首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 328 毫秒
1.
太原地区剪切波速的深度分布   总被引:6,自引:1,他引:6  
利用太原地区26个钻孔约540个剪切波速沿深度变化的实测燃料,统计给出了太原地区剪切波速沿深度变化的经验关系,据钻孔分布在不同的地貌单元,具有不同的地层特征的情况,对剪切速波沿深度变化的规律进行了分区统计,给出了分区统计结果,这些统计结果可在地场类别确定中用于估计覆盖土层的厚度,即地面至剪切波速大于500m/s土层的距离。  相似文献   

2.
剪切波速是区别土动力学和静力学的重要参数,其影响因素包括土层埋深、颗粒形状、颗粒比重、压缩模量、孔隙比、含水率和密度等,其中土层埋深对剪切波速的变化影响较大。本文搜集整理了华北地区10个城市的928个钻孔共10703个测点的剪切波速与土层埋深之间的经验统计关系,探讨华北地区剪切波速随深度变化的特征,并从岩性条件、沉积环境等方面分析其原因。通过对比分析,给出了华北地区黏性土和砂类土剪切波速随深度变化的最佳拟合经验统计关系,并进行实例验证,所得结果可为缺乏数据的区域提供一定参考。  相似文献   

3.
李帅 《震灾防御技术》2014,9(3):468-478
收集了石河子市北开发区已有的土层钻孔资料及有关报告.对所有的剪切波速资料进行了整理.在前人研究和数据整理、分析的基础上,分别采用线性模型、幂函数模型和一元二次多项式模型,对石河子市北开发区的土层剪切波速与土层深度关系进行了拟合.以拟合优度为评价指标给出了粉土、粉质粘土、粉砂、细砂、砾砂和圆砾的推荐模型参数.最后对结果的合理性、适用性进行了评价.  相似文献   

4.
通过地下水位修正来间接反应有效应力对土层剪切波速的影响的方法被应用于我国剪切波速法砂土液化判别,但现行方法不适用于砾性土层。利用GDS大粒径三轴-剪切波速系统测试不同含砾量,不同相对密度的砾性土在不同应力条件下的剪切波速,研究有效应力对砾性土剪切波速的影响。结果表明:砾性土的剪切波速与有效应力满足幂函数关系,其指数参数稳定,不受土性影响;结合对汶川地震震后调查的砾性土的上覆土层分析,推导出适合砾性土层剪切波速判别法的水位修正公式,给出了简化的线性表达;并分析了地下水位变化对剪切波速测试结果的影响。  相似文献   

5.
耿伟 《山西地震》2014,(1):31-34,41
通过对山西长治市区41个钻孔柱状和剪切波速资料的整理分析,利用剪切波速与深度的指数式经验公式,对土层剪切波速Vs与土层深度H间的关系进行统计回归。经对比检验得出,土层Vs-H统计关系符合本地岩性特征。  相似文献   

6.
利用天津市78个钻孔2 212组不同岩土体的剪切波速数据,分析天津地区土层剪切波速随土层深度、岩土类型等影响因素的变化规律,利用灰色关联分析方法研究上述影响因素与天津地区土层剪切波速之间的相关性,获得该区土层剪切波速各影响因素的灰色关联排序,继而得到区分岩土类型的剪切波速回归公式,利用所得公式对实际钻孔不同深度剪切波速进行预测,并基于实测结果对预测结果进行分析。在天津地区,应综合利用岩土类型和土层深度对剪切波速进行评价。不同岩土类型、剪切波速与深度的相关性大小存在较为明显的差异,其中粘土的剪切波速和深度之间的相关性最强。同等深度条件下,由粘土到细砂粒径逐渐增大,其相应的剪切波速也逐渐增大。各类主要岩土体剪切波速与埋深之间的相关关系中多项式模型拟合精度最高,可用于天津市区主要土体剪切波速计算工作。  相似文献   

7.
西昌市场地剪切波速与土层深度经验关系   总被引:4,自引:0,他引:4  
收集了西昌市已有的土层钻孔资料及有关报告,在此基础上踏勘布置了具有一定代表性的钻孔,逐个进行了剪切波速度的测定。对所有的剪切波速资料进行了整理,通过回归分析方法给出西昌市场地不同土类剪切波速与土层深度的关系式,为西昌市防震减灾规划土层地震反应分析提供土层的背景资料和分析依据,同时,也为西昌市以后的地震危险性、建筑工程场地分类以及抗震设防小区划提供有意义的参考资料。  相似文献   

