首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An analysis is made of giant pulsation (Pg) data recorded at ground stations in the Northern Auroral Zone in Scandanavia (mainly at Tromsø, L = 6.4 and Kiruna, L = 5.5) during the period September 1976 to December 1977. They are shown to have a meridional variation of amplitude and polarization consistent with a field line resonance structure and their vertical component behaviour suggests that they also have a rapid azimuthal phase variation. Limited data from conjugate stations at L = 4.4 are used to show that Pg's are odd mode oscillations of the field line. Pg's are equated to the observation of a unique compressional wave in space at synchronous orbit and it is suggested that they result from the drift wave instability of the compressional Alfven wave at the outer edge of the quiet time ring current.  相似文献   

2.
We have determined the meridional flows in subsurface layers for 18 Carrington rotations (CR 2097 to 2114) analyzing high-resolution Dopplergrams obtained with the Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). We are especially interested in flows at high latitudes up to 75° in order to address the question whether the meridional flow remains poleward or reverses direction (so-called counter cells). The flows have been determined in depth from near-surface layers to about 16 Mm using the HMI ring-diagram pipeline. The measured meridional flows show systematic effects, such as a variation with the B 0-angle and a variation with central meridian distance (CMD). These variations have been taken into account to lead to more reliable flow estimates at high latitudes. The corrected average meridional flow is poleward at most depths and latitudes with a maximum amplitude of about $20~\mathrm{m\,s}^{-1}$ near 37.5° latitude. The flows are more poleward on the equatorward side of the mean latitude of magnetic activity at 22° and less poleward on the poleward side, which can be interpreted as convergent flows near the mean latitude of activity. The corrected meridional flow is poleward at all depths within ±?67.5° latitude. The corrected flow is equatorward only at 75° latitude in the southern hemisphere at depths between about 4 and 8 Mm and at 75° latitude in the northern hemisphere only when the B 0 angle is barely large enough to measure flows at this latitude. These counter cells are most likely the remains of an insufficiently corrected B 0-angle variation and not of solar origin. Flow measurements and B 0-angle corrections are difficult at the highest latitude because these flows are only determined during limited periods when the B 0 angle is sufficiently large.  相似文献   

3.
We present independent observations of the solar-cycle variation of flows near the solar surface and at a depth of about 60 Mm, in the latitude range ±?45°. We show that the time-varying components of the meridional flow at these two depths have opposite sign, whereas the time-varying components of the zonal flow are in phase. This is in agreement with previous results. We then investigate whether the observations are consistent with a theoretical model of solar-cycle-dependent meridional circulation based on a flux-transport dynamo combined with a geostrophic flow caused by increased radiative loss in the active region belt (the only existing quantitative model). We find that the model and the data are in qualitative agreement, although the amplitude of the solar-cycle variation of the meridional flow at 60 Mm is underestimated by the model.  相似文献   

4.
We use dual-site radio observations of interplanetary scintillation (IPS) with extremely long baselines (ELB) to examine meridional flow characteristics of the ambient fast solar wind at plane-of-sky heliocentric distances of 24?–?85 solar radii (R ). Our results demonstrate an equatorwards deviation of 3?–?4° in the bulk fast solar wind flow direction over both northern and southern solar hemispheres during different times in the declining phase of Solar Cycle 23.  相似文献   

5.
Simultaneous measurements of the upper mesospheric NaD and OH(8,3) band emissions by meridional scanning photometers, and the OI 5577 Å, O2 Atmospheric band at 8645 Å, NaD and OH(8,3) band emissions by multi-channel tilting filter type zenith photometers have been carried out at Cachoeira Paulista (22.7°S, 45.0°W), Brazil. On two nights during the period May–August 1983, the meridional scanning observations showed horizontal intensity gradients and phase propagations. The nocturnal intensity variations on one of these occasions 13–14 June 1983, which was a magnetically disturbed night with 4 ?kp? 8, also showed vertical phase propagation. In this paper, we present these observations and discuss the possible effects of the horizontal wind system and of gravity wave propagation.  相似文献   

