首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The BABEL marine seismic experiment has been carried out to investigate the lithospheric structure and antecedent tectonic signatures of the Baltic Shield, including the Archaean-Proterozoic collisional structure in the northern part of the Gulf of Bothnia.
Lithospheric seismic-reflection streamer data and simultaneously recorded wide-angle reflection and refraction data collected in the Gulf of Bothnia as part of the BABEL project have been used for 3-D modelling. The distribution of land stations around the Gulf provides a good 3-D ray coverage of the PMP reflection data recorded at the eight stations in the area and allows an estimation of strikes and dips of the Moho boundary in the area. The traveltimes of reflected phases are calculated using a method that utilizes the finite-difference solution of the eikonal equation. The Moho wide-angle-reflection (PMP) traveltimes are modelled using an inversion method. A 2-D model from the Gulf of Bothnia extended into the third dimension is used as an initial model. During the inversion the velocity is kept constant and only the Moho boundary is allowed to vary. To estimate the strike of the Moho boundary and the stability of the inversion, two initial models with different strikes are examined.
The results indicate that the Moho depth in the Gulf of Bothnia undulates and has a maximum depth of 55 km in the south, rising to 42 km in the north. The Moho depth variations seem to be step-like. This change in the Moho depth coincides with the location of the presumed fossil subduction zone in the area. The crustal-thickness variations seem to be well approximated by a nearly 2-D structure striking parallel to a postulated subduction zone immediately to the south of the Skellefte area. The presence of the step at the crust/mantle boundary can be interpreted as a result of a plate-collision event at about 2 Ga.  相似文献   

2.
Several years of broad-band teleseismic data from the GRSN stations have been analysed for crustal structure using P -to- S converted waves at the crustal discontinuities. An inversion technique was developed which applies the Thomson-Haskell formalism for plane waves without slowness integration. The main phases observed are Moho conversions, their multiples in the crust, and conversions at the base of the sediments. The crustal thickness derived from these data is in good agreement with results from other studies. For the Gräfenberg stations, we have made a more detailed comparison of our model with a previously published model obtained from refraction seismic experiments. The refraction seismic model contains boundaries with strong velocity contrasts and a significant low-velocity zone, resulting in teleseismic waveforms that are too complicated as compared to the observed simple waveforms. The comparison suggests that a significant low-velocity zone is not required and that internal crustal boundaries are rather smooth.  相似文献   

3.
Teleseismic data have been collected with temporary seismograph stations on two profiles in southern Norway. Including the permanent arrays NORSAR and Hagfors the profiles are 400 and 500 km long and extend from the Atlantic coast across regions of high topography and the Oslo Rift. A total of 1071 teleseismic waveforms recorded by 24 temporary and 8 permanent stations are analysed. The depth-migrated receiver functions show a well-resolved Moho for both profiles with Moho depths that are generally accurate within ±2 km.
For the northern profile across Jotunheimen we obtain Moho depths between 32 and 43 km (below sea level). On the southern profile across Hardangervidda, the Moho depths range from 29 km at the Atlantic coast to 41 km below the highland plateau. Generally the depth of Moho is close to or above 40 km beneath areas of high mean topography (>1 km), whereas in the Oslo Rift the crust locally thins down to 32 km. At the east end of the profiles we observe a deepening Moho beneath low topography. Beneath the highlands the obtained Moho depths are 4–5 km deeper than previous estimates. Our results are supported by the fact that west of the Oslo Rift a deep Moho correlates very well with low Bouguer gravity which also correlates well with high mean topography.
The presented results reveal a ca . 10–12 km thick Airy-type crustal root beneath the highlands of southern Norway, which leaves little room for additional buoyancy-effects below Moho. These observations do not seem consistent with the mechanisms of substantial buoyancy presently suggested to explain a significant Cenozoic uplift widely believed to be the cause of the high topography in present-day southern Norway.  相似文献   

