首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceboruco is a major composite volcano at the western end of the Mexican Volcanic Belt, near the junction between the North American and Pacific plates. The volcano is built from successive eruptions of andesite lavas and pyroclastic rocks, and major eruptions during its history have resulted in the formation of two concentric calderas. The youngest volcanic activity has included the extrusion of dacites within the inner caldera and a voluminous flank eruption of andesite during 1870–72. Fumarolic activity persists to the present day. Chemical analyses show that the lavas are of cale-alkaline type and rangs from andesite (SiO2=58–61%) to acid dacite (SiO2=68%) in composition. The rate of increase of K2O relative to SiO is greater than that in volcanic rocks from the Mexican Volcanic Belt as a whole. This indicates that simple models based on the application of such relationships may not be adequate to explain the petrogenesis of calc-alkaline lavas.  相似文献   

2.
The volcanic history of Somma-Vesuvius indicates that salic products compatible with an origin by fractionation within a shallow magma chamber have been repeatedly erupted («Plinian» pumice deposits). The last two of these eruptions, (79 A.D. and 3500 B.P.) were carefully studied. Interaction with calcareous country rocks had limited importance, and all data indicate that differentiated magmas were produced by crystal-liquid fractionation within the undersaturated part of petrogeny’s residua system at about 1 kb water pressure. The solid-liquid trend indicates that the derivative magmas originated by fractionation of slightly but significantly different parental liquids. Some lavas of appropriate composition were selected as parental liquids to compute the entity of the fractionation. Results suggest that in both bases a fractionation of about 70 weight % was needed to produce liquids with the composition of the pumice. The combination of all data indicates that the two Plinian eruptions were fed by a magma chamber (3–4 km deep) having a volume of approx. 2.0–2.5 km3. The temperature of the magma that initially entered the chamber was about 1100°C, whereas the temperature of the residual liquids erupted was Plinian pumice was 800° and 850°C respectively. There is no evidence that such a magma chamber existed at Vesuvius after the 79 A.D. eruption. These results have relevant practical implications for volcanic hazard and monitoring and for geothermal energy.  相似文献   

3.
Volcanic ash produced during explosive eruptions can have very severe impacts on modern technological societies. Here, we use reconstructed patterns of fine ash dispersal recorded in terrestrial and marine geological archives to assess volcanic ash hazards. The ash-dispersal maps from nine Holocene explosive eruptions of Italian volcanoes have been used to construct frequency maps of distal ash deposition over a wide area, which encompasses central and southern Italy, the Adriatic and Tyrrhenian seas and the Balkans. The maps are presented as two cumulative-thickness isopach maps, one for nine eruptions from different volcanoes and one for six eruptions from Somma-Vesuvius. These maps represent the first use of distal ash layers to construct volcanic hazard maps, and the proposed methodology is easily applicable to other volcanic areas worldwide.  相似文献   

4.
Agrigan is the tallest (965 m a.s.l.) and largest (44 km2) of the volcanoes of the northern Mariana Islands. Its slopes are asymmetric to the east; a small caldera (4 km2) dominates the interior. The volcanic edifice has been disrupted along three sets of faults: 1) exterior slump faults, 2) radial faults, and 3) interior faults related to caldera-collapse. The rocks of the volcano are characterized by porphyritic clinopyroxene-olivine-plagioclase basalts and subordinate andesites. Cumulate xenoliths composed of Fo81, An95 and diopside are common in the basalts. Development of the volcano began with 3–4 km of submarine growth. The earliest recognizable flows are the result of fissural Hawaiian- and Strombolian-type eruptions. These were followed by the eruption of more viscous lavas from above the present summit. Flank eruptions of basalt and andesite preceded voluminous outpourings of andesitic pyroclastics contemporaneous with caldera-collapse. Subsequent magmatic resurgence is localized along a N10E rift zone. Violent ejection of lapilli and ash occurred in 1917.  相似文献   