6.
S. Kholikov  F. Hill 《Solar physics》2014,289(4):1077-1084
We present measurements of the solar meridional flow using time-distance analysis based on Global Oscillation Network Group (GONG) data. In an attempt to detect the deep equatorward flow, which is believed to be a very small amplitude motion, we averaged time-difference measurements over a 15-year period and utilized both phase-velocity and high-m filtering techniques. These method seem to be capable of extending the meridional-flow measurements to the deep layers of the convection zone, down to 0.7?R . Typical uncertainties for most depths within ±?35° latitude are less than 0.03 s. At higher latitudes, the uncertainties are about 0.06 s. There is a significant abrupt decrease in the nature of the travel-time differences for measurements that probe the bottom of the convection zone.  相似文献   

7.
The purpose of this work is to investigate the first three harmonics of low-amplitude anisotropic wave trains (LAEs) of cosmic ray intensity and their association with solar and heliospheric parameters. The significant behaviour of these events is that the amplitude remains low for the first harmonic and high for the second/third harmonics, whereas direction of the anisotropy shift is towards earlier hours for the first harmonic and towards later hours for the second/third harmonic compared to annual average anisotropy. The first two harmonics are found to correlate well with the solar activity cycle during these LAEs. The amplitude and the direction of the first two harmonics do not show any significant association with the polarity change of the Bx/By component of the interplanetary magnetic field during LAEs. However, the third harmonic (amplitude and phase) shows some positive correlation with the Bx and negative correlation with the By component. The occurrence of LAEs is dominant for the positive polarity of Bx and the negative polarity of By. The occurrence of LAEs is dominant during the period of average solar wind velocity but their occurrence during high-speed solar wind streams cannot be overlooked. The frequency of occurrence of these LAEs is more during co-rotating streams.The amplitude of first and second harmonic shows deviations for different values of geomagnetic activity index Ap. However, the amplitude of second harmonic and direction of all the three harmonics do not show any significant association with the Ap-index. The Ap-index consistently remains in the range 14?Kp?31 during these events.The amplitude of first and third harmonic and the direction of first harmonic show deviations for different values of proton density. However, the amplitude of the second harmonic and the direction of the second and third harmonics do not show any significant association with proton density. The occurrence of LAEs is dominant when proton density remains ?20. The cosmic ray intensity during LAEs has good anti-correlation with interplanetary magnetic field strength (B) and its Bx component, whereas it shows a good correlation with its By component. However, it shows significant anti-correlation with sunspot number, the product (R×V) and (R×B).  相似文献   

8.
Laurent Gizon 《Solar physics》2004,224(1-2):217-228
Flows in the upper convection zone are measured by helioseismology on a wide variety of scales. These include differential rotation and meridional circulation, local flows around complexes of magnetic activity and sunspots, and convective flows. The temporal evolution of flows through cycle 23 reveals connections between mass motions in the solar interior and the large-scale characteristics of the magnetic cycle. Here I summarize the latest observations and their implications. Observations from local helioseismology suggest that subsurface flows around active regions introduce a solar-cycle variation in the meridional circulation.  相似文献   

