden storm commencement (SSC) time magnitude of H component and IMF show smooth variation but after SSC of first storm of 22 July 2004, the magnitude of the H component shows fluctuations and at 09:00 UT it increases, but during second storm of 24 July 2004, the magnitude of H component indicates large fluctuations and it increases rapidly at 04:00 UT.  相似文献   

19.
The relationship between the orientation of the interplanetary magnetic field (IMF), represented by the clock angle which is the angle defined by IMF-By and -Bz components, and the AL and AU indices is examined at various dipole tilt angles for the period of 1978-1988. We use the IMF data obtained from the IMP 8 satellite, AL and AU indices with corrected seasonal variations, and the dipole tilt angle, which is the dipole magnetic latitude of the subsolar point calculated as a function of the day of year and universal time. For both positive (dipole tilted to the Sun) and negative dipole tilt angles, the values of |AL| and AU decrease as the IMF clock angle moves away from 180°, becoming more northward. The indices also tend to become smaller for larger dipole tilt angle, either toward or away from the Sun. This dependence on dipole tilt angle enhances the semiannual variation of geomagnetic activity.  相似文献   

20.
Jovian decametric radio wave emissions that were observed at Goddard Space Flight Center, U.S.A. for a period from 1 October to 31 December, 1974 and data obtained at Mt Zao observatory, Tohoku University, Japan, for a period from 14 July to 6 December, 1975 have been used to investigate the relationship of the occurrence of the Jovian decametric radio waves (JDW), from the main source, to the geomagnetic disturbance index, ΣKp. The dynamic cross-correlation between JDW and ΣKp indicates an enhanced correlation for certain values of delay time. The delay time is consistent with predicted values based on a model of rotating turbulent regions in interplanetary space associated with two sector boundaries of the interplanetary magnetic field, i.e. the rotating sector boundaries of the interplanetary magnetic field first encounter the Earth's magnetosphere producing the geomagnetic field disturbances, and after a certain period, they encounter the Jovian magnetosphere. There are also cases where the order of the encounter is opposite, i.e. the sector boundaries encounter first Jovian magnetosphere and encounter the Earth's magnetosphere after a certain period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号