首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Long-term water quality monitoring data from two riverine lakes in the Upper Mississippi River basin, Lakes St. Croix and Pepin, were analyzed to compare the long-term average water quality conditions and land use distributions, water quality trends and loads at lake inlets and outlets, trends from long-term versus short-term monitoring records, and the ability of paleolimnological cores to accurately infer lake water quality conditions. During the 1976–2004 period, the long-term average concentrations of nutrients, suspended solids, and chlorophyll-a were consistently lower at the Lake St. Croix inlet versus the Lake Pepin inlet, which drains a greater proportion of urban and agricultural runoff. Despite these differences, nutrient trends were similar at the inlets to both lakes; reductions in total phosphorus and ammonium concentrations were attributed to improvements in point source technologies, whereas increasing nitrate concentrations were attributed to both point source changes and nonpoint source increases. Despite improvements in several water quality variables, nitrate concentrations are increasing in both lakes, sediment trends indicate persistent nonpoint source inputs to Lake Pepin, and current total phosphorus concentrations remain well above pre-1950s levels in both lakes. Since urban development and agriculture are increasing in the Lake St. Croix and Lake Pepin Watersheds, continued point source regulation and additional nonpoint source control efforts will be needed to further improve water quality in these lakes. The 1976–2004 trends for most water quality variables were similar at inlet versus outlet sites on Lake St. Croix. Trends at Lake Pepin inlet versus outlet sites were less similar, but data availability limited the comparison to the 1993–2003 period. While the truncated data record highlighted short-term trends in both lakes, the full data record was most useful for exploring general patterns in water quality. Length of monitoring record affected our ability to detect trends at the inlets to both lakes, and altered the magnitude of detected trends. During the two decades of the 1980s and 1990s, paleolimnological estimates of retained phosphorus loads were similar to those estimated from recent water quality monitoring. These similarities support the use of paleolimnological approaches to infer past water quality conditions in Lakes St. Croix and Pepin. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

2.
The global cycling of anthropogenic trace metals intensified during the twentieth century, impacting aquatic systems throughout the world. There are, however, few quantitative records showing the history of this contamination in large rivers. Here we present a well-dated sedimentary record of trace metal accumulation in Lake St. Croix, a natural riverine lake on the St. Croix River (Minnesota and Wisconsin, USA), revealing the history of heavy metal inputs to the river over the past 200 years. Concentrations of Hg, Pb, Ag, Cd, Cr and Zn and stable Pb isotopes were measured in eight 210Pb-dated sediment cores collected from profundal depositional areas throughout the lake. Time trends of trace metal concentrations and accumulation rates differed greatly between the upper lake (above Valley Creek) and the lower lake, reflecting contrasting sediment sources along the flow axis of the lake. For most of the study period (1800–2000 AD), sediment deposited throughout the lake derived almost exclusively from the suspended sediment load carried by the main-stem river into the lake. From 1910 through 1970, however, large inputs of eroded soils and stream channel sediments from side-valley tributaries resulted in greatly increased sediment and trace metal accumulation in the lower lake. Anthropogenic accumulation rates of Hg, Pb, Cd, Zn, and Ag in the upper lake correlate well with those from Square Lake, a small, relatively undisturbed nearby lake that has received trace metal inputs almost exclusively via atmospheric deposition. The similarity of these records suggests that atmospheric deposition was primarily responsible for trace metal accumulation trends in upper Lake St. Croix. Trace metal accumulation in the lower lake was also strongly influenced by atmospherically derived inputs, but metal contributions from native soils were important, as well, during the period of elevated sediment inputs from side-valley tributaries. Concentrations and accumulation rates of trace metals in both upper and lower lake sediments have decreased substantially since the 1970s due to decreased atmospheric inputs and sediment loadings, but accumulation rates remain well above pre-settlement values. Metal inputs to Lake St. Croix have been far lower than those to nearby Lake Pepin, located on the Mississippi River downstream of the Minneapolis-St. Paul metropolitan area, but there nevertheless remains a clear record of anthropogenic impact on the relatively pristine St. Croix River.  相似文献   

