首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
ABSTRACT The formation of the North Croatian Basin, which represents the south-western marginal part of the Pannonian Basin System and the Central Paratethys Bioprovince, began during Ottnangian time (early Miocene) by continental rifting. The syn-rift phase lasted until the middle Badenian (middle Miocene), and resulted in the formation of elongated half-grabens characterized by large sediment thicknesses strongly influenced by tectonics and gradually increasing volcanism. Towards the end of the syn-rift phase sinistral strike-slip faulting took place, transverse to oblique to the master faults, which disintegrated the longitudinal structures contemporaneously with volcanic activity. The depositional environments gradually changed from alluvial and lacustrine to marine. The syn- to post-rift boundary was characterized by significant erosion of the uplift fault block footwalls. The post-rift phase extended from the middle Badenian to the end of the Pontian (latest Miocene). Tectonic influence drastically decreased, volcanism ceased, and subsidence of the basin was controlled predominantly by cooling of the lithosphere. Marine connections gradually decreased, resulting in a transition from marine to brackish, 'caspi-brackish' and finally fluvial-marsh environments. By the end of the Miocene the basin was finally infilled. The basin evolution was also complicated by an alternation of phases of extension and compression.  相似文献   

2.
A power-law non-Newtonian fluid is usually assumed to model slow flows in the mantle and, in particular, convective flows. However, the power-law fluid has no memory, in contrast to a real material. A new non-linear integral (having a memory) model is proposed to describe the rheology of rocks. The model is consistent with the theory of simple fluids with fading memory and with laboratory studies of rock creep. The proposed model reduces to the power-law fluid model for stationary flows and to the Andrade model for flows associated with small strains. Stationary convection beneath continents has been studied by Fleitout & Yuen (1984 ), who used the power-law fluid model and obtained the cold immobile boundary layer (continental lithosphere). In a stability analysis of this layer, the Andrade model must be used. The analysis shows that the lithosphere is overstable (the period of oscillation is about 200  Ma). In the present study, it is suggested that these thermoconvective oscillations of the lithosphere are a mechanism for sedimentary basin formation. The vertical crustal movement in sedimentary basins can be considered as a slow subsidence on which small-amplitude oscillations are superimposed. The longest period of oscillatory crustal movement is of the same order of magnitude as the period of convective oscillation of the lithosphere found in the stability analysis. Taking into account the difference between depositional and erosional transport rates we can explain the permanent subsidence as well as the oscillations.  相似文献   

3.
Burgess  & Moresi 《Basin Research》1999,11(4):305-314
Dynamic topography formed over subducting oceanic lithosphere has been proposed as a mechanism to explain certain otherwise anomalous long-wavelength patterns of subsidence inferred from ancient strata. Forward modelling of mantle flow in response to a subducting slab predicts amplitudes and distributions of dynamic topography that may occur due to various subducting slab geometries and histories. Plotting calculated dynamic topographies at a point against time produces tectonic subsidence curves. These subsidence curves show features such as evolution from convex to concave shape, amplitudes up to ~2000 m, subsidence rates up to ~220 m Myr−1, and a general decrease in subsidence amplitude away from the subduction zone, over a distance of ~2000 km. On many convergent continental margins, dynamic topography is likely to be superimposed on other subsidence mechanisms. In back-arc basins, subsidence due to dynamic topography should be distinguishable from that due to extensional tectonics based simply on the temporal subsidence evolution expressed in the subsidence curve shapes. In a foreland basin setting, comparing dynamic topography models with forward models of flexural loading suggest the two processes can generate similar temporal subsidence patterns, but that dynamic topography causes subsidence over significantly greater wavelengths. Matches between calculated subsidence due to dynamic topography and backstripped subsidence patterns from Upper Cretaceous strata of the Western Interior Basin, USA, support the hypothesis that a long-wavelength 'background subsidence' was caused by dynamic topography.  相似文献   