5.
From August to October, 1976, La Soufrière de Guadeloupe was observed, and recorded with an automated sequence camera and numerous handheld cameras. During the period of observation, the nature of volcanic activity ranged from mild steam emission to moderately energetic phreatic eruptions. Background fumarolic activity (steam emission) was characterized by the emission of generally tephra-free steam clouds 50 to 150 m above the summit. The clouds rose buoyantly above the vent and were blown downwind at prevailing wind velocities. Phreatic eruptions were well-documented on September 22, October 2, and October 4. In the latter two eruptions, small bursts of tephra-laden steam erupted at intervals of 30 to 45 min, and rose from 350 to 500 m above the summit. In the largest observed eruption, that of October 2, the steam and tephra cloud rose to a maximum height of 600 to 650 m in 20 min. A white vapor cloud and a medium gray, tephra-laden cloud were erupted simultaneously from the summit vent and both were surrounded by a vapor collar: the clouds were thoroughly mixed within 1 km downwind of the summit. The concurrent growth of clouds from separate vents (summit and flank) implies a common source. Simultaneous eruption of tephra-free and tephra-laden clouds from the same vent is puzzling and implies: (i) lateral changes in the degree of alteration of dome rocks along the elongate vent, hence erodability of the dome lavas, or (ii) differences in the gas velocities. These «mixed» clouds moved westward, downwind and downslope as a density current, along the watersheds of the R. Noire and R. des Pères with an approximate velocity of 10 to 25 m/sec. Upon reaching the sea the clouds continued to move forward, but at a decreased velocity, and spread laterally, having left behind the restrictions of valley walls. A thin gray veneer of moist tephra, ranging from several cm thick near the dome to less than 1 mm thick several km downwind, was deposited along a narrow corridor southwest of the summit. Tephra from the phreatic eruptions consisted mostly of hydrothermally altered lithic, mineral, and glass fragments derived from dome lavas; no fresh (juvenile) pyroclasts were present in the tephra. Absence of juvenile tephra at La Soufrière supports the view that activity was due to groundwater circulating in a vapor-dominated geothermal system, probably driven by a shallow heat source. At La Soufrière, most vapor-dominated systems are located in elevated areas of groundwater recharge where groundwater movement is downward and outward. The sporadic phreatic eruptions may be related to the rate of recharge of meteoric waters within the dome, the decrease in pore pressure during fortnightly tidal minimums or both. Whatever the triggering mechanism, vapor-dominated fluids eroded vent walls during phreatic eruptions and carried out fine-grained, hydrothermally altered, pre-existing dome material as tephra.  相似文献   

6.
Towada caldera, lying near the northern end of Honsyu, Japan was constructed by eruptions of lavas and pyroclastic materials in three separate periods. At the ends of the first and second periods, great amounts of pumice were erupted in the form of pumice flow and fall respectively. Each pumice cruption was followed by collapse of the center of the cones resulting in double calderas. The lavas of these three periods and the pumice of the first and second periods were chemically analysed. The result was plotted in several different types of variation diagrams. The points for the lavas and pumice lie generally on smooth curves, indicating that the magmas which caused the pumice cruptions belong to the same general differentiation series as do the lavas. If SiO2/FeO+Fe2O, is plotted against sodification index (MgO x 100/MgO+FeO+Fe2O, +Na2O+K2O), points for the lavas lie on a straight line, whereas those for the pumice lie on another straight line branching from the former at some point in the middle stage of differentiation. The rate of increase of this ratio in the pumice is greater than in the lavas, implying that less SiO2 and more iron were subtracted from the magmas producing the pumice than from those producing the lavas. This was probably caused by crystallization of a greater amount of magnetite in the former magmas possibly due to higher oxygen partial pressure which may be in turn related to higher water content. It is not necessary to postulate melting of the crust in order to generate magmas of the pumice eruptions of the central type.  相似文献   

7.
Emuruangogolak is a Quaternary basalitrachyte volcano situated in the Suguta graben of the northern Kenva rift, and probably erupted last early in this century. Following the construction of an early trachytic shield volcano, two episodes of caldera collapse occurred. each preceded by explosive pvroclastic activity. Post-calelera volcanism consisted of alternating phases of basalt and trachyte eruption. The basic lavas are high-Ti ferrobasalts of a mildly alkaline ‘transitional’ composition and the trachytes are peralkaline and oversaturated. A distinct compositional bimodality exists and no rocks in the range 49–59°. SiO, have been found. Major and trace element analyses suggest that the trachytes are genetically related to the basalts. Associations of almost identical lavas occur in Ethiopia. Pantelleria and the Azores but with the presence of intermediate terms Fractional crystallization is the mechanism currently preferred to account for the origin of the trachytes. The ‘Daly gap’ may be a consequence of a crystallization process which limits the volume of intermediate magma available at any time. In addition, the physical properties and spatial distribution of the different magmas probably discriminate against the cruption of lavas of intermediate composition.  相似文献   