3.
The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12–18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 × 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5–2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography. This is the fifth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M. Lewis were guest editors of this special issue.  相似文献   

4.
Sediment cores from Lake Pepin, a natural lake on the Upper Mississippi River, reveal the historical trends in trace metal use and discharge in the watershed. Lead-210 dated concentration profiles of trace metals (Ag, Cd, Cr, Cu, Hg, Pb, V, Zn) in sediment cores from throughout the lake generally showed low and stable concentrations prior to settlement (circa 1830), peak concentrations between 1940 and 1975, and substantial decreases thereafter. Whole-lake sediment accumulation rates increased greatly over the period of record, from 79,000 metric tons year−1 prior to 1830, to 876,000 metric tons year−1 during the 1990s. Whole-lake accumulation rates of most trace metals peaked in the 1960s but decreased sharply after that. Sediment and trace metal accumulation rates decreased in the downstream direction, and approximately two-thirds of the sediment and trace metal mass accumulated in Lake Pepin since 1800 was deposited in the upper 30% (by area) of the lake. The dramatic declines in trace metal concentrations and accumulation rates in Lake Pepin sediments since 1970 coincide with increased pollution control and prevention efforts throughout the watershed, including the implementation of secondary treatment at a large municipal wastewater treatment plant upstream. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D.R. Engstrom served as guest editor of the special issue.  相似文献   

5.
Long-term changes in sediment and phosphorus loading to the upper Mississippi River were quantified from an array of 25 sediment cores from Lake Pepin, a large natural impoundment downstream of the Minneapolis-St Paul metropolitan area. Cores were dated and stratigraphically correlated using 210Pb, 137Cs, 14C, magnetic susceptibility, pollen analysis, and loss-on-ignition. All cores show a dramatic increase in sediment accumulation beginning with European settlement in 1830. Accumulation rates are highest and show the greatest post-settlement increases in the upper end of the lake. Present-day sediment-phosphorus concentrations are roughly twice those of pre-settlement times, and the Fe/Al-bound fraction makes up a greater portion of the total. Diatom assemblages record a marked increase in nutrient availability over the last 200 years, changing from clear-water benthic forms and mesotrophic planktonic taxa in pre-settlement times to exclusively planktonic assemblages characteristic of highly eutrophic conditions today. Lake-water total-phosphorus concentrations, estimated by weighted averaging regression and calibration, increased from 50 to 200 μg l−1 during this period. Sediment loading to Lake Pepin from the Mississippi River has increased by an order of magnitude since 1830. Modern fluxes are about 900,000 metric tons annually, and are more than 80% detrital mineral matter. About 17% of the lake’s volume in 1830 has been replaced by sediment, and at current accumulation rates the remainder will be filled in another 340 years. Phosphorus accumulation in Lake Pepin sediments has increased 15-fold since 1830, rising from 60 to 900 metric tons annually. This rise represents a sevenfold increase in phosphorus loading from the Mississippi River coupled with more efficient retention of phosphorus inflows by bottom sediments. More efficient trapping of phosphorus in Lake Pepin over the last century resulted from higher rates of sediment burial. The most dramatic changes in nutrient and sediment inputs to Lake Pepin have occurred since 1940, although gradual increases began shortly following European settlement. Sediment accumulation rates rose sharply between 1940 and 1970 and then leveled off, while phosphorus inflows record their largest increases after 1970. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