9.
We study the meridional flow of small magnetic features, using high-resolution magnetograms taken from 1978 to 1990 with the NSO Vacuum Telescope on Kitt Peak. Latitudinal motions are determined by a two-dimensional crosscorrelation analysis of 514 pairs of consecutive daily observations from which active regions are excluded. We find a meridional flow of the order of 10 m s–1, which is poleward in each hemisphere, increases in amplitude from 0 at the equator, reaches a maximum at mid-latitude, and slowly decreases poleward. The average observed meridional flow is fit adequately by an expansion of the formM () = 12.9(±0.6) sin(2) + 1.4(±0.6) sin(4), in m s–1 where is the latitude and which reaches a maximum of 13.2 m s–1 at 39°. We also find a solar-cycle dependence of the meridional flow. The flow remains poleward during the cycle, but the amplitude changes from smaller-than-average during cycle maximum to larger-than-average during cycle minimum for latitudes between about 15° and 45°. The difference in amplitude between the flows at cycle minimum and maximum depends on latitude and is about 25% of the grand average value. The change of the flow amplitude from cycle maximum to minimum occurs rapidly, in about one year, for the 15–45° latitude range. At the highest latitude range analyzed, centered at 52.5°, the flow is more poleward-than-average during minimumand maximum, and less at other times. These data show no equatorward migration of the meridional flow pattern during the solar cycle and no significant hemispheric asymmetry. Our results agree with the meridional flow and its temporal variation derived from Doppler data. They also agree on average with the meridional flow derived from the poleward migration of the weak large-scale magnetic field patterns but differ in the solar-cycle dependence. Our results, however, disagree with the meridional flow derived from sunspots or plages.Operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the National Science Foundation.  相似文献   

10.
Complex demodulation has been described in detail and applied to Pi2 pulsations in a previous paper by Beamish et al. (1979). The technique is now extended to demonstrate spatiotemporal variations in the fundamental characteristics of Pc3 and Pc4 pulsations along a meridional profile extending from the U.K. to Iceland. With the exception of a high latitude Pc4 coupled resonance the results are consistent with a ?90° Hughes rotation (introduced by the ionosphere) of magnetospheric toroidal line resonances. Furthermore, the ionosphere appears capable of smoothing away the polarisation reversal which would be expected across such amplitude maxima within the plasmasphere. However, a toroidal line resonance in the Pc3 period range about which a sense of polarisation reversal is clearly observed on the ground is suggested as occurring at the plasmapause. This is accounted for in terms of the width of the resonance structure.  相似文献   

11.
Peter Foukal 《Solar physics》2012,279(2):365-381
We compare total solar irradiance (TSI) and ultraviolet (F uv) irradiance variation reconstructed using Ca?K facular areas since 1915, with previous values based on less direct proxies. Our annual means for 1925??C?1945 reach values 30??C?50?% higher than those presently used in IPCC climate studies. A high facula/sunspot area ratio in spot cycles 16 and 17 seems to be responsible. New evidence from solar photometry increases the likelihood of greater seventeenth century solar dimming than expected from the disappearance of magnetic active regions alone. But the large additional brightening in the early twentieth century claimed from some recent models requires complete disappearance of the magnetic network. The network is clearly visible in Ca K spectroheliograms obtained since the 1890s, so these models cannot be correct. Changes in photospheric effective temperature invoked in other models would be powerfully damped by the thermal inertia of the convection zone. Thus, there is presently no support for twentieth century irradiance variation besides that arising from active regions. The mid-twentieth century irradiance peak arising from these active regions extends 20 years beyond the early 1940s peak in global temperature. This failure of correlation, together with the low amplitude of TSI variation and the relatively weak effect of Fuv driving on tropospheric temperature, limits the role of solar irradiance variation in twentieth century global warming.  相似文献   

12.
Evolutionary models form a vital part of stellar population research in understanding their evolution, but despite their long history of development, they are often misrepresented and the properties of stellar population observed through broadband and spectroscopic measurements are also misinterpreted. With growing numbers of these synthesis models, model comparison becomes an important analysis to choose a suitable model for understanding stellar populations and model up-gradation. Along with model comparison, we reinvestigate the technique of modified Strömgren photometry to measure reliable parameter-sensitive colours and estimate precise model ages and metallicities. The assessment of Rakos/Schulz models with GALEV and Worthey’s Lick/IDS model find smaller colour variation: Δ(uz ? vz) ≤ 0.056, Δ(bz ? yz) ≤ ?0.05 and Δ(vz ? yz) ≤ 0.061. The study conveys a good agreement of GALEV models with modified Strömgren colours but with poor UV model predictions and observed globular cluster data, while the spectroscopic models perform badly because of outdated isochrone and stellar spectral libraries with inaccurate/insufficient knowledge of various stellar phases and their treatment. Overall, the assessment finds modified Strömgren photometry well suited to study different types stellar populations by mitigating the effects of age-metallicity degeneracy.  相似文献   