8.
Petrological and geochemical data on dredged samples from five submarine volcanos northwest of Samoa indicate that three of these volcanos belong to the Samoan volcanic province (Field, Lalla Rookh, and Combe banks), and two belong to separate magmatic zones (Wallis Islands and Alexa Bank). The Samoan volcanic province increases in age westward and both shield-building tholeiitic and alkalic lavas (Combe Bank) and strongly undersaturated (post-erosional?) melilitites or nephelinites and ankaramites (Field and Lalla Rookh banks) are present. The age progression and petrochemical character of these rocks is consistent with a fixed hotspot beneath eastern Samoa. Slightly askew from this trend is Alexa Bank where dredged lavas are ocean-island tholeiites; however, its radiometric age and compositional characteristics apparently preclude its association with Samoa by a fixed-hotspot model. Dredged volcanic rocks from near the Wallis Islands are geochemically, petrologically, and temporally different from Samoan volcanism, but are similar in these respects to Quaternary volcanism in Rotuma and Fiji and may be related to plate reorganization accompanying opening of the North Fiji Basin.  相似文献   

9.
Tanna, one of the southernmost islands of the New Hebrides volcanic arc, is made of Late Pliocene to Recent island arc tholeiitic basalts and andesites, with SiO2 contents ranging from 45 to 57%. These lavas are highly porphyritic (30–50% in volume): phenocrysts of plagioclase are the most abundant, together with olivine and clinopyroxene. The groundmass contain plagioclase, augite, olivine, magnetite and glass; pigeonite, tridymite, sanidine and, rarely, biotite may also occur. The olivines and clinopyroxenes show an iron enrichment from the cores of phenocrysts to their rims and the groundmass crystals, but their compositional variations are not correlated with the Mg/Fe ratio of bulk host rocks, the most Fe-rich compositions being found in Mg-rich lavas. Plagioclase compositions range from An95 to An60 in the basalts and An60 to An50 in the andesites, but, within each group, they are not correlated with SiO2 or Na2O contents of host lavas. Consequently, the bulk major element compositions of Tanna volcanic rocks cannot be considered as primarily controlled by crystal separation from successive liquids. The oxyde-SiO2 variations diagrams, and the modal compositions and mineral chemistry show that crystal accumulation is the predominant mechanism accounting for bulk rock compositions. However, this does not exclude fractional crystallization: the variation of the calculated groundmass mineralogy strongly suggest the occurrence of crystal removal mainly clinopyroxene and magnetite.  相似文献   

10.
Fluid motions are important in virtually all volcanic processes. Attempts to understand the mechanism of volcanic activity or the origin of magmas generally require knowledge of fluid dynamics. The use of fluid dynamics is illustrated by considering the Reynolds numbers of some volcanic fluid flow systems. The physics of high Reynolds number buoyant plumes is found to be important in situations ranging from the rise of eruption columns in the atmosphere to the replenishment of basaltic magma chambers. Application of theoretical and experimental work on plumes enables eruption rates to be deduced from eruption column heights and new hypotheses on the origin of some magmatic ores to be put forward. The influence of Reynolds number on the behaviour of lava is also discussed with application to the origin of Archaean komatiite lavas. Komatiite lavas are argued to have flowed in a turbulent manner whereas modern basalt lavas nearly always flow by laminar shear. The turbulent character of komatiites seems to provide an explanation for the origin of associated nickel-sulfide mineralization in komaiites by melting and assimilation of sulfide-rich sediment. This hypothesis depends on komatiite flow having had a high Reynolds number.  相似文献   

11.
Geological investigations were performed on the Roccamonfina extint volcano with the purpose to recognize the nature of the main volcanic formations (with particular regard to pyroclastic deposits) and to ascertain their true order of succession. The volcanic history may be sketched as follows:
  1. 1)
    Successive eruptions of mostly leucitic lavas and tuffs build up a normal stratovolcano, about 1700 m high. Several adventive cones, sometimes formed of trachytic lava, rise on its flanks.  相似文献   