4.
The Crotone Basin was generated in the late Cenozoic as a forearc basin of the Ionian arc‐trench system. New data are gained through detailed field mapping, high‐resolution stratigraphic analysis of a key area and examination of offshore well data and seismic reflection profiles. Major unconformities divide the basin fill into major sequences, which reveal a three‐stage internal organization thought to reflect geodynamic events of the Calabrian arc and backarc area closely. The first stage is characterized by extensional block faulting and uplift followed by rapid drowning during high subsidence and transtension in the basin along a major NNW‐ to NW‐striking fault system. This stage is interpreted to reflect resumption of rollback after an episode of slab tearing triggered by transitory docking of continental lithosphere in the trench. The initial uplift is inferred to reflect decoupling and rebound after the transitory coupling phase. The second stage is characterized by increased subsidence and continued extension/transtension. This trend presumably reflects a decreasing rate of rollback resulting from a tendency towards viscous coupling after acceleration of slab downwelling. The third stage is characterized by short‐lived transpression along major shear zones and local inversion of former basins. This is inferred to reflect entrance into the trench of buoyant continental lithosphere, resulting in significant deceleration of slab rollback and consequently a break in, or slowing of, backarc extension, and predominance of the effects of compression related to Africa–Europe convergence. Overall, the above evolution resulted in the formation of a progressively narrower and rapidly retreating slab, inducing extreme rates of backarc extension, and may have played a critical role in determining the intermittent nature of the backarc rifting.  相似文献   

5.
Abstract Rifted margin architecture along part of the southern Gabonese margin is interpreted from four deep-penetration, multichannel seismic reflection (MCS) profiles. A series of synthetically faulted crustal blocks are identified, separated by dominantly seaward-dipping fault zones formed during Cretaceous rifting between Africa and South America. Extensional strain ratios are ≅ 1.5. These faults appear either to transect the entire crustal section or are interrupted by discontinuous zones of midcrustal reflections which may represent detachments.
Outer acoustic basement highs are situated just seaward of the continental slope. On the combined basis of seismic geometry, an associated positive magnetic anomaly and an increase in free-air gravity, these outer highs are interpreted to mark faulted transitions from rifted continental crust to 'proto-oceanic crust', presumably composed of mafic volcanic rocks and possibly slivers of attenuated continental crustal blocks. The outer edge of Aptian salt lies °165 km south-west of the edge of the continental shelf. The salt forms an° 1.5-km-thick horizon overlying the outer highs, and it may be autochthonous there, suggesting salt was deposited contemporaneously with emplacement of proto-oceanic crust.
Differential subsidence and tilting between continental rift-blocks during post-rift margin subsidence has resulted in a sympathetic terrace-ramp geometry in overlying Aptian salt. Salt terraces form above tops of crustal blocks, where salt tends to rise vertically, creating pillows and diapirs. Ramps connecting terraces tend to form above seaward-facing fault zones; salt flowage there has been both lateral and vertical, creating triangular diapirs along the footwalls of growth faults. Most of these growth-faults sole within the salt base, but a few continue into the interpreted synrift succession.  相似文献   

6.
We develop an approach that allows us to invert for the mantle velocity structure within a finely parametrized region as a perturbation with respect to a low-resolution, global tomographic model. We implement this technique to investigate the upper-mantle structure beneath Eurasia and present a new model of shear wave velocity, parametrized laterally using spherical splines with ∼2.9° spacing in Eurasia and ∼11.5° spacing elsewhere. The model is obtained from a combined data set of surface wave phase velocities, long-period waveforms and body-wave traveltimes. We identify many features as narrow as few hundred kilometres in diameter, such as subducting slabs in eastern Eurasia and slow-velocity anomalies beneath tectonically active regions. In contrast to regional studies in which these features have been identified, our model encompasses the structure of the entire Eurasian continent. Furthermore, including mantle- and body-wave waveforms helped us constrain structures at depths larger than 250 km, which are poorly resolved in earlier models. We find that up to +9 per cent faster-than-average anomalies within the uppermost ∼200 km of the mantle beneath cratons and some orogenic regions are separated by a sharp gradient zone from deeper, +1 to +2 per cent anomalies. We speculate that this gradient zone may represent a boundary separating the lithosphere from the continental root, which might be compositionally distinct from the overlying lithosphere and remain stable either due to its compositional buoyancy or due to higher viscosity compared with the suboceanic mantle. Our regional model of anisotropy is not significantly different from the global one.  相似文献   

