首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 765 毫秒
1.
火山活动是太阳系内所有行星和多数卫星共同经历过的地质作用.类地行星及它们的卫星表面普遍分布着多种火山和火山岩.其中金星、火星和月球与地球上的早期(始太古代)火山活动有许多相似性.现在,火星与月球上的火山活动早已停止,而金星和地球上仍有火山活动.类木行星的卫星上主要活动的是"冰火山",它们之中有些还有十分强烈的活火山活动(如爱莪和海卫一).对太阳系天体火山作用的对比研究能够提供认识太阳系和行星演化、天体深部和浅部地质作用过程、矿产资源形成以及生命的起源和演化等重要信息,是比较行星学的重要组成部分.  相似文献   

2.
水星是离太阳最近的类地行星,它有着类似月球的外表和类似地球的内部,其重要的构造特征主要表现在以下方面:广泛分布的撞击坑;全球线性构造(格子构造)体系;叶片状悬崖;与Caloris盆地相关的构造;局部的拉张构造,其中叶片状悬崖是仅存在于水星的独特构造.类地行星(除地球以外)的构造形迹主要形成于星球历史的早、中期,同时小行星体的构造演化通常被认为是行星热演化以及外部作用(如强烈撞击或者潮汐)共同作用的结果.  相似文献   

3.
根据太阳系探测的成果,对比分析类地行星大气层与水体的形成与演化过程、类地行星地形地貌与地质构造的共性与特性、类地行星的岩石类型比较、类地行星的热历史与内部结构的比较,行星的质量大小和行星与太阳的距离的相互耦合,制约了行星的形成和演化的复杂过程.  相似文献   

4.
太阳系探测的进展与比较行星学的主要科学问题   总被引:1,自引:0,他引:1  
回顾了太阳系的探测历程,综合分析了太阳系探测的发展趋势。未来的太阳系探测将以月球与火星探测为主线,适度开展太阳系其他行星及其卫星、小行星和彗星的考察性探测。21世纪将是全面探测太阳系并为人类社会长期可持续发展服务的新时代。随着太阳系探测的进展,通过系统比较地球与类地行星的大气层与水体的形成演化过程、地形地貌与地质构造特征、岩石类型、热历史与内部结构等方面的共性与特性研究,表明行星的质量大小和行星与太阳的距离的相互耦合,制约了行星的形成和演化的复杂过程。比较行星学已成为指导太阳系探测的科学理论体系。  相似文献   

5.
金星探测研究进展与未来展望   总被引:1,自引:0,他引:1  
金星探测是解答太阳系类地行星形成演化,地球宜居性的形成和未来发展,以及外太阳系宜居星球搜索策略的关键.由于金星恶劣的环境条件、对探测技术的多重挑战和相对高昂的探测成本,金星探测和研究程度远不及月球和火星.自20 世纪90 年代后期,金星探测任务相对匮乏.本文梳理了国际上金星探测研究进展、关键科学问题及技术需求,提出了未来金星的探测目标和探测方式建议.目前,对金星大气和气候研究程度最高,包括大气结构和大气化学,能量平衡和热结构,云层和霾层,大气环流和动力学以及气候演化等.高层大气的物理化学和太阳风与金星的相互作用方面也有重要进展.金星地表和内部的研究则相对滞后,研究涵盖金星表面形貌特征,撞击和重塑历史,火山和构造活动,地表物质组成,地表和大气相互作用等,但受限于数据的空间覆盖率和较低的分辨率和精度,诸多重大问题尚未解答,迫切需要新的探测数据.除探测任务外,金星研究还依赖于地基观测、实验室模拟和数值模拟研究.地面模拟设施对支持金星探测任务研发和金星基础科学研究尤为重要.未来十年是中国开展金星探测的契机和研发相关技术的关键时期.本文可为对金星探测、行星科学、太阳系探测感兴趣的科学家和工程人员提供参考.  相似文献   