12.
Erosion processes on active volcanoes in humid climates result in some of the highest sediment yields on Earth. Episodic sediment yields after large eruptions have been evaluated, but not the long-term and continuous patterns on persistently active volcanoes. We have used high-spatial resolution satellite imagery and DEMs/DSMs along with field-based geologic mapping to assess accurately sediment budgets for the active Semeru Volcano in Java, Indonesia. Patterns of aggradation and degradation on Semeru differ from that of other active volcanoes because (1) both episodic pyroclastic density currents (PDC) and continuous supplies of tephra generate pulses of sediment, (2) sediment is transferred via cycles of aggradation and degradation that continue for >15 years in river channels after each PDC-producing eruption, and (3) rain-triggered lahars remove much greater material than fluvial transport during long, intense rainfall events. The geomorphic response of two of Semeru’s rivers to volcanic sediment migration indicates that (1) each river experiences alternating aggradation and degradation cycles following PDC-producing eruptions and (2) spatial patterns of sediment transfer are governed by geomorphic characteristics of the river reaches. Usually high degradation in the steep source reach is followed by a long bypassing middle reach. Aggradation predominates in the depositional reaches further down valley on the ring plain. Average sediment yields (103–105 t/km2/year) at persistently active volcanoes are two to three orders of magnitude lower than sediment yields after large and infrequent eruptions, but the continuous and steady sediment transfer in rivers removes more sediment on a mid-term (10 years) to long-term (30 years) basis. In contrast to the trend observed on composite cones after large and infrequent eruptions, decay of sediment yields is not exponential and river channels do not fully recover at steadily active volcanoes as episodic inputs from BAF eruptions, superimposed on the background remobilization of daily tephra, have a greater cumulative effect.  相似文献   

13.
The Cainozoic volcanism of Sardinia (Italy) can be divided into two main cycles with different magmatic and geodynamic significance. The early cycle — Oligo-Miocenic in age (29-13 My ago) — shows the calc-alkaline character typical of converging plate areas. The later activity, ranging from Lower Pliocene (about 5 My ago) to recent Pleistocene, produced mostly basic lavas extruded onto a continental plate («within plate basalts»). It was related to a period of tensional tectonics which had affected the western Mediterranean area prior to, and during, the volcanic activity. Intermediate and acid volcanic products were associated with the mafic rocks of the latest magmatic episodes. The main groups of rocks — the basic ones, already classified from their petrographic features and geological setting — can be characterized very well when a statistical elaboration of their chemical analyses is used. In fact, from chemical data it is possible to distinguish the Oligo-Miocene volcanic products from those of Plio-Pleistocene age. Moreover, within this latter group basanites, alkalic and subalkalic basaltic rocks can clearly be distinguished. Samples that had not clearly been defined on the basis of their petrographic characteristics (anonymous samples) have been attributed to one or the other of the main groups by means of discriminant functions. Chemical variations in the Plio-Pleistocenic rocks are due to fractionation episodes at shallow depths superimposed on primary magmatic variations. A model of partial fusion of the mantle accounts for many but not all the observed original chemical variations. Different physical melting conditions, the effects of minor mineral phases in the mantle and, probably, crustal contamination were also effective in creating the observed chemical variations.  相似文献   

14.
The paper summarizes the geochemical and petrogenetic aspects of an investigation of late Tertiary to Recent volcanic rocks in the Amboseli area of southern Kenya. A study of chemical variations in the Amboseli and Kilimanjaro lavas distinguishes a mildly alkaline series (alkali olivine basalts, trachybasalts/trachyandesites, trachytes, rhomb porphyries and phonolites) from a strongly alkaline series embracing subordinate nephelinitic, phonolitic and tephritic lavas. The two series probably evolved independently from a source in the mantle. A comparison of Kilimanjaro with other East African volcanoes shows that the focus of strongly alkaline volcanicity moved from eastern Uganda and western Kenya to northern Tanzania at the end of Miocene times. The Pliocene to Recent centres near the Kenya-Tanzania border show evidence of decreasing alkalinity from a western zone of nephelinite-phonolite volcanoes to an eastern region in which central volcanoes are characterized by the association of strongly and mildly alkaline suites.  相似文献   

15.
Volcanological differences between the old and the recent lavas from Martinique, Lesser Antilles, are presented, showing that two volcanic series exist in this island:

Dash

  • a high-alumina basalt series generally mafic, line-grained, partly pillowed, with clinopyroxene-rich lavas which show iron enrichment tendancies en an A.F.M. plot;
  • a calc-alkaline (slightly potassic) series much more siliceous as a group, porphyric, predominantly sub-aerially erupted with orthopyroxene-rich lavas which show no iron enrichment.
  • The high-alumina basalt series is considered as having originated from a differentiation trend by fractionation of olivine, clinopyroxene and plagioclase. Lavas range from olivine basalt to tridymite-rich dacite. The calc-alkaline series probably derives from the contamination of the first suite but the occurence of hornblende-rich cumulates indicates the process of fractionation takes place too. Lavas range from orthopyroxene andesite and hornblende andesite to quartz-hornblende dacite and quartz-biotite dacite.  相似文献   

    16.
    A series of comagmatic volcanic materials originated by subaerial eruptions that happened during the Neogene in Gran Canaria (Canary Islands) are studied in this work. The sequence consists of flows (basalts, basanites, tephrites) underlying volcanic agglomerate sheets. The whole unit, which reaches a maximum thickness greater than 700 m, is cut by a number of phonolite plugs. Flows, agglomerate sheets and plugs are genetically related, forming a differentiation series whose evolution has been rather complex: crystal fractionation, amphibole resorption, changes in oxygen pressure and gaseous transfer have played a role in the genesis of these volcanics. From an evolutionary point of view, the Roque Nublo Formation can be described as an alkaline series with two different undersaturated zones (tephritic flows and phonolitic domes) separated by a maximum of saturation (the agglomerate matrix is chemically a trachyte). In this respect, the Roque Nublo Formation is similar to the alkaline Cantal series, although in Gran Canaria the relations between trachytes and phonolites seem to be better defined. As for the agglomerates, their uncommon characteristics (heterogeneous and very poorly sorted boulders predominating over a vitroclastic welded matrix) lead one to think that they were produced by an unusual kind of cruption; certainly not by the « nuée ardente » types which have been repeatedly postulated before. The author’s suggestion is that these agglomerates (« Roque Nublo type ») were formed in ignimbritic-style eruptions of higy-viscosity magmas contained in very high-pressure chambers.  相似文献   

    17.
    Piton de La Fournaise is in a period of intense volcanic activity since 1998. To constrain the magma dynamics responsible for this activity, we combined GPS ground deformation monitoring interpreted through numerical modelling and geochemistry. Two cycles of continuous volcano inflation are evidenced for the May 2004–December 2005 period, with a rest from March to October 2005. These inflations are consistent with two cycles of compatible major element enrichment in the emitted lavas. Numerical models indicate that the pressurization of a single magma reservoir may be responsible for the observed pre-eruptive inflations of the volcano. The reservoir, located at 2300 m depth, has a radius of  500 m. At the beginning of each cycle, dykes propagate from the roof of the reservoir and yield eruptions of differentiated basalt near the summit. At the end of the cycle, dykes propagate from the eastern sidewall of the reservoir and yield distal eruptions of primitive magmas away from the summit. The volumes of magma emitted during the primitive eruptions seem too large to explain the surface deformations and therefore suggest some refill of the reservoir by deeper magmas. Our results may be used to predict the location and lava volume of future eruptions at Piton de La Fournaise volcano, depending on the timing of these eruptions within a cycle of volcanic activity.  相似文献   

    18.
    Forty-six new K-Ar age determinations are presented on whole rock samples and mineral separates from volcanic and subvolcanic rocks of Gran Canaria. The main subaerial shield building basaltic volcanism with estimated volume of about 1000 km3 was confined to the interval about 13.7 m.y. to 13.5 m.y. ago in the middle Miocene. Substantial volume (~100 km3) of silicic volcanics (trachyte and peralkaline rhyolite) were erupted with no detectable time break following the basaltic volcanism, essentially contemporaneous with formation of a large collapse caldera at 13.4±0.3 m.y. ago. Trachytic to phonolitic volcanism continued intermittently in the waning states of activity until about 9 m.y. ago. Following a long hiatus there was resurgence of volcanism with eruption of about 100 km3 of basanitic to hauyne phonolitic rocks of the Roque Nublo Group between about 4.4 m.y. and 3.4 m.y. ago in the Pliocene. After a hiatus of less than 1.0 m.y., olivine nephelinite magmas were erupted and this activity continued intermittently until relatively recent times, the younger eruptives being mainly basanitic in composition. The volume of volcanic products in this phase probably does not exceed 10 km3. Thus the volume of all the resurgent volcanism comprises less than 10 percent of the subaerially exposed part of Gran Canaria. The results show that the subaerial main shield building phase of volcanism in Gran Canaria, consisting of mildly alkali to transitional basalts, occurred over a time interval that was less than 0.5 m.y. Magmatic evolution on Gran Canaria appears to be similar to that found on other basaltic volcanoes in oceanic regions. Thus volcanoes in the Hawaiian, Marquesas and Society Islands all were built by basaltic lavas in similar short-lived episodes of volcanism. In some Hawaiian volcanoes, a resurgent phase of volcanism of strongly undersaturated basalts of small volume is recognized following a long hiatus, again similar to that found on Gran Canaria. The relatively large volume of silicic lavas erupted in Gran Canaria immediately following the main basaltic shield building phase is, however, not matched in the Pacific volcanoes mentioned.  相似文献   