6.
Lake St. Croix is a natural impoundment of the lowermost 37 km of the St. Croix River in Minnesota and Wisconsin, making this one of a few large river systems in the world possessing a long-term depositional basin at its terminus. The river’s relatively pristine condition led to its designation as a National Scenic Riverway in 1968, but increasing urbanization in its lower reaches has raised concerns about impacts on water quality. This study was initiated to reconstruct historical loadings of suspended sediment and phosphorus (P) from the sediment record in Lake St. Croix. Twenty-four piston cores, with an average length of 2 m, were collected along eight transects of the lake. Dated chronologies from 210Pb, 137Cs and 14C were used to calculate the rate of sediment accumulation in the lake over the past 100+ years. Diatom microfossil analysis was used to reconstruct historical lakewater P concentrations over the same time period, and sediment P analysis quantified the amount of P trapped in lake sediments. Using a whole-lake mass balance approach, the loading of sediment and P to Lake St. Croix over the last 100+ years was calculated. Beginning in 1850, sediment accumulation increased dramatically to a peak in 1950–1960 of eight times background rates prior to European settlement. The peak is driven largely by sediment contributions from small side-valley catchment tributaries to the downstream half of the lake. The total P load to the lake increased sharply after 1940 and remains high, at around four times the level of pre-European settlement conditions. The timing of peak sediment and P loading to the lake shows that early settlement activities, such as logging and the conversion of forest and prairie to agricultural land between 1850 and 1890, had only modest impacts on the lake. By contrast, the mid-1900s brought major increases in sediment and P loading to the lake, suggesting that relatively recent activities on the landscape and changes to nutrient balances in the watershed have caused the current eutrophic condition of this important recreational and natural resource. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

7.
The blocking or reversing effect of the downstream trunk river on its tributary lakes is an essential aspect of river-lake hydraulics. To measure how and the extent to which a trunk river can influence its tributary lakes, we made a case study in Changjiang River and one of its tributary lakes, Lake East Dongting (Lake ED) during a 35-year study period (1980–2014). Specifically, we investigated Lake ED’s discharge ability into Changjiang River using stage-discharge relationship curves, and hence the changes of the lake discharge ability under different hydrologic conditions of the Changjiang River. The results show that (1) the Changjiang River does exert a huge impact on the water regimes of Lake ED. And this impact varies seasonally. A variation of 3000 m3/s in Changjiang River’s runoff would change the lake water level by about 1.1 m in dry seasons, by 0.4 m in wet seasons, and by 0.6 m during severe summer floods. (2) Changes in the Changjiang River runoff triggered by the Three Gorges Dam since 2003 have led to dramatic water regime variations in Lake ED. Other factors, including reduction of lake inflow and the lake bed erosion, also exacerbated the water regime variations in Lake ED.  相似文献   

8.
This study was conducted to collect historical land use information that would help explain the historical patterns in accumulation of sediment and phosphorus in Lake Pepin documented by Engstrom et al. (J Paleolimnol, this issue). A wide range of historical factors including cropping systems, phosphorus applications from fertilizer and manure, human and animal populations, river flows and phosphorus discharges from waste water treatment plants were studied using statistical methods. Results showed that sediment losses from the Minnesota River basin are significantly correlated with historical increases in river flows, row crop production acreage and basin population. Total phosphorus accumulations in the sediments of Lake Pepin are significantly correlated with increased phosphorus discharges from metropolitan area wastewater treatment plants, and increases in row crop acreage and river flows. Total phosphorus inflows to Lake Pepin are significantly correlated with increases in river flows, row crop acreage and phosphorus fertilizer applied to agricultural lands. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

9.
Sediments from Lake Pepin on the Mississippi River, southeastern Minnesota, are used as provenance tracers to assess variations in hydrology and sediment-transport during the middle Holocene. Three rivers contribute sediment to Lake Pepin, and each catchment is characterized by a distinctly different geologic terrain. The geochemical fingerprint for each drainage basin was determined from the elemental composition of heavy minerals in the silt-sized fraction of modern sediment samples. Down-core elemental abundances were compared with these fingerprints by use of a chemical-mass-balance model that apportions sediment to the source areas. We observed a decreased contribution from the Minnesota River during the interval ~6700–5500 14C yr BP, which we attribute to decreased discharge of the Minnesota River, likely controlled by a combination of precipitation, snow melt, and groundwater input to the river. This hydrologic condition coincides with the mid-Holocene prairie period recorded by fossil pollen data. The occurrence of this feature in a proxy record for hydrologic variations supports the hypothesis that the mid-Holocene prairie period reflects drier conditions than before or after in midwestern North America.  相似文献   