7.
Ford  Lickorish  & Kusznir 《Basin Research》1999,11(4):315-336
Tertiary foreland sedimentation in SE France occurred along the western sidewall of the Alpine orogen during collision of the Apulian indentor with the European passive margin. A detailed reappraisal of the stratigraphy and structure of the Southern Subalpine Chains (SSC) in SE France shows that Tertiary depocentres of differing character developed progressively toward the foreland during ongoing SW-directed shortening. The geodynamic controls on each of four stages of basin development are evaluated using a flexural isostatic modelling package of thrust sheet emplacement and foreland basin formation. (1) The initial stage (mid to late Eocene) can be explained as a flexural basin that migrated toward the NW, closing off to the SW against the uplifting Maures–Esterel block. This broad, shallow basin can be reproduced in forward modelling by loading a lower lithospheric plate with an effective elastic thickness of 20 km. (2) The end of detectable flexural subsidence in the early Oligocene coincides with the emplacement of the internally derived Embrunais–Ubaye (E-U) nappes, which caused 11 km of SW-directed shortening in the underlying SSC. The lack of Oligocene flexural subsidence dictates that the E-U units were emplaced as gravitational nappes. Within the SSC, Oligocene sedimentation was restricted to small thrust-sheet-top basins recording mainly continental conditions and ongoing folding. Further west, Oligocene to Aquitanian NNW–SSE extension generated the Manosque half-graben as part of the European graben system that affected an area from the Gulf of Lion to the Rhine graben. (3) Following the Burdigalian breakup of the Gulf of Lion rift, a marine transgression migrated northward along the European graben system. Subsequent thermal subsidence allowed 1 km of marine sediments to be deposited across the Valensole and Manosque blocks, west of the active SSC thrust belt. (4) Mio-Pliocene conglomeratic deposits (2 km thick) were trapped within the Valensole basin by the uplifting Vaucluse block to the west and the advancing Alpine thrust sheets to the east. Late Pliocene thrusting of the SSC across the Valensole basin (approx. 10.5 km) can be linked along a Triassic detachment to the hinterland uplift of the Argentera basement massif.  相似文献   

8.
Depth‐dependent stretching, in which whole‐crustal and whole‐lithosphere extension is significantly greater than upper‐crustal extension, has been observed at both non‐volcanic and volcanic rifted continental margins. A key question is whether depth‐dependent stretching occurs during pre‐breakup rifting or during sea‐floor spreading initiation and early sea‐floor spreading. Analysis of post‐breakup thermal subsidence and upper‐crustal faulting show that depth‐dependent lithosphere stretching occurs on the outer part of the Norwegian volcanic rifted margin. For the southern Lofoten margin, large breakup lithosphere β stretching factors approaching infinity are required within 100 km of the continent–ocean boundary to restore Lower Eocene sediments and flood basalt surfaces (~54 Ma) to interpreted sub‐aerial depositional environments at sea level as indicated by well data. For the same region, the upper crust shows no significant Palaeocene and Late Cretaceous faulting preceding breakup with upper‐crustal β stretching factors <1.05. Further north on the Lofoten margin, reverse modelling of post‐breakup subsidence with a β stretching factor of infinity predicts palaeo‐bathymetries of ~1500 m to the west of the Utrøst Ridge and fails to restore Lower Eocene sediments and flood basalt tops to sea level at ~54 Ma. If these horizons were deposited in a sub‐aerial depositional environment, as indicated by well data to the south, an additional subsidence event younger than 54 Ma is required compatible with lower‐crustal thinning during sea‐floor spreading initiation. For the northern Vøring margin, breakup lithosphere β stretching factors of ~2.5 are required to restore Lower Eocene sediments and basalts to sea level at deposition, while Palaeocene and Late Cretaceous upper‐crustal β stretching factors for the same region are < 1.1. The absence of significant Palaeocene and late Cretaceous extension on the southern Lofoten and northern Vøring margins prior to continental breakup supports the hypothesis that depth‐dependent stretching of rifted margin lithosphere occurs during sea‐floor spreading initiation or early sea‐floor spreading rather than during pre‐breakup rifting.  相似文献   