13.
We present the first-look analysis of the high-speed multicolour photometry of the bright V361 Hya-type star EO?Ceti (m V=12.3). The observations were gathered with the three-channel ULTRACAM instrument attached to the 4.2-m William Herschel Telescope. The data set has a total time span of 6.2?d and consists of 31 h simultaneous three colour photometry. The main power regions in all three colours are the same as previously reported in the white light photometric campaigns on EO?Ceti. We calculate the frequencies, amplitudes and phases of the significant modes in three colours of the SDSS system, r′, g′ and u′. The amplitudes of the detected modes are the highest in the u′ lightcurve, and the phases are the same in all three colours within the measurement accuracy. The amplitudes of the highest signal-to-noise modes show time variability in all three colours. We analyse the amplitude and phase variations of the five highest signal-to-noise modes in different colours. Even though the amplitudes show variations from night to night, the amplitude ratios are found to be constant to within 2σ level. This result is promising as it allows us to compare the observed amplitude ratios with theoretically calculated amplitude ratios. This may further constrain the mode identification of the highest amplitude modes in EO?Ceti and let us test the proposed seismic and binary evolution models.  相似文献   

14.
Ground observations of Pi 2 geomagnetic pulsations are correlated with satellite measurements of plasma density for three time intervals. The pulsations were recorded using the IGS network of magnetometer stations and the plasma density measurements were made on board GEOS-1 and ISEE-1. Using the technique of complex demodulation, the amplitude, phase and polarisation characteristics of the Pi 2 pulsations are observed along two meridional profiles; one from Eidar, Iceland (L = 6.7) to Cambridge, U.K. (L = 2.5) and the other from Tromso, Norway (tL = 6.2) to Nurmijarvi, Finland (L = 3.3). The observed characteristics of the Pi 2 pulsations are then compared with the plasma density measurements. Close relationships between the plasmapause position and the position of an ellipticity reversal and a variation in H component phase are observed. A small, secondary amplitude maximum is observed on the U.K./Iceland meridian well inside the position of the projection of the equatorial plasmapause. The primary maxima on the two meridians, in general occur close to the estimated position of the equatorward edge of a westward electrojet. Using the plasma density measurements, the periods of surface waves at the plasmapause for two intervals are estimated and found to be in good agreement with the dominant spectral peaks observed at the ground stations near the plasmapause latitude and within the plasmasphere. The polarisation reversal, together with phase characteristics, spectral evidence and the agreement between the theoretical and observed periods leads to the suggestion that on occasions a surface wave is excited on the plasmapause as an intermediate stage in the propagation of Pi 2 pulsations from the auroral zone to lower latitudes.  相似文献   

15.
The evolution of a rotating star with a mass of 16M at the hydrogen burning phase is considered together with the hydrodynamic processes of angular momentum transport in its interior. Shear turbulence is shown to limit the amplitude of the latitudinal variations in mean molecular weight on a surface of constant pressure in a layer with variable chemical composition. The resulting nonuniformity in the mean molecular weight distribution and the turbulent energy transport along the surface of constant pressure reduce the absolute value of the meridional circulation velocity. Nevertheless, meridional circulation remains the main mechanism of angular momentum transport in the radial direction in a layer with variable chemical composition. The intensity of the processes of angular momentum transport by meridional circulation and shear turbulence is determined by the angular momentum of the star. At a fairly high angular momentum, more specifically, at J = 3.69 × 1052 g cm2 s?1, the star during the second half of the hydrogen-burning phase in its convective core has characteristics typical of classical early Be stars.  相似文献   