10.
The Bunger Hills in East Antarctica occupy a land area of approximately 400 km2. They have been exposed by Holocene retreat of the Antarctic ice sheet and its outlet glaciers. The accompanying sea level rise flooded the marine inlets that now separate the northern islands and peninsulas from the major part of the hills. During deglaciation the continental ice sheet margin retreated south‐eastwards with several temporary halts, during which ice‐dammed lakes were formed in some valleys. These lakes were maintained long enough to permit formation of beaches of sand and gravel, and for the erosion of shore platforms and low cliffs in bedrock. Around the western end of Fish Tail Bay impressive shoreline features 20 m above sea level define a former ice‐dammed lake that was 5.5 km long. A similar 7 km long former ice‐dammed lake was formed at Lake Dolgoe. The more extensive and deeper glacial lake is revealed by well‐developed and preserved shoreline features cut at 29 m which is 16 m above present lake level. In addition, several small ice‐dammed lakes existed temporarily near Lake Shchel and in the valley to the west. Lake Fish Tail existed more than 6,900 14C years ago and Lake Shchel probably more than 6,680 14C years ago. It is inferred that the shore platforms and beaches were formed by lake ice and wave action over considerable periods when the lakes were impounded by steep cold ice margins. There appears to have been a balance between meltwater input and evaporative loss from the lakes in the cold dry continental climate. There is no evidence for rapid lake level fluctuations, and there was very little input of clastic sediment. This resulted in poor development of deltaic and rhythmically laminated lake floor deposits. It is suggested that such deposits are more characteristic of ice‐dammed lakes formed in association with wet‐based temperate ice than those associated with dry‐based polar ice.  相似文献   

11.
Evaluation of land-use effects on coastal and marine ecosystems requires better understanding of the role of rivers in regulating mass transport from terrestrial to oceanic environments. Here we take advantage of the presence of a riverine lake to use paleoecological techniques to quantify impacts of logging, European-style agriculture, urbanization and continued terrestrial disturbance on mass transport and water quality in the northern drainage of the Mississippi River. Two 2-m sediment-cores recovered in 1999 from Lake St. Croix, a natural impoundment of the St. Croix River, were dated using 210Pb and 137Cs, and analyzed for historical changes (c. 1840–present) in sediment magnetic susceptibility, inorganic and organic matter content, biogenic silica, fossil pigments, and diatom microfossils. Inorganic sediment accumulation increased threefold between the mid-1800s and present, whereas clear signs of eutrophication were only evident after the mid-twentieth century when biogenic silica accumulation increased sixfold, diatom accumulation rates increased 20- to 50- fold, and the diatom community shifted from predominantly benthic species to assemblages composed mainly of planktonic taxa. Similarly, fossil pigment concentrations increased during the 1960s, and diatom-inferred total phosphorus (DI-TP) increased from ~30 μg TP l−1 c. 1910 to ~60 μg l−1 since 1990, similar to historical records since 1980. Together, these patterns demonstrate that initial land clearance did not result in substantive declines in water quality or nutrient mass transport, instead, substantial degradation of downstream environments was restricted to the latter half of the twentieth century. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

