首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Late Quaternary ( c . 130,000–10,000 BP) glacial history of the central west coast of Jameson Land, East Greenland, is reconstructed through glacial stratigraphical studies. Seven major sedimentary units are described and defined. They represent two interglacial events (where one is the Holocene). one interstadial event and two glacial events. The older interglacial event comprises marine and fluvial sediments, and is correlated to the Langelandselv interglacial, corresponding to oxygen isotope sub-stage 5e. It is followed by an Early Weichselian major glaciation during the Aucellaelv stade, and subsequently by an Early Weichselian interstadial marine and deltaic event (the Hugin Sø interstade). Sediments relating to the Middle Weichselian have not been recognized in the area. The Hugin Sø interstade deposits have been overrun by a Late Weichselian ice advance, during the Flakkerhuk stade, when the glacier, which probably was a thin, low gradient fjord glacier in Scoresby Sund, draped older sediments and landforms with a thin till. Subsequent to the final deglaciation, some time before 10,000BP, the sea reached the marine limit around 70 m a.s.l., and early Holocene marine, fluvial and littoral sediments were deposited in the coastal areas.  相似文献   

2.
The retreat of the Barents Sea Ice Sheet on the western Svalbard margin   总被引:1,自引:0,他引:1  
The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden. is discussed based on sub-bottom seismic records and scdirncnt cores. The sea lloor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjordcn up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from thc glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front rctrcatcd from the outermost shelf around 14. 8 ka A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was intcrruptcd by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscundian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isljorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice liont terminated far out in the main fjord. The remnants of the Harcnts Sea Ice Shcet melted quickly away as a response to the Holocene warming around 10 ka.  相似文献   

3.
During the last glacial stage, Washington Land in western North Greenland was probably completely inundated by the Greenland Ice Sheet. The oldest shell dates from raised marine deposits that provide minimum ages for the last deglaciation are 9300 cal. yr BP (northern Washington Land) and 7600 cal. yr BP (SW Washington Land). These dates indicate that Washington Land, which borders the central part of Nares Strait separating Greenland from Ellesmere Island in Canada, did not become free of glacier ice until well into the Holocene. The elevation of the marine limit falls from 110 m a.s.l. in the north to 60 m a.s.l. in the southwest. The recession was followed by readvance of glaciers in the late Holocene, and the youngest shell date from Neoglacial lateral moraines north of Humboldt Gletscher is 600 cal. yr BP. Since the Neoglacial maximum, probably around 100 years ago, glaciers have receded. The Holocene marine assemblages comprise a few southern extralimital records, notably of Chlamys islandica dated to 7300 cal. yr BP. Musk ox and reindeer disappeared from Washington Land recently, perhaps in connection with the cold period that culminated about 100 years ago.  相似文献   