9.
Baxter  Cooper  Hill  & O'Brien 《Basin Research》1999,11(2):97-111
The Vulcan Sub-basin, located in the Timor Sea, north-west Australia, developed during the Late Jurassic extension which ultimately led to Gondwanan plate breakup and the development of the present-day passive continental margin. This paper describes the evolution of upper crustal extension and the development of Late Jurassic depocentres in this subbasin, via the use of forward modelling techniques. The results suggest that a lateral variation in structural style exists. The south of the basin is characterized by relatively large, discrete normal faults which have generated deep sub-basins, whereas more distributed, small-scale faulting further north reflects a collapse of the early basin margin, with the development of a broader, 'sagged' basin geometry. By combining forward and reverse modelling techniques, the degree of associated lithosphere stretching can be quantified. Upper crustal faulting, which represents up to 10% extension, is not balanced by extension in the deeper, ductile lithosphere; the magnitude of this deeper extension is evidenced by the amount of post-Valanginian thermal subsidence. Reverse modelling shows that the lithosphere stretching
factor has a magnitude of up to β=1.55 in the southern Vulcan Sub-basin, decreasing to β=1.2 in the northern Vulcan Sub-basin. It is proposed that during plate breakup, deformation in the Vulcan Sub-basin consisted of depth-dependent lithosphere extension. This additional component of lower crustal and lithosphere stretching is considered to reflect long-wavelength partitioning of strain associated with continental breakup, which may have extended 300–500 km landward of the continent–ocean boundary.  相似文献   

10.
The stratigraphic, subsidence and structural history of Orphan Basin, offshore the island of Newfoundland, Canada, is described from well data and tied to a regional seismic grid. This large (400 by 400 km) rifted basin is part of the non‐volcanic rifted margin in the northwest Atlantic Ocean, which had a long and complex rift history spanning Middle Jurassic to Aptian time. The basin is underlain by variably thinned continental crust, locally <10‐km thick. Our work highlights the complex structure, with major upper crustal faults terminating in the mid‐crust, while lower crustal reflectivity suggests ductile flow, perhaps accommodating depth‐dependent extension. We describe three major stratigraphic horizons connected to breakup and the early post‐rift. An Aptian–Albian unconformity appears to mark the end of crustal rifting in the basin, and a second, more subdued Santonian unconformity was also noted atop basement highs and along the proximal margins of the basin. Only minor thermal subsidence occurred between development of these two horizons. The main phase of post‐rift subsidence was delayed until post‐Santonian time, with rapid subsidence culminating in the development of a major flooding surface in base Tertiary time. Conventional models of rifting events predict significant basin thermal subsidence immediately following continental lithospheric breakup. In the Orphan Basin, however, this subsidence was delayed for about 25–30 Myr and requires more thinning of the mantle lithosphere than the crust. Models of the subsidence history suggest that extreme thinning of the lithospheric mantle continued well into the post‐rift period. This is consistent with edge‐driven, small‐scale convective flow in the mantle, which may thin the lithosphere from below. A hot spot may also have been present below the region in Aptian–Albian time.  相似文献   