16.
Based on the observational data obtained at eleven stations along a geomagnetic meridian (Φm = 45–63°), the characteristics of pc 3, 4 pulsations are investigated. It has been shown that pc 3, 4 pulsations possess two amplitude maxima: one in the high latitudes and the other in middle latitudes. Consequently, the amplitude minimum between the two maxima is observed in subauroral latitudes (Φm ≈ 60°). Examining the peculiarities of the polarization behaviour of pc 3, 4 pulsations along the meridian array, two different regions, where the pulsations are generated, are noticed. One is situated in the middle latitudes of about 55–60°, and the other in the auroral area of about 65–70° in geomagnetic latitude. The former region corresponds to a projection of an area inside the plasmapause and the latter of an area of the outer radiation belt in the magnetosphere. The dependence of the pc 3, 4 periods on the position of the plasmapause is clarified. It is also shown that both the position of the pc 3 amplitude maximum in the middle latitudes and the position of pc 4 minimum in the subauroral area shift according to the variation in the magnetic activity and the position of plasmapause.The dynamic spectra of the simultaneous wave-packets of Pc-pulsations are investigated along the meridional profile. The maximum time delay of the Pc-signals is found at a latitude of about 57°, corresponding to the region of low values of Alfvén velocity inside the plasmasphere. On the other hand, a sharp decrease in the time delay is observed at a latitude of about 60°, the region of the rapid increase of Alfvén velocity at the plasmaspheric boundary in the magnetosphere.  相似文献   

17.
J. Javaraiah 《Solar physics》2012,281(2):827-837
We have analyzed the combined Greenwich and Solar Optical Observing Network (SOON) sunspot group data during the period of 1874??C?2011 and determined variations in the annual numbers (counts) of the small (maximum area A M<100 millionth of solar hemisphere, msh), large (100??A M<300?msh), and big (A M??300?msh) spot groups. We found that the amplitude of an even-numbered cycle of the number of large groups is smaller than that of its immediately following odd-numbered cycle. This is consistent with the well known Gnevyshev and Ohl rule (G?CO rule) of solar cycles, generally described by using the Zurich sunspot number (R Z). During cycles 12??C?21 the G?CO rule holds good for the variation in the number of small groups also, but it is violated by cycle pair (22, 23) as in the case of R Z. This behavior of the variations in the small groups is largely responsible for the anomalous behavior of R Z in cycle pair (22, 23). It is also found that the amplitude of an odd-numbered cycle of the number of small groups is larger than that of its immediately following even-numbered cycle. This might be called the ??reverse G?CO rule??. In the case of the number of the big groups, both cycle pairs (12, 13) and (22, 23) violated the G?CO rule. In many cycles the positions of the peaks of the small, large, and big groups are different, and considerably differ with respect to the corresponding positions of the R Z peaks. In the case of cycle?23, the corresponding cycles of the small and large groups are largely symmetric/less asymmetric (the Waldmeier effect is weak/absent) with their maxima taking place two years later than that of R Z. The corresponding cycle of the big groups is more asymmetric (strong Waldmeier effect) with its maximum epoch taking place at the same time as that of R Z.  相似文献   