4.
This paper presents a revised glacial chronology for the Lahul Himalaya and provides the most detailed reconstruction of former glacier extents in the western Himalayas published to date. On the basis of detailed geomorphological mapping, morphostratigraphy, and absolute and relative dating, three glaciations and two glacial advances are constrained. The oldest glaciation (Chandra glacial stage) is represented by glacially eroded benches and drumlins (the first to be described from the Himalaya) at altitudes of >4300 m and indicates glaciation on a landscape of broad valleys that had minimal fluvial incision. The second glaciation (Batal glacial stage) is represented by highly weathered and disssected lateral moraines and drumlins representing two phases of glaciation within the Batal glacial stage (Batal I and Batal II). The Batal stage was an extensive valley glaciation interrupted by a readvance that produced superimposed bedforms. Optically stimulated luminescence (OSL) dating, indicates that glaciers probably started to retreat between 43400 ± 10300 and 36900 ± 8400 yr ago during the Batal stage. The Batal stage may be equivalent to marine Oxygen Isotope Stage 4 and early Oxygen Isotope Stage 3. The third glaciation (Kulti glacial stage), is represented by well-preserved moraines in the main tributary valleys that formed due to a less-extensive valley glaciation when ice advanced no more than 12 km from present ice margins. On the basis of an OSL age for deltaic sands and gravels that underlie tills of Kulti age, the Kulti glaciation is younger than 36900 ± 8400 yr ago. The development of peat bogs, having a basal age of 9160 ± 70 14C yr BP possibly represents a phase of climatic amelioration coincident with post-Kulti deglaciation. The Kulti glaciation, therefore, is probably equivalent to all or parts of late Oxygen Isotope Stage 3, Stage 2 and early Stage 1. Two minor advances (Sonapani I and II) are represented by small sharp-crested moraines within a few kilometres of glacier termini. On the basis of relative weathering, the Sonapani advance is possibly of early mid-Holocene age, whereas the Sonapani II advance is historical. The change in style and extent of glaciation is attributed to topographic controls produced by fluvial incision and by increasing aridity during the Quaternary. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
New relative sea-level (RSL) data from Disko Bugt, a large marine embayment in West Greenland, are used to examine the deglacial history of the Jakobshavns Isbrae ice stream. RSL data show rapid deglaciation after 10.3 ka cal. yr BP. Once deglaciation began, a bedrock high in the west of the bay exerted no discernible influence on the deglacial chronology. Following initial rapid retreat, ice stream recession slowed as it approached the eastern shores of the bay. Seabed elevations increase here and the ice stream terminus lingered for several thousand years before retreating into the narrow bedrock-confined Jakobshavns Isfjord. The seabed topography of Disko Bugt includes several deep channels which probably record the former course of the ice stream. Using a simple water depth/calving velocity relationship it is estimated that the maximum calving velocity on deglaciation was c. 4.8 km a-1. This is less than the present rate (6–7 km a-1), although ice discharge was two to four times that observed today. Initiation of rapid ice stream retreat was probably caused by ice stream thinning and increased surface melting. A critical point in time was the retreat of the ice stream from shallow continental shelf waters ( c. 400 m) into the deep bedrock trough (>800 m) which marks the entrance to Disko Bugt.  相似文献   

6.
The popular concept of a Late Weichselian ice sheet covering the Barents Shelf and confluent with the Scandinavian and Russian ice sheets is based primarily on the 6500 B.P. isobase which rises to the east over Spitsbergen, and to the west over Franz Joseph Land. Analysis of uplift curves from the Spitsbergen archipelago shows, however, that the strongest early Holocene uplift occurs over northeastern Spitsbergen and eastern Nordaustlandet, falling both to east and west, and that the centre of uplift migrates to the southeast during the Holocene. Direct evidence of glacier fluctuation indicates an important Billefjorden Stage of glaciation at about 11,000 to 10,000 B.P., part of whose extent can be defined by moraines and by abrupt changes in the marine limit. The dominant ice masses of the Billefjorden Stage seem to have formed over eastern Spitsbergen, Edgeøya, Barentsøya and southern Hinlopenstretet, and it is the decay of this ice mass which is primarily responsible for the pattern of early Holocene uplift. Stratigraphic evidence suggests the absence of an important glacial event at 18,000–20,000 B.P., but an important phase of Spitsbergen-centred glaciation at about 40,000 B.P., and a glacial phase at 80,000–120,000 B.P. It is suggested that many raised beach sequences outside the Billefjorden readvance show an upper sequence related to deglaciation at about 40,000 B.P., and a lower, Holocene sequence related to decay of the Billefjorden ice. The anomalous pattern of late Holocene uplift may be related to restrained rebound produced by regeneration of ice on the main islands of the archipelago and unrestrained rebound on Hopen and Kong Karls Land, which were incapable of sustaining large ice masses of their own. A pattern of LateGlacial climatic circulation which may have produced ice masses on the east coast of Spitsbergen, west coast of Novaya Zemlya and north coast of Russia is suggested. It is also suggested that this pattern of glaciation produced features which have been wrongly interpreted as evidence of a Barents ice sheet.  相似文献   