12.
It can be advantageous to revisit coring locations in lakes years after an initial paleolimnological study is completed, to assess environmental changes in the intervening time interval. We revisited sediment core sites in Lake Pepin (Minnesota, Wisconsin) more than a decade after an original set of 10 cores was collected, dated radiometrically, and studied in 1996. Prominent magnetic susceptibility features were used to align the new core set with the older set, such that traditional radiometric dating was not necessary to obtain a chronology for the new cores. The procedure used to align the two core sets accounted for compaction of former surface sediments by burial with new sediment. The amount of new sediment, mercury, and phosphorus accumulated at each core site was determined and extrapolated to the depositional area of the lake to estimate recent (1996–2008) whole-basin loads. Recent sediment accumulation in Lake Pepin compared well (within 3%) with monitored inflow data from a gauging station on the upper Mississippi River just before it enters the lake. Bulk sediment accumulation rate remained very high (772,000 t/year) for the recent period (1996–2008), down slightly from the peak in 1990–1996 (876,000 t/year), and almost an order of magnitude above pre-settlement rates. Total phosphorus deposition remained constant since a peak in the 1960s, but was also well above pre-settlement rates. Mercury continued its precipitous decline since peaking in the 1960s.  相似文献   

13.
Lake Algonquin, the largest glacial lake of the Great Lakes area, ended prior to 10,000 years BP by drainage to the Ottawa Valley as the North Bay outlet was deglaciated. At that time, the outlet area was isostatically downwarped more than 100 m; resulting low water, river-linked lakes Chippewa, Stanley, and Hough, lowstands in the basins of lakes Michigan, Huron, and Georgian Bay respectively, were much below present lake level. While water levels were low, about half of the present lake area was dry land. The land above the lowstands was dissected by streams and became forested. Uplift of the North Bay outlet between 10,000 and 5,000 years BP raised lake level to above the present (the Nipissing transgression), submerging the forest and valley system. Submerged stumps from those forests have often been encountered on the present lake floor; some stumps have been dated. Four sites in Ontario (Parkhill, Owen Sound, St. Joseph Island, Meaford) provide on-land evidence of pre-Nipissing drainage and valley formation. Radiocarbon ages of valley fill organic materials range from 7,310 to 5,410 years BP. At three sites, present drainage is known to be displaced from the pre-Nipissing drainage. Geophysical methods (EM, GPR, resistivity) have been used to refine valley location and morphology at Parkhill and Meaford. There is the potential of tracing the valleys down slope to the low-water shorelines with shipboard geophysics, with implications for archaeology, hydrology and hydrogeology, paleogeography, and Great Lakes history. This is the eighth in a series of ten papers published in this special issue of Journal of Paleolimnology. These papers were presented at the 47th Annual Meeting of the International Association for Great Lakes Research (2004), held at the University of Waterloo, Waterloo, Ontario, Canada. P.F. Karrow and C.F.M. Lewis were guest editors of this special issue.  相似文献   

14.
The level of Kluane Lake in southwest Yukon Territory, Canada, has fluctuated tens of metres during the late Holocene. Contributions of sediment from different watersheds in the basin over the past 5,000 years were inferred from the elemental geochemistry of Kluane Lake sediment cores. Elements associated with organic material and oxyhydroxides were used to reconstruct redox fluctuations in the hypolimnion of the lake. The data reveal complex relationships between climate and river discharge during the late Holocene. A period of influx of Duke River sediment coincides with a relatively warm climate around 1,300 years BP. Discharge of Slims River into Kluane Lake occurred when Kaskawulsh Glacier advanced to the present drainage divide separating flow to the Pacific Ocean via Kaskawulsh and Alsek rivers from flow to Bering Sea via tributaries of Yukon River. During periods when neither Duke nor Slims river discharged into Kluane Lake, the level of the lake was low and stable thermal stratification developed, with anoxic and eventually euxinic conditions in the hypolimnion.  相似文献   

15.
三门峡盆地位居黄河中游,环境的演进与古人类的活动有着密切关系。早更新世,三门峡盆地为湖盆区,在盆边林缘地带发展了西侯度文化;中更新世,盆地内山前洪积扇面积扩大,湖盆缩小,扇前近水地带发展了匼河一丁村文化;晚更新世,湖水消失,黄河出现,黄土堆积的山麓与河谷两岸阶地上,发展了许家窑文化;全新世,大陆性季风明显,黄土丘陵与河谷阶地区发展了仰韶文化、龙山文化与现代人类社会历史。可见,盆地区古人类活动历史已长达200万年左右。而且,人类的发展迁徙与古地理环境的演进也是有着密切关系的。  相似文献   