8.
土层剪切波速在工程地质勘察和地震安全性评价中是一个较为重要的物理参数。通过收集库尔勒市城区已有的土层钻孔资料及相关报告,对收集的剪切波速资料进行整理,挑选出较为合理的土层剪切波速值,并在前人研究和数据整理、分析的基础上,分别采用线性模型、幂函数模型和一元二次多项式模型,对库尔勒市城区的土层剪切波速与埋藏深度关系进行了拟合,以拟合优度为评价指标,计算出了粉土、粗砂、角砾、砾砂、圆砾和卵石的推荐模型参数。最后对结果的合理性、适用性进行了评价。  相似文献   

9.
在对山西大同市区3个主要地貌单元共72个钻孔的剪切波速资料分析整理的基础上,利用指数形式的剪切波速与深度经验公式,对测点较多的粉质黏土、粉土、粗砂三类土层的剪切波速Vs与土层深度H的关系进行统计回归,并将实测剪切波速值与利用上述统计结果得到的预测值进行对比检验,结果表明,分地貌单元各类土层的Vs-H经验关系是可靠的,符合当地岩土特征,可用于对该地区地层剪切波速进行推测。  相似文献   

10.
结合海侵地质成因,收集了2009年以来常州市城区358个钻孔2 691条土层剪切波速测试资料进行统计分析。采用线性v_S=a+bH、多项式式v_S=a+bH+cH~2及幂函数v_S=cH~d对各类土剪切波速随深度变化进行回归分析,给出各类土剪切波速随深度变化的三种关系式及相应的回归参数,并利用实际工程钻孔进行剪切波速预测与检验。检验结果表明,给出的各类岩土体的剪切波速与埋深经验关系是可靠的,可用文中得出的公式对土层剪切波速进行推测,为今后常州市区的工程抗震工作提供可靠的剪切波速值。  相似文献   

11.
剪切波速(VS)与标贯击数(N)之间存在相关关系,受地区土壤条件影响很大。对临沂地区场地实测得到的砂土的剪切波速和标贯击数之间的关系进行了统计分析,得到了砾砂、粗砂、中砂和细砂相应的关系曲线。结果发现受沉积环境的影响,砂土层粒径与埋深呈正相关,砂土粒径越大其密实段样本点数量越多。为消除不同密实程度段之间的相互影响,以密实度为划分标准进一步进行分区段统计分析,得到了不同密实程度的四类砂土的相关关系方程,通过实际钻孔数据对比了分段与不分段的统计分析结果,分段模拟能更好地反映两者之间的相关关系。将砂土根据密实度进行划分再给出剪切波速和标贯击数的回归关系可以提高分析结果的准确性,同时可以考虑土体特性的影响,更为科学。此研究为临沂地区提供了一种简便预估剪切波速的方法,对相关地区的工程建设和科学研究也具有参考价值。  相似文献   

12.
地面木板敲击方法和悬挂式井中测试方法是工程中常用的两种剪切波速测量方法。在长期的工作中发现,对于类似的场地,不同的方法所得到的测试结果有时存在一定的差异。为此,选择了山西地区5个场地条件不同的比较典型的地震钻孔,分别采用两种方法对同一钻孔进行测试,并对结果进行了比较和分析。结果表明,在钻孔地层为土和砂且钻孔质量较好的情况下,两种方法所测数据相差不大,一般相差在10%以内。钻孔质量较差,局部有轻微塌孔、缩径的情况时,采用悬挂式测井方法误差较大。对于含有卵石地层的钻孔以及需要测量基岩面以下的地层剪切波速的钻孔,则应采用悬挂式井中测试方法。  相似文献   

13.
A series of undrained cyclic direct simple shear tests, which used a soil container with a membrane reinforced with stack rings to maintain the K0 condition and integrated bender elements for shear wave velocity measurement, were performed to study the liquefaction characteristics of gap-graded gravelly soils with no fines content. The intergrain state concept was employed to categorize gap-graded sand–gravel mixtures as sand-like, gravel-like, and in-transition soils, which show different liquefaction characteristics. The testing results reveal that a linear relationship exists between the shear wave velocity and the minor fraction content for sand–gravel mixtures at a given skeleton void ratio of the major fraction particles. For gap-graded gravelly sand, the gravel content has a small effect on the liquefaction resistance, and the cyclic resistance ratio (CRR) of gap-graded gravelly sands can be evaluated using current techniques for sands with gravel content corrections. In addition, the results indicate that the current shear wave velocity (Vs) based correlation underestimates the liquefaction resistance for Vs values less than 160 m/s, and different correlations should be proposed for sand-like and gravel-like gravelly soils. Preliminary modifications to the correlations used in current evaluations of liquefaction resistance have thus been proposed.  相似文献   