7.
Deglaciation processes within different rock relief types are discussed. The lower parts of the fissure-valley landscape in western Sweden were covered by the late-glacial sea at deglaciation, while the rock plateaux between the valleys formed an arctic archipelago. The glacial movements, deposition activity and recession were intimately dependent on the variations of the topography and on the buoyancy of the seawater in the valleys. The opinion that a piedmont glaciation existed in eastern Halland during the deglaciation stage has been corroborated concerning areas above the marine limit. In the valleys below this limit the ice margin, however, was straight or slightly concave. The western part of the South Swedish Highland, situated high above the marine limit, is characterized by a zonal deglaciation; zone by zone of the ice margin was detached from the actively moving ice and became immobile. Subglacially formed eskers appear together with glaciofluvial deltas which formed extramarginally in ice-dammed lakes. The moraine forms are often dominated by 1–2 km long drumlins with rock cores. Where the ice diverged over a convex bedrock basement, Rogen-like moraine ridges, radial as well as transverse, were formed during the deglaciation stage when the ice was stagnating.  相似文献   

8.
We use a time-dependent two-dimensional ice-flow model to explore the development of the Green Bay Lobe, an outlet glacier of the southern Laurentide Ice Sheet, leading up to the time of maximum ice extent and during subsequent deglaciation (c. 30 to 8 cal. ka BP). We focus on conditions at the ice-bed interface in order to evaluate their possible impact on glacial landscape evolution. Air temperatures for model input have been reconstructed using the GRIP δ 18 O record calibrated to speleothem records from Missouri that cover the time periods of c. 65 to 30 cal. ka BP and 13.25 to 12.4 cal. ka BP. Using that input, the known ice extents during maximum glaciation and early deglaciation can be reproduced reasonably well. The model fails, however, to reproduce short-term ice margin retreat and readvance events during later stages of deglaciation. Model results indicate that the area exposed after the retreat of the Green Bay Lobe was characterized by permafrost until at least 14 cal. ka BP. The extensive drumlin zones that formed behind the ice margins of the outermost Johnstown phase and the later Green Lake phase are associated with modeled ice margins that were stable for at least 1000 years, high basal shear stresses (c. 100 kPa) and permafrost depths of 80-200 m. During deglaciation, basal meltwater and sliding became more important.  相似文献   

9.
《Quaternary Science Reviews》2005,24(14-15):1673-1690
Sedimentary sequences deposited by the decaying marine margin of the British–Irish Ice Sheet (BIIS) record isostatic depression and successive ice sheet retreat towards centres of ice dispersion. Radiocarbon dating by accelerator mass spectrometry (AMS) of in situ marine microfaunas that are commonly associated with these sequences constrain the timing of glacial and sea level fluctuations during the last deglaciation, enabling us to evaluate the dynamics of the BIIS and its response to North Atlantic climate change. Here we use our radiocarbon-dated stratigraphy to define six major glacial and sea level events since the Last Glacial Maximum. (1) Initial deglaciation may have occurred ⩾18.3 kyr 14C BP along the northwestern Irish coast, in agreement with a deglacial age of ∼22 36Cl kyr BP for southwestern Ireland. Ice retreated to inland centres and areas of transverse moraine began to form across the north Irish lowlands. (2) Channels cut into glaciomarine deglacial sediments along the western Irish Sea coast are graded to below present sea level, identifying a fall of relative sea level (RSL) in response to isostatic emergence of the coast. (3) Marine mud that rapidly infilled these channels records an abrupt rise in global sea level of 10–15 m ∼16.7 14C kyr BP that flooded the Irish Sea coast and may have triggered deglaciation of a marine-based margin in Donegal Bay. (4) Intertidal boulder pavements in Dundalk Bay indicate that RSL ∼15.0 14C kyr BP was similar to present. (5) A major readvance of all sectors of the BIIS occurred between 14 and 15 kyr 14C BP which overprinted subglacial transverse moraines and delivered a substantial sediment flux to tidewater ice sheet margins. This event, the Killard Point Stadial, indicates that the BIIS participated in Heinrich event 1. (6) Subsequent deposition of marine muds on drumlins 12.7 14C kyr BP indicates isostatic depression and attendant high RSL resulting from the Killard Point readvance. These events identify a dynamic BIIS during the last deglaciation, as well as significant changes in RSL that reflect a combination of isostatic loading and eustatic changes in global sea level.  相似文献   