4.
A Bouguer gravity anomaly map of the NW Himalayas and parts of the Kohistan/Hindukush region has been prepared using all available gravity data. Analysis of the gravity field has been carried out along a profile extending from Gujranwala (located near the edge of the Indian shield) to the Haramosh massif in a NNE–SSW direction. The gravity profile is located close to the DSS profile shot under the USSR–India scientific collaborative programme. Velocity information available along different parts of the profile has been used to infer values of crustal and upper mantle density.
The observed gravity field (Bouguer) has been interpreted in terms of Moho depth and density contrast between the crust and the mantle. The Moho depth is interpreted as increasing from nearly 35 km near the edge of the Indian shield to 75 km (below sea-level) underneath the Haramosh massif. A similar model is applicable to a profile passing to the west of Nanga Parbat massif, from Gujranwala to Ghizar, through the Kohistan region. However, along this profile high-density lower-crustal rocks appear to have been emplaced in the upper part along the main mantle thrust. The nature of isostatic compensation prevailing underneath the Himalayas has been discussed, as has the theory of lithospheric flexure proposed by Karner & Watts and Lyon-Caen & Molnar. It is felt that although these ideas explain the broad features of the Moho configuration as observed in the NW Himalayas, there are significant departures. The role of tectonic forces in shaping the Moho and causing changes in the density of the crust cannot be denied.  相似文献   

5.
Summary. Bulletins of the International Seismological Centre (ISC) show very large residuals, up to 15 s early, for arrivals from events in the Tonga–Kermadec subduction zone to the New Zealand network of seismometers. The very early arrivals are confined to events south of about 22°S, and shallower than about 350 km. The waveforms show two distinct phases: an early, emergent, first phase with energy in the high-frequency band 2–10 Hz, and a distinct second phase, containing lower frequency energy, arriving at about the time predicted by JB tables.
The residuals are attributed to propagation through the cold, subducted lithosphere, which has a seismic velocity 5 per cent faster, on average, than normal. Ray tracing shows that the ray paths lie very close to the slab for events south of 22°S, but pass well beneath the slab for events further north, corresponding to the change in residual pattern. This characteristic of the ray paths is due to the curved shape of the seismic zone, and in particular to the bend in the zone where the Louisville ridge intersects the trench at 25°S.
The residuals can only be explained if the high velocity anomaly extends to a depth of 450 km in the region of the gap in deep seismicity from 32 to 36°S. The very high-frequency character of the first phase requires the path from the bottom of the slab to the stations to be of high Q , and to transmit 2–10 Hz energy with little attenuation.
The absence of low-frequency energy in the first phase is due to the narrowness of the high-velocity slab, which transmits only short-wavelength waves. The second phase, which contains low frequencies, is identified as a P -wave travelling beneath the subducted slab in normal mantle. There is no need to invoke any special structures, such as low-velocity waveguides or reflectors, to explain any of the observations. The S -wave arrivals show similar effects.  相似文献   

6.
Summary. The unified seismic exploration program, consisting of 345 km of deep reflection profiling, a 200 km refraction profile, an expanding spread profile and near-surface high resolution reflection meaasurements, revealed a strongly differentiated crust beneath the Black Forest. The highly reflective lower crust contains numerous horizontal and dipping reflectors at depths of 13-14 km down to the crust-mantle boundary (Moho). The Moho appears as a flat horizontal first order discontinuity at a relatively shallow level of 25–27 km above a transparent upper mantle. From modelling of synthetic near-vertical and wide-angle seismograms using the reflectivity method the lower crust is supposed to be composed of laminae with an average thickness of about 100 m and velocity differences of greater than 10% increasing from top to bottom. The upper crust is characterised by mostly dipping reflectors, associated with bivergent underthrusting and accretion tectonics of Variscan age and with extensional faults of Mesozoic age. A bright spot at 9.5 km depth is characterised by low velocity material suggesting a fluid trap. It appears on all of the three profiles in the centre of the intersection region. The upper crust seems to be decoupled from the lowest crust by a relatively transparent zone which is' also identified as a low-velocity zone. This low velocity channel is situated directly above the laminated lower crust. The laminae in the Rhinegraben area are displaced vertically to greater depths indicating an origin before Tertiary rift formation and a subsidence of the whole graben wedge.  相似文献   