    19.
    During six recent expeditions, of which four were led by the author, to the mainly basaltic island of Jan Mayen (length 53.6 km; mean width 7 km; area 380 km2), evidence has been gathered for at least six distinct volcanic phases, coupled with rythmic magmatic variations in the oceanite-trachybasalt-trachyandesite-trachyte lava suite. There are also certain intermediate types and associate pyroclasts, and effusive or explosive uprise of these lavas through two fissure-swarms, intersecting at about 12°, produced a subaerial volcano-group of several hundred cones, elongate north-east — south-west on the north-west margin of a large submarine pedestal possibly capped by a drowned plane of marine erosion at 100–200 m below present mean sea level. These rocks appear to range in age between Tertiary and Recent. Jan Mayen grows from the north-west flank of the submarine Mohns Ridge close to its axial rift within a markedly seismic zone, at a likely junction of crustal fractures immediately north of a sharp east-west flexure in the rift which may indicate a major strike-slip fault. The lavas have affinities with corresponding lavas in Scottish Hebrides and with the basalt-trachyte associations on the islands of Ascension, St Helena, Tristan da Cunha and Gough on the mid-Atlantic Ridge. Both form and structure suggest the island mass has the configuration of a volcanic dome (or possibly two coalescent domes diverging slightly south-west) at least 70×30 km in area and about 1.5 km in height. In the mass are two distinct major volcanic foci: an earlier South Jan or Rudolftoppen « dispersed » or « plexiform » vent, ascribable to numerous «drilled out» fissure-intersections within an area of more than 25 km2, and a later North Jan or Beerenberg central vent. A third focus of indeterminate relative age may lie beneath Straumflaket, in the shallow sea off South Cape. Magmas rose through individual fissures and their intersections, to form linear cones of tuff and lava, and extensive basalt floods. Most are vertical dikes but, in places, highly inclined sheets and sills tend to follow bedding and other planes of weakness in tuff and sometimes fed lava flows. Basaltic magma invaded a complex system of intersecting master fissures and subsidiary fractures in tuff near the surface, inflated the mass, distorted and generated local joint systems in the tuff and finally gave rise to meshworks of basaltic sheets in it. Following a long period of repeated fissure eruption, ten of the main basaltic throats at the South Jan dispersed focus, and one near the junction between North Jan and South Jan, were plugged by trachyte, after which there was volcanic quiescence with contemporaneous deep glacial, fluvial and marine erosion. During the subsequent resumption of volcanic activity the North Jan focus of central eruption rose to importance at the expense of the South Jan focus, which remained sealed by trachyte, but numerous small basaltic fissure volcanoes erupted on the seaward edges of the South Jan plateau and through the coastal platform beneath its cliffs, at or near sea level.  相似文献   

    20.
    1) Petrochemical studies of volcanic rocks shows that alkaline rocks of continents and oceans are different genetically in spite of their mineralogical and chemical similarity. 2) Oceanic rocks develop according to the following type: tholeiitic basalt — olivine basalt — alkaline rocks. 3) Continental alkaline rocks are derivatives of initially alkaline basalts and are connected by gradual transitions with calc-alkaline rocks of island arcs. 4) The source of all volcanic rocks is the upper mantle. Therefore the existence of two main types of rocks — oceanic and continental — reflects basic heterogeneities in composition and structure of the upper mantle.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号