6.
晚期重轰击(一般又称为月球灾难,简称LHB)指的是距今约3.8~4.1 Ga时段月球受到大量陨石的轰击,于月面上形成的大量撞击坑,并推论地球、水星、金星和火星也经历了这样一次重轰击。Nice模式是关于太阳系动力学演化的一种设想:在初始原行星气体星盘消散之后很久,大行星从最初紧凑的组构迁移到目前的位置。这个行星迁移理论用来解释包括内太阳系的晚期重轰击,以及Oort云、Kuiper带、海王星和木星Trojans行星等形成的历史事件。  相似文献   

7.
行星构造:寻求地球演化的踪迹   总被引:1,自引:0,他引:1  
肖智勇  许志琴 《地质学报》2021,95(1):259-275
地质构造是记录地球内、外动力地质作用过程的标志。和地球相似,太阳系其他天体上也发育丰富的地质构造。以研究天体表面的地质构造及其动力学机制为目的的"行星构造学"是建立在构造地质学、遥感地质学和地球物理学等学科基础上的一门新兴前沿学科。由于天体的大小、组分和轨道位置不同,表面构造特征及其形成机制各异。对比研究地球和其他天体上的构造特征,是完善地球动力学的重要途径。水星和月球的热演化轨迹大致相同,内部持续冷却造成全球收缩,表面形成大量的挤压构造,而伸展构造仅局部发育。火星的岩石圈主要通过热传导散热,表面发育大量的挤压构造,且其形成时间可能呈单峰式分布。同时,火星表面的伸展和挤压构造和大火山群紧密相关,表明深部动力过程影响了火星上的区域构造。金星和地球的大小相似,但金星表面的最大年龄远小于地球大陆地壳的平均年龄,~80%的早期地质记录完全被后期的岩浆-构造活动抹去,表面发育大量的火山-深大裂谷系,说明"幔柱"活动对金星的构造演化至关重要,因此热传导可能也是当前金星岩石圈的主要散热方式。以上天体的岩石圈形变均以垂直运动为主。在外太阳系,一些卫星的表壳主要由冰水和其他挥发分组成,有些卫星存在下伏的液态水圈,潮汐作用可能是驱动其构造演化的主要动力。在特殊的应力来源和物质特性的共同作用下,在这些卫星上发育大量的走滑断层和疑似俯冲消减带。行星地质构造从能量和物质属性的角度探究构造运动的物理和化学过程,与地球动力学研究相辅相成,对揭示地球早期动力学过程的关键科学问题具有重要的指示意义。  相似文献   

8.
地球环境演化的阶段性及其形成机制探讨   总被引:4,自引:0,他引:4  
地球环境(大气圈、水圈)的演化具有明显的阶段性。撞击作用与地内核转变能是地球环境(大气圈、水圈)演化的根本机制。地球吸积形成期,原地球捕获太阳星云大气形成的原始大气经太阳风驱赶和星子撞击而逃逸,早期大规模的撞击过程又可能使地球上折矿物脱去挥发分,形成地球次生大气的一部分,也可使其次生大气部分脱离地球,地球形成期曾经历过撞击生气与气体逃逸的多次旋回,撞击作用决定其环境条件;地球形成之后,撞击作用仍起  相似文献   