7.
Deep seismic soundings along Hirapur-Mandla profile, central India   总被引:1,自引:0,他引:1  
Summary. The crustal depth section along Hirapur-Mandla profile has been computed in two steps from Deep Seismic Sounding (DSS) data. The shallow section up to the crystalline basement is derived by inverting first arrival refraction travel times. The upper Vindhyan sediments (velocity 4.5 km s−1) have a maximum thickness of about 1.5 km at Bakshaho. The lower Vindhyan sediments (velocity 5.4 km s−1) were deposited north of Narmada-Son lineament between Katangi and Narsinghgarh in a graben developed in crystalline basement. The thickness of the lower Vindhyans increases from north to south towards Katangi and the depth to the basement reaches 5.5 km near Jabera. The depth to the Moho boundary varies from 39.5 km near Tikaria to 45 km at Narsinghgarh. The narrow block between Katangi and Jabalpur forms a horst feature which represents the Narmada-Son lineament forming the southern boundary of the Vindhyan basin. Two-dimensional ray tracing was performed generating travel time curves from various shot points which were matched with observed travel time data.  相似文献   

8.
Summary. For a smooth earth model, observations of a set of high-frequency toroidal modes at fixed slowness yield only a single piece of information, the tau value for that slowness. In this note, a procedure for obtaining the shear velocity structure from free oscillation data for an earth model with velocity discontinuities is developed, based on the method of tau inversion. The information content of the high-frequency modes is greater in this case, and the nature and depths of the discontinuities may be deduced. It is shown, for the real Earth, that the tau values obtained from free oscillation data are affected significantly by the presence of the Moho, but a simple iterative scheme may be used to remove this contamination. Brune's method of deducing mode frequencies from body wave pulses is shown to produce significant errors for a model with a pronounced Moho discontinuity, and the same iterative scheme may also be employed to correct for this effect.  相似文献   

9.
Summary. The deep structure of the Faeroe–Shetland Channel has been investigated as part of the North Atlantic Seismic Project. Shot lines were fired along and across the axis of the Channel, with recording stations both at sea and on adjacent land areas. At 61°N, 1.7 km of Tertiary sediments overlies a 3.9–4.5 km s-1 basement interpreted as the top of early Tertiary volcanics. A main 6.0–6.6 km s-1 crustal refractor interpreted as old oceanic crust occurs at about 9 km depth. The Moho (8.0 ° 0.2 km s-1) is at about 15–17 km depth. There is evidence that P n may be anisotropic beneath the Faeroe–Shetland Channel. Arrivals recorded at land stations show characteristics best explained by scattering at an intervening boundary which may be the continent–ocean crustal contact or the edge of the volcanics.
The Moho delay times at the shot points, determined by time-term analysis, show considerable variation along the axis of the Channel. They correlate with the basement topography, and the greatest delays occur over the buried extension of the Faeroe Ridge at about 60° 15'N, where they are nearly 1 s more than the delays at 61°N after correction for the sediments. The large delays are attributed to thickening of the early Tertiary volcanic layer with isostatic downsagging of the underlying crust and uppermost mantle in response to the load, rather than to thickening of the main crustal ayer.
The new evidence is consistent with deeply buried oceanic crust beneath the Faeroe–Shetland Channel, forming a northern extension of Rockall Trough. The seabed morphology has been grossly modified by the thick and laterally variable pile of early Tertiary volcanic rocks which swamped the region, accounting for the anomalous shallow bathymetry, the transverse ridges and the present narrowness of the Channel.  相似文献   