10.
The frontal positions of glaciers in fiords, sounds and larger valleys during the glaciation maximum around 10,000 B.P. and the extent of ice-free areas at that time are shown, together with an isobase map of the altitude of the contemporaneous (or younger) marine limit. A number of 14C and some Amino Acid datings related to the glacial advance, culmination and retreat are presented. Some time after a Middle Weichselian period with restricted glaciation the glaciers advanced and stood at their maximum positions at about 10,300 B.P., in some areas remaining there until about 9500 B.P., at which time sizeable lowland areas outside the ice-fronts were unglaciated and a large number of nunataks of various types occurred. The retreat of the glaciers started about 10,300 B.P. in the south, but seems to have been delayed towards the north. However, by 9000 B.P. all outer parts of the fiords were deglaciated and their central parts by 8500 B.P. The marine limit synchronous with this glaciation maximum and the deglaciation sinks from a southern maximum value of about 110 m to about 55 m in the north, reflecting a decreasing amplitude of the glacial advance.  相似文献   

11.
This paper presents the results of an investigation into Holocene relative sea-level (RSL) change, isostatic rebound and ice sheet dynamics in Disko Bugt, West Greenland. Data collected from nine isolation basins on Arveprinsen Ejland, east Disko Bugt, show that mean sea level fell continuously from ca. 70 m at 9.9 ka cal. yr BP (8.9 ka 14C yr BP) to reach a minimum of ca. −5 m at 2.8 ka cal. yr BP (2.5 ka 14C yr BP), before rising to the present day. A west–east gradient in isostatic uplift across Disko Bugt is confirmed, with reduced rebound observed in east Disko Bugt. However, RSL differences (up to 20 m at 7.8 ka to 6.8 ka cal. yr BP (7 ka to 6 ka 14C yr BP)) also exist within east Disko Bugt, suggesting a significant north–south component to the area’s isostatic history. The observed magnitude and timing of late Holocene RSL rise is not compatible with regional forebulge collapse. Instead, RSL rise began first in the eastern part of the bay, as might be expected under a scenario of crustal subsidence caused by neoglacial ice sheet readvance. The results of this study demonstrate the potential of isolation basin data for local and regional RSL studies in Greenland, and the importance of avoiding data compilations from areas where the isobase orientation is uncertain. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Lake Boksehandsken, the largest lake on Jameson Land, central East Greenland, is situated 54 m a.s.l. and holds a long (6.3 m) and complex stratigraphy. It was analysed with respect to lithology, carbon content, 14C, micro- and macrofossils. The diamict material in the bottom is overlain by a fining-upwards sequence, possibly deposited close to a receding ice margin in a glaciomarine environment. These deposits are interpreted to have been formed at the time of the marine limit ( c . 70 m) in the area. In spite of a large series of 14C datings, very few of the obtained dates were considered reliable. This is because the sediments contain coal fragments and old redeposited plant remains. Based on a set of arguments and correlations to the surrounding glacial stratigraphy it is implied that the marine limit and deglaciation cannot be much older than 10,000 BP. The lithology of the lake sediments, in combination with occurrence of marine macrofossils. shows that deglaciation was succeeded by a (glacio)marine depositional environment. The lake was isolated from the sea at c . 9000 BP. followed by a short transgression and a final isolation at c . 8400 BP. This sequence of events is demonstrated by both litho-and biostratigraphy and possible causes are discussed. A later oscillation some time between 8000 and 7500 BP. evidenced by litho-, carbon-, pollen- and Pecliastrum stratigraphy, is interpreted as a regional climatic cooling possibly correlatable to a distinct δ18O minima in the Greenland ice cores.  相似文献   

