首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the first results of an observational programme designed to determine the luminosity density of high-redshift quasars     quasars) using deep multicolour CCD data. We report the discovery and spectra of three     high-redshift     quasars, including one with     . At     , this is the fourth highest redshift quasar currently published. Using these preliminary results we derive an estimate of the         quasar space density in the redshift range     of     . When completed, the survey will provide a firm constraint on the contribution to the ionizing UV background in the redshift range     from quasars by determining the faint-end slope of the quasar luminosity function. The survey uses imaging data taken with the 2.5-m Isaac Newton Telescope as part of the Public Isaac Newton Group Wide Field Survey (WFS). This initial sample of objects is taken from two fields of effective area ∼12.5 deg2 from the final ∼100 deg2.  相似文献   

2.
Noisy distance estimates associated with photometric rather than spectroscopic redshifts lead to a biased estimate of the luminosity distribution, and produce a correlated misestimate of the sizes. We consider a sample of early-type galaxies from the Sloan Digital Sky Survey Data Release 6 for which both spectroscopic and photometric information is available, and apply the generalization of the V max method to correct for these biases. We show that our technique recovers the true redshift, magnitude and size distributions, as well as the true size–luminosity relation. We find that using only 10 per cent of the spectroscopic information randomly spaced in our catalogue is sufficient for the reconstructions to be accurate within  ∼3 per cent  , when the photometric redshift error is  δ z ≃ 0.038  . We then address the problem of extending our method to deep redshift catalogues, where only photometric information is available. In addition to the specific applications outlined here, our technique impacts a broader range of studies, when at least one distance-dependent quantity is involved. It is particularly relevant for the next generation of surveys, some of which will only have photometric information.  相似文献   

3.
Low-frequency radio surveys are ideal for selecting orientation-independent samples of extragalactic sources because the sample members are selected by virtue of their isotropic steep-spectrum extended emission. We use the new 7C Redshift Survey along with the brighter 3CRR and 6C samples to investigate the fraction of objects with observed broad emission lines – the 'quasar fraction'– as a function of redshift and of radio and narrow-emission-line luminosity. We find that the quasar fraction is more strongly dependent upon luminosity (both narrow-line and radio) than it is on redshift. Above a narrow [O  ii ] emission-line luminosity of log10( L [O  ii ]/W)≳35 [or radio luminosity log10( L 151/W Hz−1 sr−1)≳ 26.5], the quasar fraction is virtually independent of redshift and luminosity; this is consistent with a simple unified scheme with an obscuring torus with a half-opening angle θ trans≈53°. For objects with less luminous narrow lines, the quasar fraction is lower. We show that this is not due to the difficulty of detecting lower luminosity broad emission lines in a less luminous, but otherwise similar, quasar population. We discuss evidence which supports at least two probable physical causes for the drop in quasar fraction at low luminosity: (i) a gradual decrease in θ trans and/or a gradual increase in the fraction of lightly reddened (0≲ A V ≲5) lines of sight with decreasing quasar luminosity; and (ii) the emergence of a distinct second population of low-luminosity radio sources which, like M87, lack a well-fed quasar nucleus and may well lack a thick obscuring torus.  相似文献   

4.
We discuss the relative merits of mid-infrared and X-ray selection of type 2 quasars. We describe the mid-infrared, near-infrared and radio selection criteria used to find a population of redshift   z ∼ 2  type 2 quasars which we previously argued suggests that most supermassive black hole growth in the Universe is obscured. We present the optical spectra obtained from the William Herschel Telescope, and we compare the narrow emission-line luminosity, radio luminosity and maximum size of jets to those of objects from radio-selected samples. This analysis suggests that these are genuine radio-quiet type 2 quasars, albeit the radio-bright end of this population. We also discuss the possibility of two different types of quasar obscuration, which could explain how the ∼2–3:1 ratio of type 2 to type 1 quasars preferred by modelling our population can be reconciled with the ∼1:1 ratio predicted by unified schemes.  相似文献   