10.
Summary. A two-ship refraction profile was fired on the Australian continental shelf during the Banda Sea geophysical programme carried out by the Woods Hole Oceanographic Institution, the Scripps Institution of Oceanography and the Geological Survey of Indonesia. Some of the 55-kg shots fired during this profile were observed at an array of stations in northern Australia to a distance of 1150 km.
The first arrival P travel times at the land stations had apparent velocities of 6.52, 8.24 and 8.48 km/s. The observed travel times correspond closely with those for other stable continental platform or shield regions. The travel times in these regions are of the order of 6 s less than those given in the Jeffreys—Bullen tables at distances of 700 to 1150 km.
The observations are interpreted as implying an upper-mantle velocity of 8.4 km/s at a depth of about 75 km.  相似文献   

11.
The results of deep reflection profiling studies carried out across the palaeo-meso-Proterozoic Delhi Fold Belt (DFB) and the Archaean Bhilwara Gneissic Complex (BGC) in the northwest Indian platform are discussed in this paper. This region is a zone of Proterozoic collision. The collision appears to be responsible for listric faults in the upper crust, which represent the boundaries of the Delhi exposures. In these blocks the lower crust appears to lie NW of the respective surface exposures and the reflectivity pattern does not correspond to the exposed blocks. A fairly reflective lower crust northwest of the DFB exposures appears to be the downward continuation of the DFB upper crust. The poorly reflective lower crust under the exposed DFB may be the westward extension of the BGC upper crust at depth. Thus, the lower crust in this region can be divided into the fairly reflective Marwar Basin (MB)-DFB crust and a poorly reflective BGC crust. Vertically oriented igneous intrusions may have disturbed the lamellar lower-crustal structure of the BGC, resulting in a dome-shaped poorly reflective lower crust whose base, not traceable in the reflection data, may have a maximum depth of about 50 km, as indicated by the gravity modelling.
The DFB appears to be a zone of thick (45-50 km) crust where the lower crust has doubled in width. This has resulted in three Moho reflection bands, two of which are dipping SE from 12.5 to 15.0 s two-way time (TWT) and from 14.5 to 16.0 s TWT. Another band of subhorizontal Moho reflections, at ≈ 12.5 s TWT, may have developed during the crustal perturbations related to a post-Delhi tectonic orogeny. The signatures of the Proterozoic collision, in the form of strong SE-dipping reflections in the lower crust and Moho, have been preserved in the DFB, indicating that the crust here has not undergone any significant ductile deformation since at least after the Delhi rifting event.  相似文献   

12.
The tectonic subsidence and gravity anomalies in the Malay and Penyu Basins, offshore Peninsular Malaysia, were analysed to determine the isostatic compensation mechanism in order to investigate their origin. These continental extensional basins contain up to 14  km of sediment fill which implies that the crust had been thinned significantly during basin development. Our results suggest, however, that the tectonic subsidence in the basins cannot be explained simply by crustal thinning and Airy isostatic compensation.
The Malay and Penyu Basins are characterized by broad negative free-air gravity anomalies of between −20 and −30  mGal. To determine the cause of the anomaly, we modelled four gravity profiles across the basins using a method that combines two-dimensional flexural backstripping and gravity modelling techniques. We assumed a model of uniform lithospheric stretching and Airy isostasy in the analysis of tectonic subsidence. Our study shows that the basins are probably underlain by relatively thinned crust, indicating that some form of crustal stretching was involved. To explain the observed gravity anomalies, however, the Moho depth that we calculated based on the free-air gravity data is about 25% deeper than the Moho predicted by assuming Airy isostasy (Backstrip Moho). This suggests that the Airy model overestimates the compensation and that the basins are probably undercompensated isostatically. In other words, there is an extra amount of tectonic subsidence that is not compensated by crustal thinning, which has resulted in the discrepancy between the gravity-derived Moho and the Backstrip Moho. We attribute this uncompensated or anomalous tectonic subsidence to thin-skinned crustal extension that did not involve the mantle lithosphere. The Malay and Penyu Basins are interpreted therefore as basins that formed by a combination of whole-lithosphere stretching and thin-skinned crustal extension.  相似文献   