9.
张健 《地质科学》2014,(3):739-753
太阳系内类地行星具有相似的岩石层包围金属核的圈层结构,在行星幔的热演化历史起源方面具有同时性和同源性,并且都在早期变形重力位能加热的基础上随放射性热能衰减而冷却。但是,由于半径、密度、粘度以及表层构造属性等物理条件的差异,其热演化历史各具特色。依据基本的热对流和热传导方程,我们计算分析了类地行星热物理条件差异对行星幔热演化历史的影响。计算表明,类地行星热演化的早期,行星幔热对流是主要的散热方式。半径较大的行星表面热流密度大,平均散热量也大。半径较小的行星内部温差小,粘滞系数高,对流能力低,提早进入传导散热状态,且传导散热的岩石层也比大行星厚。不同边界层热物理条件下,类地行星幔热演化历史会分别出现逐渐冷却的平稳式、包含热柱上涌的波动式、行星幔幕次翻转的周期式等特点不同的热演化过程。火星内部曾经存在的地幔热柱构造与火星地幔热动力学演化过程密切相关。我们从火星地幔热动力学演化模型出发,定量计算与地幔热柱构造演化相关的地幔热动力学演化特征,通过三维球壳数值模拟,研究了火星地幔热演化历史上可能存在的热柱活动造成的火星热演化历史的非单调变化,火星地幔对流环结构随时间的演变方式,以及与边界相关的地幔热柱对火星地形的影响。  相似文献   

10.
水是生命活动的基础,也是天体演化的重要部分。月球一直被认为是"无水"星体,但这一观点被最新的研究成果推翻。月球遥感红外光谱和Apollo样品分析结果均证实了月球表面能通过太阳风质子与月壤矿物相互作用来产生OH甚至是H2O。为探讨其反应过程,相关理论分析和离子注入模拟实验等研究已逐步开展。但是,目前对于太阳风成因水的成因机制,形成时的影响因素,产生后在月表的赋存、迁移和保留机制仍缺乏系统研究。针对这些问题,未来立足于嫦娥五号样品分析,建立月球表面太阳风成因水的形成和迁移运动的模型将会是推进月球水研究的重要部分。这不仅能为月球水资源开发利用提供线索,还可能为太阳系内其他无大气类地行星水来源和演化研究提供参考。正北京100049;3.中国科学院太空制造技术重点实验室,北京100094;4.中国科学院地球化学研究所环境地球化学国家重点实验室,贵州贵阳550081)  相似文献   

11.
S. Fred Singer 《Earth》1977,13(2):171-189
The study of the Earth—Moon system provides the connecting link between purely astronomical studies of the origin of the solar system and its planets, and geophysical and biological studies of the evolution of the Earth's geology, its surface features, atmosphere and hydrosphere, and of terrestrial life.A coherent account is presented here, based on the hypothesis that the Moon formed separately and was later captured by the Earth. The adoption of this hypothesis, together with the observed depletion of iron in the Moon, sets some important constraints on the development of condensation and agglomeration phenomena in the primeval solar nebula, which led to the formation of planetesimals, and ultimately to planets.Capture of the Moon also defines a severe heating event within the Earth, whereby its kinetic energy of rotation is largely dissipated internally by the mechanism of tidal friction. From this melting event dates the geologic, atmospheric, and oceanic history of the Earth. An attempt is made to account for the unique development of the Earth, especially in relation to Mars and Venus, its neighboring planets.  相似文献   

12.
It now appears probable that all of the terrestrial planets underwent some form of global chemical differentiation to produce crusts, mantles, and cores of variable relative mass fractions. There is direct seismic evidence for a crust on the Moon, and indirect evidence for distinct crusts on Mars and Venus. Substantial portions of these crusts have been in place since the time that heavy bombardment of the inner solar system ceased 4 Ga ago. There is direct evidence for a sizeable core on Mars, indirect evidence for one on Mercury, and bounds on a possible small core for the Moon. Core formation is an important heat source confined to times prior to 4 Ga ago for Mercury and the Earth, but was not closely linked to crustal formation on the Moon nor, apparently, on Mars. The tectonic and volcanic histories of the surfaces of the terrestrial planets Moon, Mars, and Mercury can be used, with simple thermal history models, to restrict the earliest chemical differentiation to be shallow (outer 200–400 km) for the first two bodies and much more extensive for Mercury. Extension of these models to an Earth-size planet leads to the prediction of a hot and vigorously convecting mantle with an easily deformable crust immediately following core formation, and of the gradual development of a lithosphere and of plates with some lateral rigidity in Late Archean—Proterozoic times.  相似文献   