5.
Starting from the ∼50 000 quasars of the Sloan Digital Sky Survey for which Mg  ii line width and 3000 Å monochromatic flux are available, we aim to study the dependence of the mass of active black holes on redshift. We focus on the observed distribution in the full width at half-maximum–nuclear luminosity plane, which can be reproduced at all redshifts assuming a limiting M BH, a maximum Eddington ratio and a minimum luminosity (due to the survey flux limit). We study the z -dependence of the best-fitting parameters of assumed distributions at increasing redshift and find that the maximum mass of the quasar population evolves as  log ( M BH(max)/M) ∼ 0.3 z + 9  , while the maximum Eddington ratio (∼0.45) is practically independent of cosmic time. These results are unaffected by the Malmquist bias.  相似文献   

6.
We study the 37 brightest radio sources in the Subaru/ XMM–Newton Deep Field. We have spectroscopic redshifts for 24 of 37 objects and photometric redshifts for the remainder, yielding a median redshift z med for the whole sample of   z med≃ 1.1  and a median radio luminosity close to the 'Fanaroff–Riley type I/type II (FR I/FR II)' luminosity divide. Using mid-infrared (mid-IR) ( Spitzer MIPS 24 μm) data we expect to trace nuclear accretion activity, even if it is obscured at optical wavelengths, unless the obscuring column is extreme. Our results suggest that above the FR I/FR II radio luminosity break most of the radio sources are associated with objects that have excess mid-IR emission, only some of which are broad-line objects, although there is one clear low-accretion-rate object with an FR I radio structure. For extended steep-spectrum radio sources, the fraction of objects with mid-IR excess drops dramatically below the FR I/FR II luminosity break, although there exists at least one high-accretion-rate 'radio-quiet' QSO. We have therefore shown that the strong link between radio luminosity (or radio structure) and accretion properties, well known at z ∼ 0.1, persists to z ∼ 1. Investigation of mid-IR and blue excesses shows that they are correlated as predicted by a model in which, when significant accretion exists, a torus of dust absorbs ∼30 per cent of the light, and the dust above and below the torus scatters ≳1 per cent of the light.  相似文献   

7.
Recently, a very large clustering length has been measured for quasars at a redshift of   z ∼ 4  . In combination with the observed quasar luminosity function, we assess the implications of this clustering for the relationship between quasar luminosity and dark matter halo mass. Our analysis allows for non-linearity and finite scatter in the relation between quasar luminosity and halo mass, as well as a luminosity dependent quasar lifetime. The additional novel ingredient in our modelling is the allowance for an excess in the observed bias over the underlying halo bias owing to the merger driven nature of quasar activity. We find that the observations of clustering and luminosity function can be explained only if both of the following conditions hold: (i) the luminosity to halo mass ratio increases with halo mass; (ii) the observed clustering amplitude is in excess of that expected solely from halo bias. The latter result is statistically significant at the 99 per cent level. Taken together, the observations provide compelling evidence for merger driven quasar activity, with a black-hole growth that is limited by feedback. In difference from previous analyses, we show that there could be scatter in the luminosity–halo mass relation of up to 1 dex, and that quasar clustering cannot be used to estimate the quasar lifetime.  相似文献   

8.
We present quasi-simultaneous ASCA and RXTE observations of the most luminous known active galactic nucleus in the local ( z <0.3) Universe, the recently discovered quasar PDS 456. Multiwavelength observations have been conducted that show that PDS 456 has a bolometric luminosity of ∼1047 erg s−1 peaking in the ultraviolet part of the spectrum. In the X-ray band the 2–10 keV (rest-frame) luminosity is 1045 erg s−1. The broad-band X-ray spectrum obtained with ASCA and RXTE contains considerable complexity. The most striking feature observed is a very deep, ionized iron K edge, observed at 8.7 keV in the quasar rest-frame. We find that these features are consistent with reprocessing from highly ionized matter, probably the inner accretion disc. PDS 456 appeared to show a strong (factor of ∼2.1) outburst in just ∼17 ks, although non-intrinsic sources cannot be completely ruled out. If confirmed, this would be an unusual event for such a high-luminosity source, with a light-crossing-time corresponding to ∼2 R S . The implication would be that flaring occurs within the very central regions, or else that PDS 456 is a 'super-Eddington' or relativistically beamed system. Overall we conclude on the basis of the extreme blue/UV luminosity, the rapid X-ray variability and from the imprint of highly ionized material on the X-ray spectrum, that PDS 456 is a quasar with an unusually high accretion rate.  相似文献   