13.
Nontypical BIRPS on the margin of the northern North Sea: The SHET Survey   总被引:1,自引:0,他引:1  
Summary. Striking similarities in the reflectivity of the crust and upper mantle on BIRPS profiles has led to the development of the "typical BIRP", a model seismic section for the British continental lithosphere. The SHET survey, collected in the region of the Shetland Islands and the northern North Sea, fits the general pattern to a certain extent. Caledonian structures and Devonian or younger basins are imaged in the otherwise acoustically transparent upper crust. An unexpected and exciting feature imaged on SHET is a short wavelength structure on the Moho or abrupt Mono offset beneath the strike-slip Walls Boundary Fault. SHET differs markedly from the SWAT typical BIRP, however, by showing a poorly reflective lower crust. Only a narrow zone (∼1 s) at the base of the crust contains high-amplitude reflections. The SHET survey therefore highlights the wide variation in lower crustal reflectivity within the total BIRPS data set rather than the similarities.  相似文献   

14.
Summary. The character of multi-offset reflections from the deep crust in the Mojave Desert are examined to reveal the physical nature of the reflecting structures. We focus on distinguishing classical abrupt discontinuities, such as traditional models of the Conrad and Moho boundaries, from more unusual structures. Finite-difference modeling and simple interference relations show that pre-critical reflections exhibiting an increase in peak frequency with offset arise from thinly-layered horizontal structures, while reflections from step discontinuities show no change in frequency with offset. In the deep crust thin layers may result from sill intrusion or fault motion.
The sense of changes in Poisson's ratio and the relative strength of density changes determine whether reflection amplitudes will increase or decrease with offset. A simple linear regression on pre-critical reflection amplitudes against offset is adequate to separate reflections arising from increases in Poisson's ratio from those arising from decreases in Poisson's ratio and/or density changes. The latter condition may be the result of strong anisotropy or the presence of pore fluid. Comparisons of the properties of major deep reflectors across the Mojave Desert suggest that the effects of tectonic motion and fluid injection have penetrated all levels of the crust.  相似文献   

15.
Summary Peake and Freen Deeps are elongate structures some 30 nautical miles long by 7 miles wide situated near 43° N 20° W on the lower flanks of the Mid-Atlantic Ridge. Seismic reflection records show that underneath about 400 fm of layered sediment the bedrock lies at a depth greater than 3600 fm in Peake Deep and 3300 fm in Freen Deep; the surrounding seafloor is at about 2100 fm. Freen Deep is the eastern end of King's Trough, a flat floored feature some 400 fms deeper than the adjacent seafloor. The Trough extends 220 miles west-north-westwards towards the crest of the Mid-Atlantic Ridge. The area is aseismic and heat flow is normal; there is no displacement of the crest of the mid-ocean ridge on the projected line of King's Trough. Gravity and magnetic surveys have been made. With minor exceptions, magnetic anomalies are not due to bodies elongated parallel with the structure, which, therefore, cannot be a volcanic collapse caldera. Seismic refraction results in the Peake-Freen area show that the crust is not thinned under the deeps although the Moho may be depressed by 2 km. Bouguer anomalies also suggest that the Moho is flat and does not rise to compensate the deeps. Models consistent with gravity and seismic information suggest there is a dense block in the upper mantle under the area. Since no reason to ascribe the origin of the structure to tear faulting has yet been acquired, it is interpreted in terms of over thrusting perpendicular to the deeps, followed by inversion of the lower part of the thickened basaltic crust to eclogite, and its subsequent sinking into the mantle.  相似文献   

16.
Summary. The continent-ocean transition adjacent to Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic profiles. The interpretation of the explosive expanding spread profiles (ESPs) which were shot as part of this survey are discussed here in detail. Extensive seaward dipping reflectors are developed in the upper crust across the entire margin. These seaward dipping reflectors continue northwards on the Faeroes and Vøring margins, where they have been shown to be caused by basaltic lavas, as well as on the conjugate margin of East Greenland. The dipping reflectors are an important feature of the rifting history of the margin and show that extensive volcanism was associated with the extension. The ESPs show clear seismic arrivals out to ranges of 100 km. Wide-angle Moho reflections can be seen on all the lines as well as good mid and lower crustal arrivals. The determination of seismic velocity structure was constrained by ray tracing and by amplitude modelling using reflectivity synthetic seismograms. The results from the ESPs show that there is a thick region of lower crustal material beneath the margin with an unusually high crustal velocity of 7.3–7.4 km s−1. This lower crustal material reaches a maximum thickness of 14 km beneath the central part of the margin and is terminated at depth by the Moho. The lower crustal lens of high-velocity material is interpreted as underplated or intruded igneous rocks associated with the large volumes of extrusive basaltic lavas, now seen as dipping reflectors on the margin.  相似文献   