13.
王道德  戴诚达 《地球化学》1995,24(2):110-120
类地行星挥发性元素普遍亏损很可能是由于太阳星云早期剧烈的太阳活动引起的。当气体、尘粒、挥发性元素和水被驱赶出内太阳系时,只有米级到公里级的物质保存下来并堆积成星子,最终吸积星子形成类地行星。我们认为类地行星的初始物质主要是已分异的星子和一些未分异的球粒陨石质星子或不同类型的陨石母体,最靠近太阳形成的星子具有最低的FeO/(FeO+MgO)值,水星是在靠近太阳的高度还原条件下吸积成分类似EH球粒陨石的星子形成的。地球的初始物质为分异的铁陨石及H群球粒陨石。随着距太阳距离增大及温度降低,陨石形成的部位大致为:EH、EL-IAB-SNC(辉玻无球粒陨石、辉橄无球粒陨石、纯橄无球粒陨石)-Euc(钙长辉长无球粒陨石)-H、L、LL-CV、CM、CO-Cl-彗星。物体之间、星子之间及行星与星子之间的碰撞对太阳系的形成和演化起着重要的作用。  相似文献   

14.
宇宙中恒星的演化始于巨星的形成 ,后者的质量是太阳系的数百倍 ,寿命估计为数百万年。重元素合成于巨星的内部。它们控制了巨星爆炸过程中 (超新星 )形成的气态云和盘状物的冷凝加速度。冷凝和旋转的加速导致后代恒星质量越来越小 ,寿命越来越长 ,直到形成像太阳这样的小星体 ,其质量为 1.989× 10 30 kg ,寿命已有几十亿年。这些小恒星的形成是冷凝过程中产生的水成冰氢星子不断聚集的结果。上一代巨星的原始星盘中的物质只有一小部分参与了冰氢星子的形成。这些星体形成于致密、高速旋转的原始恒星星盘中 ,周围环绕着巨行星和褐矮星。由于星体达到恒星状态 ,它们开始影响原恒星盘 ,结果导致星体相互分散 ,同时 ,最近的巨星发生表面去气作用。后者可以从巨星到恒星的质量衰减得到证实。UpsilonAndromedae、5 5Cancri和HD16 84 4 3等天体的巨行星记载了这样的事实。太阳系中的表面去气作用主要反映在近太阳巨星的流体外壳完全消失。由于流体外壳消失 ,铁硅酸盐熔融核暴露地表 ,形成小的类地行星。木星也经历过表面去气作用 ,依据是木星具有很高的平均密度 (1.3g cm3) ,几乎是土星密度 (0 .7g cm3)的两倍。因此 ,类地行星的形成经历了两个阶段 :原行星 (其父巨星具有重的熔融核 )和正常行星 (在其父行星  相似文献   