18.
We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have used ring-diagram analysis to analyze Dopplergrams obtained with the Michelson Doppler Imager (MDI) Dynamics Program, the Global Oscillation Network Group (GONG), and the Helioseismic and Magnetic Imager (HMI) instrument. We combined the zonal and meridional flows from the three data sources and scaled the flows derived from MDI and GONG to match those from HMI observations. In this way, we derived their temporal variation in a consistent manner for Solar Cycles 23 and 24. We have corrected the measured flows for systematic effects that vary with disk positions. Using time-depth slices of the corrected subsurface flows, we derived the amplitudes and times of the extrema of the fast and slow zonal and meridional flows during Cycles 23 and 24 at every depth and latitude. We find an average difference between maximum and minimum amplitudes of \(8.6 \pm0.4~\mbox{m}\,\mbox{s}^{-1}\) for the zonal flows and \(7.9 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the meridional flows associated with Cycle 24 averaged over a depth range from 2 to 12 Mm. The corresponding values derived from GONG data alone are \(10.5 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the zonal and \(10.8 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the meridional flow. For Cycle 24, the flow patterns are precursors of the magnetic activity. The timing difference between the occurrence of the flow pattern and the magnetic one increases almost linearly with increasing latitude. For example, the fast zonal and meridional flow appear \(2.1 \pm 0.6\) years and \(2.5\pm 0.6\) years, respectively, before the magnetic pattern at \(30^{\circ}\) latitude in the northern hemisphere, while in the southern hemisphere, the differences are \(3.2 \pm 1.2\) years and \(2.6 \pm 0.6\) years. The flow patterns of Cycle 25 are present and have reached \(30^{\circ}\) latitude. The amplitude differences of Cycle 25 are about 22% smaller than those of Cycle 24, but are comparable to those of Cycle 23. Moreover, polynomial fits of meridional flows suggest that equatorward meridional flows (counter-cells) might exist at about \(80^{\circ}\) latitude except during the declining phase of the solar cycle.  相似文献   

19.
《Planetary and Space Science》2007,55(13):1990-2009
This study aims at interpreting the zonal and meridional wind in Titan's troposphere measured by the Huygens probe by means of a general circulation model. The numerical simulation elucidates the relative importance of the seasonal variation in the Hadley circulation and Saturn's gravitational tide in affecting the actual wind profile. The observed reversal of the zonal wind at two altitudes in the lower troposphere can be reproduced with this model only if the near-surface temperature profile is asymmetric about the equator and substantial seasonal redistribution of angular momentum by the variable Hadley circulation takes place. The meridional wind near the surface is mainly caused by the meridional pressure gradient and is thus a manifestation of the Hadley circulation. Southward meridional wind in the PBL (planetary boundary layer) is consistent with the near-surface temperature at the equator being lower than at mid southern latitudes. Even small changes in the radiative heating profile in the troposphere can substantially affect the mean zonal and meridional wind including their direction. Saturn's gravitational tide is rather weak at the Huygens site due to the proximity to the equator, and does not clearly manifest itself in the instantaneous vertical profile of wind. Nevertheless, the simulated descent trajectory is more consistent with the observation if the tide is present. Because of a different force balance in Titan's atmosphere from terrestrial conditions, PBL-specific wind systems like on Earth are unlikely to exist on Titan.  相似文献   

20.
The seasonal variation of the geomagnetic activity shows two sharp maxima (in March and September) and two broader minima (in June and December). It can only poorly be described by a double sine wave. The double phase wave of geomagnetic activity can be transformed - by vertical mirroring of the half year part between the maxima - into a single phase wave, which is represented well by a single sine function. This function is determined here for C i (the daily international character figure of geomagnetic activity) and for A p (the equivalent daily amplitude, based on K p, the geomagnetic planetary three-hour-range indices), for both in their ratios to the mean value over the year and then averaged over many years. To remove part of the irregularities the daily values of C i and A p were corrected for solar activity and reduced to quiet Sun circumstances. Mirroring back to the double phase function the geomagnetic variation is then represented by $$Ci({\text{or }}Ap) = Cm({\text{or }}Ap,m) - |A{\text{ sin}}(\lambda - \varphi )|$$ , in which m means the mirror value, A is the amplitude of the single sine curve, λ runs parallel to the Sun's longitude, ? is the phase constant and the bars indicate the absolute value. The data of the first maximum of the seasonal variation was found to vary between March 18 and 28 for different groups of years. The sharpness of the maxima may point out a resonance in the interaction between the solar wind and the magnetosphere. In the appendix the relation \(Ci = aR^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} + b\) (R being the relative sunspot number) is brought forward. The values of the parameter b through the eleven-year period reveal an increasing influence of sunspot-free regions towards the minimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号