14.
This study devises a new analytical relationship to determine the porosity of water-saturated soils at shallow depth using seismic compressional and shear wave velocities. Seismic refraction surveys together with soil sample collection were performed in selected areas containing water-saturated clay–silt, sand and gravely soils. Classification of clay–silt, sand and gravel dense soils provided the coefficient of experimental equation between the data sets, namely, Poisson's ratio, shear modulus and porosity values. This study presents a new analytical relationship between Poisson's ratio and shear modulus values, which are obtained from seismic velocities and porosity values of water-saturated material computed from water content and grain densities, which are determined by laboratory analysis of disturbed samples. The analytical relationship between data sets indicates that when the shear modulus of water-saturated loose soil increases, porosity decreases logarithmically. If shear modulus increases in dense or solid saturated soils, porosity decreases linearly.  相似文献   

15.
基于广西柳州地区地震安全性评价中实测所获的钻孔资料,利用线性模型、幂函数模型和二次函数模型分别对该地区土层剪切波速与埋深之间的相关性进行了拟合分析,通过对比发现幂函数模型为二者间相关性拟合的最优选择,同时探讨了土体状态对二者相关性的影响。结果表明:除人工填土外,柳州地区内常见土层剪切波速与埋深之间具有较强的相关性,区域性对其相关性也具有影响。最后以实测钻孔为例,验证了本文模型的预测精度和可靠性,而且模型的预测精度可以通过区分土体状态得到明显提高。   相似文献   

16.
An experiment was carried out to develop a technique to measure shear wave velocity simultaneously with the standard penetration test popular in soil engineering. In the standard penetration test an impact at the bottom of a borehole is produced by weight dropping and may be expected to generate seismic waves. A three-component geophone was set on the ground surface near the borehole and the waves generated were recorded with a magnetic recorder at successive depths of the penetration test. The predominance of the SV wave obtained with this simple method was assured by measurement of the particle orbit. Signal amplitudes decrease with depth and become less than the noise level at a certain depth. Therefore records from deeper sources must be processed to disclose the shear waves. Since waveforms of SV events generated by blows of the penetration test at a given depth are very similar, the signal to noise ratio would be expected to be improved by a stack of wave trains. A paste-up of the radial component after stacking was compared with that before stacking and a refinement was clearly recognized. A vertical distribution of shear wave velocity was obtained by reading the onset time at each depth. Shear wave velocities thus obtained were compared with N values from the standard penetration test and specific resistivities from electrical logging in the same borehole. The data were mutually consistent. This experiment showed that a convenient, precise shear wave velocity measurement can be conducted during the routine work of a standard penetration test.  相似文献   

17.
The shear wave velocity is one of the important parameters in seismic engineering.The common mathematical models of relationship between shear wave velocity and depth of soil-layers are linear function model,quadratic function model,power function model,cubic function model,and quartic function model.It is generally believed that the regression formulae based on aforementioned mathematical models are mainly used for preliminary estimation of the local shear wave velocity.In order to increase the value of test data of wave speed in boreholes,the calculation formulae for the thickness of ground cover layer are derived based on the aforementioned mathematical models and their fitting parameters.The calculation formulae for the mean shear wave velocity of soil-layers are derived by integral mean value theorem.Accordingly,the calculation formulae for the equivalent shear wave velocity of soil-layers are derived.The calculation formulae for the depth of reflective waves in time-depth conversion of the reflection seismic exploration are derived.Through the statistical analysis of test data of shear wave velocity of soil layers in Changyuan County,Henan Province,regression formulae and their fitting parameters of aforementioned mathematical models are obtained.The results show that in the determination of the quality of these regression formulae and their fitting parameters,the adjusted R-square,root mean square error and residual error,the matching on the statistical range between the geometry of function of mathematical models used and the scattergram of the measured data,the application purpose and the simplicity of the regression formulae should be considered.With the aforementioned new formulae,the results show that the calculated values of equivalent shear wave velocity of soil-layers and thickness of ground cover layer meet the engineering needs.The steps for statistics and applications of the relationship between shear wave velocity and depth of soil-layers for a new area are as follows:(1) Analyze the relevant data about the site such as the drilling and wave speed test data,etc.and divide the site into seismic engineering geological units;(2) In a single seismic engineering geological unit,make statistical analysis of the data of borehole wave speed test,comprehensively identify and select mathematical models and their fitting parameters of the relationship between shear wave velocity and depth of soil-layers;(3) Substitute the selected fitting parameters into the formulae,based on their mathematical models for the thickness of ground cover layer,or the equivalent shear wave velocity of soil-layers,or the depth of reflective wave,then the thickness of ground covering layer,equivalent shear wave velocity,and depth of reflective wave are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号