15.
The evolution of terrestrial planets (the Earth, Venus, Mars, Mercury, and Moon) was proved to have proceeded according to similar scenarios. The primordial crusts of the Earth, Moon, and, perhaps, other terrestrial planets started to develop during the solidification of their global magmatic “oceans”, a process that propagated from below upward due to the difference in the adiabatic gradient and the melting point gradient. Consequently, the lowest melting components were “forced” toward the surfaces of the planets in the process of crystallization differentiation. These primordial crusts are preserved within ancient continents and have largely predetermined their inner structure and composition. Early tectono-magmatic activity at terrestrial planets was related to the ascent of mantle plumes of the first generation, which consisted of mantle material depleted during the development of the primordial crusts. Intermediate evolutionary stages of the Earth, Moon, and other terrestrial planets were marked by an irreversible change related to the origin of the liquid essentially iron cores of these planets. This process induced the ascent of mantle superplumes of the second generation (thermochemical), whose material was enriched in Fe, Ti, incompatible elements, and fluid components. The heads of these superplumes spread laterally at shallower depths and triggered significant transformations of the upper shells of the planets and the gradual replacement of their primordial crusts of continental type by secondary basaltic crusts. The change in the character of the tectono-magmatic activity was associated with modifications in the environment at the surface of the Earth, Mars, and Venus. The origin of thermochemical mantle plumes testifies that the tectono-magmatic process involved then material of principally different type, which had been previously “conserved” at deep portions of the planets. This was possible only if (1) the planetary bodies initially had a heterogeneous inner structure (with an iron core and silicate mantle made up of chondritic material); and (2) the planetary bodies were heated from their peripheral toward central portions due to the passage of a “thermal wave”, with the simultaneous cooling of the outer shells. The examples of the Earth and Moon demonstrate that the passage of such a “wave” through the silicate mantles of the planets was associated with the generation of mantle plumes of the first generation. When the “wave” reached the cores, whose composition was close to the low-temperature Fe + FeS eutectic, these cores started to melt and gave rise to superplumes of the second generation. The “waves” are thought to have been induced by the acceleration of the rotation of these newly formed planets due to the decrease of their radii because of the compaction of their material. When this process was completed, the rotation of the planets stabilized, and the planets entered their second evolutionary stage. It is demonstrated that terrestrial planets are spontaneously evolving systems, whose evolution was accompanied by the irreversible changes in their tectono-magmatic processes. The evolution of most of these planets (except the Earth) is now completed, so that they “dead” planetary bodies.  相似文献   

16.
《Comptes Rendus Geoscience》2007,339(14-15):917-927
Plate tectonics shaped the Earth, whereas the Moon is a dry and inactive desert, Mars probably came to rest within the first billion years of its history, and Venus, although internally very active, has a dry inferno for its surface. Here we review the parameters that determined the fates of each of these planets and their geochemical expressions. The strong gravity field of a large planet allows for an enormous amount of gravitational energy to be released, causing the outer part of the planetary body to melt (magma ocean), helps retain water on the planet, and increases the pressure gradient. The weak gravity field and anhydrous conditions prevailing on the Moon stabilized, on top of its magma ocean, a thick buoyant plagioclase lithosphere, which insulated the molten interior. On Earth, the buoyant hydrous phases (serpentines) produced by reactions between the terrestrial magma ocean and the wet impactors received from the outer solar system isolated the magma and kept it molten for some few tens of million years. The planets from the inner solar system accreted dry: foundering of wet surface material softened the terrestrial mantle and set the scene for the onset of plate tectonics. This very same process also may have removed all the water from the surface of Venus and added enough water to its mantle to make its internal dynamics very strong and keep the surface very young. Because of a radius smaller than that of the Earth, not enough water could be drawn into the Martian mantle before it was lost to space and Martian plate tectonics never began. The radius of a planet is therefore the key parameter controlling most of its evolutional features.  相似文献   

17.
Displacement-length (D/L)scaling relations for normal and thrust faults from Mars, and thrust faults from Mercury, for which sufficiently accurate measurements are available, are consistently smaller than terrestrial D/L ratios by a factor of about 5, regardless of fault type (i.e. normal or thrust). We demonstrate that D/L ratios for faults scale, to first order, with planetary gravity. In particular, confining pressure modulates: (1) the magnitude of shear driving stress on the fault; (2) the shear yield strength of near-tip rock; and (3) the Young's (or shear) modulus of crustal rock. In general, all three factors decrease with gravity for the same rock type and pore-pressure state (e.g. wet conditions). Faults on planets with lower surface gravities, such as Mars and Mercury, demonstrate systematically smaller D/L ratios than faults on larger planets, such as Earth. Smaller D/L ratios of faults on Venus and the Moon are predicted by this approach, and we infer still smaller values of D/L ratio for faults on icy satellites in the outer solar system. Collection of additional displacement-length and down-dip height data from terrestrial normal, strike-slip, and thrust faults, located within fold-and-thrust belts, plate margins, and continental interiors, is required to evaluate the influence of fault shape and progressive deformation on the scaling relations for faults from Earth and elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号