17.
The blockage of the L g wave by crustal barriers such as continental margins and graben structures has long been recognized as providing a very useful tool for mapping large-scale lateral crustal variations along the propagation path. Numerical simulation of L g -wave propagation in complex anelastic media using the pseudospectral method provides insight into the nature of the propagation process using both snapshots of the wavefield and synthetic seismograms. A variety of 2-D structures have been investigated, including the influence of sediments, crustal thickness and attenuation.
Thick sedimentary basins covering a graben structure can have a major influence, since they remove L g energy by generating P conversion and scattering–the principal mechanisms for strong L g attenuation across a graben. The reduction of the L g energy is reinforced by anelastic attenuation in the sediments as well as the influence of the gradually thinning crustal waveguide associated with an elevated Moho.
The extinction of L g in a sequence of explosions fired across the central graben of the North Sea can be simulated by numerical calculations for the structure derived from refraction experiments.  相似文献   

18.
Summary. The crustal structure beneath the Vema fracture zone and its flanking transverse ridge was determined from seismic refraction profiles along the fracture zone valley and across the ridge. Relatively normal oceanic crust, but with an upwarped seismic Moho, was found under the transverse ridge. We suggest that the transverse ridge represents a portion of tectonically uplifted crust without a major root or zone of serpentinite diapirism beneath it. A region of anomalous crust associated with the fracture zone itself extends about 20 km to either side of the central fault, gradually decreasing in thickness as the fracture zone is approached. There is evidence to suggest that the thinnest crust is found beneath the edges of the 20 km wide fracture zone valley. Under the fracture zone valley the crust is generally thinner than normal oceanic crust and is also highly anomalous in its velocity structure. Seismic layer 3 is absent, and the seismic velocities are lower than normal. The absence of layer 3 indicates that normal magmatic accretionary processes are considerably modified in the vicinity of the transform fault. The low velocities are probably caused by the accumulation of rubble and talus and by the extensive faulting and fracturing associated with the transform fault. This same fracturing allows water to penetrate through the crust, and the apparently somewhat thicker crust beneath the central part of the fracture zone valley may be explained by the resultant serpentinization having depressed the seismic Moho below its original depth.  相似文献   

19.
20.
It is now widely accepted that elastic properties of the continental lithosphere and the underlying sublithospheric mantle are both anisotropic and laterally heterogeneous at a range of scales. To fully exploit modern three-component broad-band array data sets requires the use of comprehensive modelling tools. In this work, we investigate the use of a wide-angle, one-way wave equation to model variations in teleseismic 3-D waveforms due to 2-D elastic heterogeneity and anisotropy. The one-way operators are derived based on a high-frequency approximation of the square-root operator and include the effects of wave propagation as well as multiple scattering. Computational cost is reduced through a number of physically motivated approximations. We present synthetic results from simple 1-D (layer over a half-space) and 2-D (subduction zone) models that are compared with reference solutions. The algorithm is then used to model data from an array of broad-band seismograph stations deployed in northwestern Canada as part of the IRIS-PASSCAL/LITHOPROBE CANOE experiment. In this region radial-component receiver functions show a clear continental Moho and the presence of crustal material dipping into the mantle at the suture of two Palaeo-Proterozoic terranes. The geometry of the suture is better defined on the transverse component where subduction is associated with a ∼10 km thick layer exhibiting strong elastic anisotropy. The modelling reproduces the main features of the receiver functions, including the effects of anisotropy, heterogeneity and finite-frequency scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号