16.
The Basin of Ubaté–Chichinquirá (5°28′N, 73°45′ W, c. 2580 m altitude) includes the Fúquene Valley and is located in the central part of the Eastern Cordillera of Colombia. Rocks and sediments were folded and faulted during the Miocene, uplifted during the (late) Pliocene, and affected by glaciers during the Pleistocene. Successive glacial and interglacial periods left significant marks in the landscape which were used to reconstruct six stages in the development of the landscape along a relative chronology. During early Pleistocene episode 1 glaciers formed U-shape valleys. Evidence of the impact of ice sheets has been found as far downslope as ca. 2900 m elevation. During episode 2 moraines developed which were cut by the present San José River. During episode 3 abundant sediment was produced by glacial erosion. It accentuated the sculpturing of hard rock and deepening of the drainage basin. The ancestral Ubaté–Suarez River constituted a dynamic erosive system that gave rise to deep V-shaped valleys and progressively formed a set of intricate valleys with a high sediment production. Finally, intense glacial and fluvio-glacial erosion led to a geomorphological system with high energy levels and intensive sediment transport leading to wide valleys. During episode 4 the Ubaté–Suarez River eroded and deepened its valley until it captured the old El Hato–San José Valley. It caused intense erosion of the moraine and the fluvio-glacial gravels. Deep V-shaped valleys stabilized in the high areas of the main drainage system and these valleys form the present-day fluvial sub-basins. During episode 5 the deep valley in the northern part of the Basin of Ubaté–Chichinquirá developed. During middle Pleistocene episode 6 colluvial sediments formed the Saboya dam and a lake was formed in the river valley of which the present Lake Fúquene is only a small remnant. Lithological changes indicate fluctuating water levels and Lake Fúquene must have expanded periodically up to an area 5 to 10 times the present-day surface.  相似文献   

17.
We established sediment geochronologies for cores from eight deltaic areas in Lake Tanganyika (the Lubulungu, Kabesi, Halembe, Malagarasi, Nyasanga/Kahama, Mwamgongo, Nyamusenyi, and Karonge/Kirasa River deltas), recording a range of watershed disturbance histories from the eastern margin of this African rift valley lake. Cores from currently disturbed sites on the central Tanzanian coast display remarkably uniform and low rates of sediment accumulation from the 18th century until the early 1960s, when a synchronous and dramatic rise in rates occurs. Through this same time interval sedimentation rates offshore from undisturbed Tanzanian watersheds either remain unchanged or decline. Further north, at disturbed sites along the northern Tanzania and Burundi coasts, the pattern of sedimentation rate increase is more complex. Although a mid-late 20th century increase is also evident in these sites, indications of earlier periods of increasing sediment erosion, dating from the mid-late 19th century, are also evident. Synchronous changes in sediment accumulation rates dating from the early 1960s may be the result of exceptionally wet years triggering an increase in the discharge of previously eroded and unconsolidated alluvium and stream/beach terrace deposits, previously accumulated in the deltas and stream valleys of impacted watersheds. Sedimentation rate impacts of deforestation on lake ecosystems are likely modulated by short-term climatic forcing events, which can impact the specific timing and location of sediment discharge to lakes.  相似文献   

18.
洪泽湖是淮河流域的最大湖泊,是我国五大淡水湖之一,湿地资源十分丰富。通过对洪泽湖东部湿地的调查分析,阐述了洪泽湖东部湿地目前所面临的四大问题,并就如何科学保护以及合理地开发利用洪泽湖东部湿地提出了具体的对策和建议。  相似文献   