11.
The flexural rigidity of the oceanic lithosphere is strongly dependent on its temperature structure at the time of loading. It is commonly assumed that the depth to the 450°C isotherm defines the effective elastic thickness Te of the lithosphere. However, recent gravity studies across the Baltimore Canyon and Nova Scotian margins suggest that temperature may play a more complicated role in controlling the mechanical strength of extended continental lithosphere. For example, the flexural strength of the Baltimore Canyon margin (with sediment thicknesses of ? 15 km) appears to be controlled by the depth to the 150°C isotherm whereas the strength of the Nova Scotian margin (with sediment thicknesses cf ? 10 km) is controlled by the depth to the 250°C isotherm. The apparent correlation between sediment thickness and controlling isotherm suggests that sediment blanketing may play a role in modifying the flexural strength of extended continental lithosphere. This hypothesis was investigated by simulating the sedimentation history of a margin as a Gaussian function in which sedimentation peak and rate are determined by the mean and standard deviation of the function. The temperature structure of the lithosphere is continually modified as sediments are deposited on, and incorporated into the temperature structure of, the underlying lithosphere. Given a ‘starting’ value of Te defined by the degree of extension of the lithosphere, the modification of Te appears to be directly proportional to the sedimentation rate and cumulative sediment thickness, and inversely proportional to the time at which the sedimentation rate is a maximum. The first-order consequence of sediment blanketing is to reduce the cooling rate of the lithosphere relative to cooling in the absence of sediments. At thermal equilibrium, the initial value of Te is reduced by the cumulative sediment thickness. Local isostatic conditions (i. e. Te? 0) can only be approached when the sedimentation rate is unrealistically high (> 1000 m/Myr) during the rift or early post-rift phase of basin development. However, while these early loads may be locally compensated, any subsequent loads will be regionally compensated. Thus, it is unlikely that the low present-day flexural strengths interpreted from the Baltimore Canyon and Nova Scotian passive continental margins are a consequence of sediment blanketing.  相似文献   

12.
Ultra‐large rift basins, which may represent palaeo‐propagating rift tips ahead of continental rupture, provide an opportunity to study the processes that cause continental lithosphere thinning and rupture at an intermediate stage. One such rift basin is the Faroe‐Shetland Basin (FSB) on the north‐east Atlantic margin. To determine the mode and timing of thinning of the FSB, we have quantified apparent upper crustal β‐factors (stretching factors) from fault heaves and apparent whole‐lithosphere β‐factors by flexural backstripping and decompaction. These observations are compared with models of rift basin formation to determine the mode and timing of thinning of the FSB. We find that the Late Jurassic to Late Palaeocene (pre‐Atlantic) history of the FSB can be explained by a Jurassic to Cretaceous depth‐uniform lithosphere thinning event with a β‐factor of ~1.3 followed by a Late Palaeocene transient regional uplift of 450–550 m. However, post‐Palaeocene subsidence in the FSB of more than 1.9 km indicates that a Palaeocene rift with a β‐factor of more than 1.4 occurred, but there is only minor Palaeocene or post‐Palaeocene faulting (upper crustal β‐factors of less than 1.1). The subsidence is too localized within the FSB to be caused by a regional mantle anomaly. To resolve the β‐factor discrepancy, we propose that the lithospheric mantle and lower crust experienced a greater degree of thinning than the upper crust. Syn‐breakup volcanism within the FSB suggests that depth‐dependent thinning was synchronous with continental breakup at the adjacent Faroes and Møre margins. We suggest that depth‐dependent continental lithospheric thinning can result from small‐scale convection that thins the lithosphere along multiple offset axes prior to continental rupture, leaving a failed breakup basin once seafloor spreading begins. This study provides insight into the structure and formation of a generic global class of ultra‐large rift basins formed by failed continental breakup.  相似文献   