9.
We have conducted ultra-deep optical and deep near-infrared observations of a field around the z =1.226 radio-quiet quasar 104420.8+055739 from the Clowes–Campusano LQG of 18 quasars at z ∼1.3, in search of associated galaxy clustering. Galaxies at these redshifts are distinguished by their extremely red colours, with I − K >3.75, and we find a factor ∼11 overdensity of such galaxies in a 2.25×2.25 arcmin2 field centred on the quasar. In particular, we find 15–18 galaxies that have colours consistent with being a population of passively evolving massive ellipticals at the quasar redshift. They form 'fingers' in the V − K K , I − K K colour–magnitude plots at V − K ≃6.9, I − K ≃4.3 comparable to the red sequences observed in other z ≃1.2 clusters. We find suggestive evidence for substructure among the red sequence galaxies in the K image, in the form of two compact groups, 40 arcsec to the north, and 60 arcsec to the south-east of the quasar. An examination of the wider optical images indicates that this substructure is significant, and that the clustering extends to form a large-scale structure 2–3  h −1 Mpc across. We find evidence for a high (≳50 per cent) fraction of blue galaxies in this system, in the form of 15–20 'red outlier' galaxies with I − K >3.75 and V − I <2.00, which we suggest are dusty, star-forming galaxies at the quasar redshift. Within 30 arcsec of the quasar we find a concentration of blue ( V − I <1) galaxies in a band that bisects the two groups of red sequence galaxies. This band of blue galaxies is presumed to correspond to a region of enhanced star formation. We explain this distribution of galaxies as the early stages of a cluster merger which has triggered both the star formation and the quasar.  相似文献   

10.
We have used far-infrared data from IRAS , Infrared Space Observatory ( ISO ), Spitzer Wide-Area Infrared Extragalactic (SWIRE), Submillimetre Common User Bolometer Array (SCUBA) and Max-Planck Millimetre Bolometer (MAMBO) to constrain statistically the mean far-infrared luminosities of quasars. Our quasar compilation at redshifts  0 < z < 6.5  and I -band luminosities  −20 < I AB < −32  is the first to distinguish evolution from quasar luminosity dependence in such a study. We carefully cross-calibrate IRAS against Spitzer and ISO , finding evidence that IRAS 100-μm fluxes at <1 Jy are overestimated by ∼30 per cent. We find evidence for a correlation between star formation in quasar hosts and the quasar optical luminosities, varying as star formation rate (SFR)  ∝ L 0.44±0.07opt  at any fixed redshift below   z = 2  . We also find evidence for evolution of the mean SFR in quasar host galaxies, scaling as  (1 + z )1.6±0.3  at   z < 2  for any fixed quasar I -band absolute magnitude fainter than −28. We find no evidence for any correlation between SFR and black hole mass at  0.5 < z < 4  . Our data are consistent with feedback from black hole accretion regulating stellar mass assembly at all redshifts.  相似文献   

11.
An empirically motivated model is presented for accretion-dominated growth of supermassive black holes (SMBH) in galaxies, and the implications are studied for the evolution of the quasar population in the Universe. We investigate the core aspects of the quasar population, including space density evolution, evolution of the characteristic luminosity, plausible minimum masses of quasars, the mass function of SMBH and their formation epoch distribution. Our model suggests that the characteristic luminosity in the quasar luminosity function arises primarily as a consequence of a characteristic mass scale above which there is a systematic separation between the black hole and the halo merging rates. At lower mass scales, black hole merging closely tracks the merging of dark haloes. When combined with a declining efficiency of black hole formation with redshift, the model can reproduce the quasar luminosity function over a wide range of redshifts. The observed space density evolution of quasars is well described by formation rates of SMBH above  ∼108  M  . The inferred mass density of SMBH agrees with that found independently from estimates of the SMBH mass function derived empirically from the quasar luminosity function.  相似文献   