13.
Philips Inlet and Wootton Peninsula are located at 82°N and 85°W on the northwest coast of Ellesmere Island and are composed of three bedrock controlled zones: (1) 900 m undulating plateau dissected by fiords; (2) a deeply fretted cirque terrain >1200m; (3) a 300m plateau bounded by coastal cliffs. Each zone contains different glacier morphologies and these control glacigenic sediment and landform assemblages. The extent of the last glaciation is mapped using the distribution of moraines, kames, meltwater channels and glacimarine sediments. Glaciers advanced on average <10 km from their present margins and many piedmont lobes coalesced and floated in the sea. Morainal banks were deposited at the grounding lines of floating glaciers, and where debris-charged basal ice occurred, subaqueous fans were deposited upon deglaciation. Marine shells dating 20.2 ka BP (<2km from present ice margin) and 14.9ka BP (from a morainal bank) document full glacial marine fauna. Thirty-three radiocarbon dates document glacier retreat patterns and are used to reconstruct the postglacial sea level history (glacioisostatic rebound pattern). An equidistant shoreline diagram is constructed using the 8.5ka BP shoreline as a guide. Tilts from 0.73-0.85m/km are calculated for this shoreline. Using two firm control points and tilts from elsewhere on northern Ellesmere Island, the 10.1 ka BP (full glacial) marine limit descends from 117m as at the fiord heads to 63 m asl at the north coast. Deglaciation started with a pronounced calving phase throughout the field area between 10.1 and 7.8ka BP. This chronology is similar to that from northeast Ellesmere Island and attests to an early Holocene warming trend recorded in high arctic ice cores. A maximum lag of 2.1 ka exists between the field area and locations to the south of the Grant Land Mountains suggesting differences in glacioclimatic regimes on either side of the mountain range. Persistent reconstructions of all-pervasive ice sheets for the last glaciation of the area are obsolete and should be abandoned.  相似文献   

14.
Twenty-two new radiocarbon ages from Skagit valley provide a detailed chronology of alpine glaciation during the Evans Creek stade of the Fraser Glaciation (early marine oxygen isotope stage (MIS) 2) in the Cascade Range, Washington State. Sediments at sites near Concrete, Washington, record two advances of the Baker valley glacier between ca. 30.3 and 19.5 cal ka BP, with an intervening period of glacier recession about 24.9 cal ka BP. The Baker valley glacier dammed lower Skagit valley, creating glacial Lake Concrete, which discharged around the ice dam along Finney Creek, or south into the Sauk valley. Sediments along the shores of Ross Lake in upper Skagit valley accumulated in glacial Lake Skymo after ca. 28.7 cal ka BP behind a glacier flowing out of Big Beaver valley. Horizontally laminated silt and bedded sand and gravel up to 20 m thick record as much as 8000 yr of deposition in these glacially dammed lakes. The data indicate that alpine glaciers in Skagit valley were far less extensive than previously thought. Alpine glaciers remained in advanced positions for much of the Evans Creek stade, which may have ended as early as 20.8 cal ka BP.  相似文献   

15.
The study revises the maximum extent of the northwest Laurentide Ice Sheet (LIS) in the western Canadian Arctic Archipelago (CAA) during the last glaciation and documents subsequent ice sheet retreat and glacioisostatic adjustments across western Banks Island. New geomorphological mapping and maximum-limiting radiocarbon ages indicate that the northwest LIS inundated western Banks Island after ~ 31 14C ka BP and reached a terminal ice margin west of the present coastline. The onset of deglaciation and the age of the marine limit (22–40 m asl) are unresolved. Ice sheet retreat across western Banks Island was characterized by the withdrawal of a thin, cold-based ice margin that reached the central interior of the island by ~ 14 cal ka BP. The elevation of the marine limit is greater than previously recognized and consistent with greater glacioisostatic crustal unloading by a more expansive LIS. These results complement emerging bathymetric observations from the Arctic Ocean, which indicate glacial erosion during the Last Glacial Maximum (LGM) to depths of up to 450 m.  相似文献   

16.
Studies of Quaternary glacial stratigraphy and morphology around the Antarctic Peninsula have shown that James Ross Island in the western Weddell Sea probably has the best occurrences of stratigraphic sections with dateable material in the region. The stratigraphy includes sections with indefinite radiocarbon age, and three separate aminozones can be recognized. Except for indications of an early deglaciation around c . 10,000 BP, the field evidence from northern James Ross Island suggests a glacial readvance around 7000 BP. It is concluded that the readvance reflects the combined effects of eustatic sea level rise and Holocene warming, leading to increased precipitation and a positive mass balance. The most recent large-scale deglaciation in the area took place around 6000–5000 BP. This confirms the evidence from lake sediments and moss banks in other parts of the Antarctic Peninsula region, which shows that, in most cases, the initiation of organic deposition took place after c . 6000 BP. The literature on the Holocene glacial and environmental history of the region is reviewed in light of the new field evidence.  相似文献   