19.
青藏高原东南缘干热河谷中广泛发育黄土或黄土状土,是解读中国西南季风、干热河谷环境演变与高原隆升关系的良好载体,但目前尚无关于其成因、形成时代和古气候意义的系统研究。通过对金沙江干热河谷华弹段中黄土状土的空间分布、粒度特征、化学风化指数以及沉积速率的分析,发现该区黄土状土拔河越高,粒径越小,沉积速率越低;结合前人物源示踪研究成果,证实黄土状土来源于金沙江谷底的河漫滩沉积和古堰塞湖沉积,局地山谷风环流为其提供搬运动力。磁性地层学分析显示黄土状土地层全为正极性,剖面中未出现B/M界线,结合光释光测年结果,确定金沙江干热河谷华弹段中的黄土状土形成于中更新世中期以来。通过与同河段的古堰塞湖沉积形成时代进行对比,发现黄土状土的形成时代稍晚于同河段古堰塞湖相沉积大量堆积的时代。金沙江河谷中黄土状土与古堰塞湖相沉积在时空上的紧密关联性表明,滑坡堰塞事件控制着金沙江干热河谷中黄土状土物源的丰富程度,是影响金沙江深切河谷中黄土状土形成与沉积过程的主要因素。黄土状土的粒度与化学风化指数结果表明358 ka BP以来,该段河谷中古环境气候发生过明显冷干-暖湿波动,并在冰期-间冰期尺度上响应全球气候变化。  相似文献   

20.
Sub-bottom profiling and coring were undertaken at eight sub-basins along the lower French River and at five small lakes near North Bay, Ontario, to collect stratigraphical and chronological evidence to investigate whether lakes occupying the Huron–Georgian basins during the early- to mid-Holocene became hydrologically closed. All of the coring sites are located within the route of the North Bay outlet that carried outflow from the upper Great Lakes during this period. Sand beds containing organic detritus are present within five cores from Muskrat, Crombie and Deep bays that otherwise are composed of glaciolacustrine rhythmites or fine-grained lacustrine deposits. These sand beds are interpreted to represent intervals when water levels within the sub-basins were lower than present, based on chronology, sediment texture, and macrofossil assemblages. It is inferred that the water surface in the Huron–Georgian basins fell below the level of the Dalles Rapids sill isolating the lower French River sub-basins from the large lake. A core from Depensier Lake, North Bay, contains an organic-rich sand interval within a thicker sand unit barren of organic materials. Macrofossils within this organic-rich interval are interpreted to be evidence of substantially diminished flow through the North Bay outlet channel. Radiocarbon dates of terrestrial macrofossils provide correlation of the sand beds between the French River cores as well as with the organic-rich sand in the Depensier Lake core. The possibility that the sand beds in the French River cores represent flood deposits rather than evidence of hydrologically closed conditions is considered, but rejected, based on the occurrence of multiple peaty layers and the record of shallow water conditions inferred from macrofossils within the upper sand bed of core MUS1, Muskrat Bay, in combination with the evidence of quiescent depositional conditions from similarly aged macrofossils in the core from Depensier Lake. Eight radiocarbon dates from the French River cores are incorporated into an elevation-age plot of paleo-indicators of water levels in the Huron–Georgian basins, using additional data from the literature. This plot and stratigraphic evidence from the Muskrat Bay cores indicates that separate closed-basin intervals occurred between 9.0 and 8.4, and 9.5 and 9.3 ka cal BP (~ 8.1 and 7.6, and ~ 8.5 and 8.3 ka BP). The occurrence of these two closed-basin intervals between 9.6 and 8.4 ka cal BP (~ 8.7 and 7.6 ka BP) implies that run-off derived exclusively from precipitation within the non-glaciated portions of the upper Great Lakes drainage basins was likely insufficient at this time to support an open-basin lake hydrology during the contemporary climate, which was colder and drier than present, without being supplemented from glacial Lake Agassiz overflow and/or Laurentide Ice Sheet meltwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号