12.
In order to investigate the dependence of quasar variability on fundamental physical parameters like black hole mass, we have matched quasars from the Quasar Equatorial Survey Team, Phase 1 (QUEST1) variability survey with broad-lined objects from the Sloan Digital Sky Survey. The matched sample contains ≈100 quasars, and the Sloan spectra are used to estimate black hole masses and bolometric luminosities. Variability amplitudes are measured from the QUEST1 light curves. We find that black hole mass correlates with several measures of the variability amplitude at the 99 per cent significance level or better. The correlation does not appear to be caused by obvious selection effects inherent to flux-limited quasar samples, host galaxy contamination or other well-known correlations between quasar variability and luminosity/redshift. We evaluate variability as a function of rest-frame time lag using structure functions and find further support for the variability–black hole mass correlation. The correlation is strongest for time lags of the order of a few months up to the QUEST1 maximum temporal resolution of ≈2 yr, and may provide important clues for understanding the long-standing problem of the origin of quasar optical variability. We discuss whether our result is a manifestation of a relation between characteristic variability time-scale and black hole mass, where the variability time-scale is typical for accretion disc thermal time-scales, but find little support for this. Our favoured explanation is that more massive black holes have larger variability amplitudes, and we highlight the need for larger samples with more complete temporal sampling to test the robustness of this result.  相似文献   

13.
Using cosmological hydrodynamic simulations, we measure the mean transmitted flux in the Lyα forest for quasar sightlines that pass near a foreground quasar. We find that the trend of absorption with pixel quasar separation distance can be fitted using a simple power-law form including the usual correlation function parameters r 0 and γ, so that     . From the simulations, we find the relation between r 0 and quasar host mass, and formulate this as a way to estimate quasar host dark matter halo masses, quantifying uncertainties due to cosmological and IGM parameters, and redshift errors. With this method, we examine data for ∼9000 quasars from the Sloan Digital Sky Survey (SDSS) Data Release 5, assuming that the effect of ionizing radiation from quasars (the so-called transverse proximity effect) is unimportant (no evidence for it is seen in the data). We find that the best-fitting host halo mass for SDSS quasars with mean redshift z = 3 and absolute G -band magnitude −27.5 is  log  M /M= 12.68+0.81−0.67  . We also use the Lyman-Break Galaxy (LBG) and Lyα forest data of Adelberger et al. in a similar fashion to constrain the halo mass of LBGs to be  log10  M /M= 11.41+0.54−0.59  , a factor of ∼20 lower than the bright quasars. In addition, we study the redshift distortions of the Lyα forest around quasars, using the simulations. We use the quadrupole to monopole ratio of the quasar Lyα forest correlation function as a measure of the squashing effect. We find its dependence on halo mass difficult to measure, but find that it may be useful for constraining cosmic geometry.  相似文献   

14.
A number of deep, wide-field, near-infrared (NIR) surveys employing new infrared cameras on 4-m class telescopes are about to commence. These surveys have the potential to determine the fraction of luminous dust-obscured quasars that may have eluded surveys undertaken at optical wavelengths. In order to understand the new observations it is essential to make accurate predictions of surface densities and number–redshift relations for unobscured quasars in the NIR based on information from surveys at shorter wavelengths. The accuracy of the predictions depends critically on a number of key components. The commonly used single power-law representation for quasar spectral energy distributions (SEDs) is inadequate and the use of an SED incorporating the upturn in continuum flux at  λ∼ 12 000 Å  is essential. The presence of quasar host galaxies is particularly important over the rest-frame wavelength interval  8000 < λ < 16 000 Å  and we provide an empirical determination of the magnitude distribution of host galaxies using a low-redshift sample of quasars from the Sloan Digital Sky Survey Data Release 3 quasar catalogue. A range of models for the dependence of host galaxy luminosity on quasar luminosity is investigated, along with the implications for the NIR surveys. Even adopting a conservative model for the behaviour of host galaxy luminosity the number counts for shallow surveys in the K band increase by a factor of 2. The degree of morphological selection applied to define candidate quasar samples in the NIR is found to be an important factor in determining the fraction of the quasar population included in such samples.  相似文献   