17.
《Quaternary Science Reviews》2007,26(9-10):1204-1211
Moraines deposited by the Dundalk Bay ice lobe record two readvances of the Irish Ice Sheet into the northern Irish Sea Basin during the last deglaciation. These readvances overrode and incorporated fossiliferous marine muds from the floor of Dundalk Bay. AMS 14C dates from monospecific microfaunas obtained from these muds indicate that the earlier (Clogher Head) readvance occurred sometime between 15.0 and 14.2 14C ka BP, thus identifying a previously unrecognized ice-margin fluctuation in the Irish Sea Basin that is correlative with a readvance in northwest Ireland. The younger readvance occurred after 14.2 14C ka BP and is equivalent to the Killard Point readvance identified elsewhere in the Irish Sea Basin. These readvances occurred during the Oldest Dryas cold interval and bracket Heinrich event 1. Raised marine muds that were deposited between ice readvances require that a substantial ice sheet remained on Ireland throughout much of the last deglaciation, with attendant isostatic depression of at least 110 m.  相似文献   

18.
A profile across the unglaciated coast of northeast Greenland at 77°N was studied with regard to the Quaternary stratigraphy and glacial history. The Germania Land peninsula is characterised by till-covered lower ground which contrasts sharply with the blockfields and extensive gelifluction deposits of its higher altitudes. Two glaciations are distinguished. The older one extended over the entire area and had its margin on the continental shelf. The younger one, of Late Weichselian age, reached the present coastline and several mountains and high plateaus on western Germania Land formed nunataks. The Late Weichselian glaciation was more extensive and occurred later on the Germania Land peninsula than on the coast further south. Radiocarbon dates suggest that the glacier margin rested to the east of the present coastline until ca. 10 000 yr BP. This correlates with the Late Weichselian Milne Land Stage, which is found as a late glacial readvance along the coast of East Greenland. A series of recessional moraines formed during the deglaciation were probably caused by glacier dynamics, as opposed to being of climatic origin.  相似文献   

19.
A reconstruction of deglaciation and associated sea-level changes on northern James Ross Island, Antarctic Peninsula, based on lithostratigraphical and geomorphological studies, shows that the initial deglaciation of presently ice-free areas occurred slightly before 7400 14C yr BP. Sea-level in connection with the deglaciation was around 30 m a.s.l. A glacier readvance in Brandy Bay, of at least 7 km, with the initial 3 km over land, reached a position off the present coast at ca. 4600 yr BP. The culmination of the advance was of short duration, and by 4300 yr BP the coastal lowlands again were ice-free. A distinct marine level at 16–18 m a.s.l. was contemporaneous with or slightly post-dates the Brandy Bay advance, thus indicating the relative sea-level around 4600–4500 yr BP. Our results from James Ross Island confirm that over large areas in this part of Antarctica the last deglaciation occurred late. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
In spite of a widespread distribution, the way in which plateau icefields affect the glaciation and deglaciation of adjacent terrains is not particularly well‐known. This paper aims to identify how the deglaciation of the fjord and plateau terrain of north Norway has influenced the glacial geomorphology and relative sea‐level history of both local and adjacent areas and so serve as a model for interpreting similar areas along the continental margins of northwest Europe and elsewhere. The identification of moraines and their relationships with the Main shoreline of northern Norway allows the margins of the Øksfjordjøkelen, Svartfjelljøkelen and Langfjordjøkelen plateau icefields to be identified in the adjacent terrains. In locations where ice margins are uncertain, it is also possible to reconstruct ice limits by means of glacier models appropriately constrained by known local conditions and dates. Earlier glacier margins, characterised in north Norway by ice shelves floating in the local inlets of major fjords, also can be related to known regional shorelines. The distribution of high shoreline fragments, augmented by radiocarbon dates, helps show the extent to which inter‐island channels and outermost parts of fjords can become deglaciated relatively early in comparison with published maps of regional deglaciation. Plateau‐icefield‐centred glaciation became important sometime after 14 000 14C yr BP and was characterised by glacier readvances up to, and in some locations beyond, earlier moraines and raised marine features. Although overlooked until recently, the identification of the influence of plateau icefields on local glaciation, and their interaction with local and regional marine limits, is of great importance in accurate palaeoenvironmental reconstruction. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号