15.
We present millimetre observations of a sample of 12 high-redshift ultraluminous infrared galaxies (ULIRGs) in the extended growth strip (EGS). These objects were initially selected on the basis of their observed mid-IR colours (  0.0 < [3.6]−[4.5] < 0.4  and  −0.7 < [3.6]−[8.0] < 0.5  ) to lie at high redshift  1.5 ≲ z ≲ 3  , and subsequent 20–38 μm mid-IR spectroscopy confirms that they lie in a narrow redshift window centred on   z ≈ 2  . We detect 9/12 of the objects in our sample at high significance  (>3σ)  with a mean 1200 μm flux of  〈 F 1200 μm〉= 1.6 ± 0.1  mJy. Our millimetre photometry, combined with existing far-IR photometry from the Far-IR Deep Extragalactic Legacy Survey (FIDELS) and accurate spectroscopic redshifts, places constraints both sides of the thermal dust peak. This allows us to estimate the dust properties, including the far-IR luminosity, dust temperature and dust mass. We find that our sample is similar to other high- z and intermediate- z ULIRGs, and local systems, but has a different dust selection function than submillimeter-selected galaxies. Finally, we use existing 20-cm radio continuum imaging to test the far-IR/radio correlation at high redshift. We find that our sample is consistent with the local relation, implying little evolution. Furthermore, this suggests that our sample selection method is efficient at identifying ultraluminous, starburst-dominated systems within a very narrow redshift range centred at   z ∼ 2  .  相似文献   

16.
We present results from a multiwavelength study of 29 sources (false detection probabilities <5 per cent) from a survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field at 1.1 mm using the Astronomical Thermal Emission Camera (AzTEC). Comparing with existing 850 μm Submillimetre Common-User Bolometer Array (SCUBA) studies in the field, we examine differences in the source populations selected at the two wavelengths. The AzTEC observations uniformly cover the entire survey field to a 1σ depth of ∼1 mJy. Searching deep 1.4 GHz Very Large Array (VLA) and Spitzer 3–24 μm catalogues, we identify robust counterparts for 21 1.1 mm sources, and tentative associations for the remaining objects. The redshift distribution of AzTEC sources is inferred from available spectroscopic and photometric redshifts. We find a median redshift of   z = 2.7  , somewhat higher than   z = 2.0  for  850 μm  selected sources in the same field, and our lowest redshift identification lies at a spectroscopic redshift   z = 1.1460  . We measure the 850 μm to 1.1 mm colour of our sources and do not find evidence for '850 μm dropouts', which can be explained by the low signal-to-noise ratio of the observations. We also combine these observed colours with spectroscopic redshifts to derive the range of dust temperatures T , and dust emissivity indices β for the sample, concluding that existing estimates   T ∼ 30 K  and  β∼ 1.75  are consistent with these new data.  相似文献   

17.
We measure the local galaxy far-infrared (FIR) 60 to 100 μm colour–luminosity distribution using an all-sky IRAS survey. This distribution is an important reference for the next generation of FIR–submillimetre surveys that have and will conduct deep extragalactic surveys at 250–500 μm. With the peak in dust-obscured star-forming activity leading to present-day giant ellipticals now believed to occur in submillimetre galaxies near   z ∼ 2.5  , these new FIR–submillimetre surveys will directly sample the spectral energy distributions of these distant objects at rest-frame FIR wavelengths similar to those at which local galaxies were observed by IRAS . We have taken care to correct for the temperature bias and the evolution effects in our IRAS 60-μm-selected sample. We verify that our colour–luminosity distribution is consistent with the measurements of the local FIR luminosity function, before applying it to the higher redshift Universe. We compare our colour–luminosity correlation with recent dust–temperature measurements of submillimetre galaxies and find evidence for pure luminosity evolution of the form  (1 + z )3  . This distribution will be useful for the development of evolutionary models for Balloon-borne Large Aperture Submillimeter Telescope (BLAST) and Spectral and Photometric Imaging Receiver (SPIRE) surveys as it provides a statistical distribution of the rest-frame dust temperatures for galaxies as a function of luminosity.  相似文献   

18.
Gravitational lensing magnifies the observed flux of galaxies behind the lens. We use this effect to constrain the total mass in the cluster Abell 1689 by comparing the lensed luminosities of background galaxies with the luminosity function of an undistorted field. Under the assumption that these galaxies are a random sample of luminosity space, this method is not limited by clustering noise. We use photometric redshift information to estimate galaxy distance and intrinsic luminosity. Knowing the redshift distribution of the background population allows us to lift the mass/background degeneracy common to lensing analysis. In this paper we use nine filters observed over 12 h with the Calar Alto 3.5-m telescope to determine the redshifts of 1000 galaxies in the field of Abell 1689. Using a complete sample of 146 background galaxies we measure the cluster mass profile. We find that the total projected mass interior to 0.25  h −1 Mpc is M 2D(<0.25  h −1 Mpc)=(0.48±0.16)×1015  h −1 M, where our error budget includes uncertainties from the photometric redshift determination, the uncertainty in the offset calibration and finite sampling. This result is in good agreement with that found by number-count and shear-based methods and provides a new and independent method to determine cluster masses.  相似文献   

19.
Measuring the black hole masses of high-redshift quasars   总被引:1,自引:0,他引:1  
A new technique is presented for determining the black hole masses of high-redshift quasars from optical spectroscopy. The new method utilizes the full-width at half-maximum (FWHM) of the low-ionization Mg  ii emission line and the correlation between the broad-line region (BLR) radius and the continuum luminosity at 3000 Å. Using archival ultraviolet (UV) spectra it is found that the correlation between BLR radius and 3000-Å luminosity is tighter than the established correlation with 5100-Å luminosity. Furthermore, it is found that the correlation between BLR radius and 3000-Å continuum luminosity is consistent with a relation of the form   R BLR∝λ L 1/2λ  , as expected for a constant ionization parameter. Using a sample of objects with broad-line radii determined from reverberation mapping it is shown that the FWHM of Mg  ii and Hβ are consistent with following an exact one-to-one relation, as expected if both Hβ and Mg  ii are emitted at the same radius from the central ionizing source. The resulting virial black hole mass estimator based on rest-frame UV observables is shown to reproduce black hole mass measurements based on reverberation mapping to within a factor of 2.5 (1σ). Finally, the new UV black hole mass estimator is shown to produce identical results to the established optical (Hβ) estimator when applied to 128 intermediate-redshift  (0.3 < z < 0.9)  quasars drawn from the Large Bright Quasar Survey and the radio-selected Molonglo quasar sample. We therefore conclude that the new UV virial black hole mass estimator can be reliably used to estimate the black hole masses of quasars from   z ∼ 0.25  through to the peak epoch of quasar activity at   z ∼ 2.5  via optical spectroscopy alone.  相似文献   

20.
We present an analysis of X-ray variability in a flux-limited sample of quasi-stellar objects (QSOs). Selected from our deep ROSAT survey, these QSOs span a wide range in redshift (0.1< z <3.2) and are typically very faint, so we have developed a method to constrain the amplitude of variability in ensembles of low signal-to-noise ratio light curves. We find evidence for trends in this variability amplitude with both redshift and luminosity. The mean variability amplitude declines sharply with luminosity, as seen in local active galactic nuclei (AGN), but with some suggestion of an upturn for the most powerful sources. We find tentative evidence that this is caused by redshift evolution, since the high-redshift QSOs ( z >0.5) do not show the anticorrelation with luminosity seen in local AGN. We speculate on the implications of these results for physical models of AGN and their evolution. Finally, we find evidence for X-ray variability in an object classified as a narrow-emission-line galaxy, suggesting the presence of an AGN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号