13.
Understanding the development of sedimentary systems during continental rifting is important for tracking environmental change and lithospheric processes. Conceptual models have been developed for the sourcing, routing and facies architecture of sediments in rift-settings, driven in part by quantitative sediment tracking. Here, we present laser ablation split-stream detrital zircon U/Pb geochronology and Hf-isotopes for post-rift (Cretaceous-Paleogene) clastic sediments from Ocean Drilling Program (ODP) wells and Plio-Pleistocene palaeoshoreline material, from the southern margin of Australia. Provenance results are contextualized through comparison with well-characterized source regions and regional pre- and syn-rift sediment reservoirs to track changes associated with Australia-Antarctica separation during East Gondwana break-up. The provenance character of the post-rift sediments studied are distinct from pre-existing sediment reservoirs and demonstrate termination of previously stable sediment routing systems and a dominance of local basement of the Proterozoic Madura and Coompana provinces (~1.2 Ga and CHUR-like Hf-signatures; Moodini Supersuite) in offshore ODP wells. A composite post-rift Cretaceous?-Eocene sample in the easternmost well expresses characteristic Phanerozoic zircon age signatures associated with source regions in eastern Australia that are interpreted to reflect inversion in the Ceduna Sub-basin to the east. Detrital zircon signatures in Plio-Pleistocene palaeoshoreline sediment are also relatively distinct, indicating derivation from coastal erosion in the Leeuwin Complex (~0.5 and 0.7 Ga subchondritic grains) and Albany–Fraser Orogen (~1.2 Ga subchondritic grains) several hundred, to over a thousand kilometers to the west. Collectively, results highlight the fundamental geological processes associated with rifting that dramatically change the character of sediment provenance via (a) isolation of pre-existing primary and secondary sources of detritus, (b) development of new source regions in basin compartmentalized highs and localized fault scarps, and (c) establishment of marine and coastal currents that redefine clastic sediment transport.  相似文献   

14.
The style of extension and strain distribution during the early stages of intra-continental rifting is important for understanding rift-margin development and can provide constraints for lithospheric deformation mechanisms. The Corinth rift in central Greece is one of the few rifts to have experienced a short extensional history without subsequent overprinting. We synthesise existing seismic reflection data throughout the active offshore Gulf of Corinth Basin to investigate fault activity history and the spatio-temporal evolution of the basin, producing for the first time basement depth and syn-rift sediment isopachs throughout the offshore rift. A major basin-wide unconformity surface with an age estimated from sea-level cycles at ca . 0.4 Ma separates distinct seismic stratigraphic units. Assuming that sedimentation rates are on average consistent, the present rift formed at 1–2 Ma, with no clear evidence for along-strike propagation of the rift axis. The rift has undergone major changes in relative fault activity and basin geometry during its short history. The basement depth is greatest in the central rift (maximum ∼3 km) and decreases to the east and west. In detail however, two separated depocentres 20–50 km long were created controlled by N- and S-dipping faults before 0.4 Ma, while since ca . 0.4 Ma a single depocentre (80 km long) has been controlled by several connected N-dipping faults, with maximum subsidence focused between the two older depocentres. Thus isolated but nearby faults can persist for timescales ca . 1 Ma and form major basins before becoming linked. There is a general evolution towards a dominance of N-dipping faults; however, in the western Gulf strain is distributed across several active N- and S-dipping faults throughout rift history, producing a more complex basin geometry.  相似文献   

15.
Summary. Reduced Pn travel times from the Archaean Pilbara Craton of north-west Australia show a strong correlation with azimuth, which could be used as evidence of anisotropy. However, the azimuthal correlation could also be explained by a southerly dip of between 1 and 2° on the crust–mantle boundary, although the models from several reversed seismic profiles across the craton suggest a smaller dip.
A time-term analysis of the Pn date yielded several models. The preferred solution, in which the dip on the crust–mantle boundary is similar to that in the models from the reversed profiles, has approximately 2 per cent anisotropy in the uppermost mantle, with the direction of maximum velocity 30° east of north. One possible cause of the anisotropy is that olivine crystals were aligned by syntectonic recrystallization and/or power law creep in the tensional environment caused at the base of the lithosphere by flexure during loading of the lithosphere by the strata of the Hamersley Basin which overlies the Pilbara Craton.
A seismic discontinuity occurs about 15 km below the crust–mantle boundary under the craton. A qualitative analysis of all available seismic data suggests that the velocity below the boundary is probably also anisotropic, with the direction of maximum velocity between north and 40° west of north. The direction of minimum velocity below the sub-Moho boundary correlates loosely with the direction of basement lineaments in the Proterozoic Capricorn Orogenic Belt to the south of the craton, suggesting that the anisotropy under the boundary may be younger than that immediately under the crust/mantle boundary. This is consistent with the notion that the Archaean lithosphere was thinner than the present lithosphere.  相似文献   

16.
The tectonic subsidence and gravity anomalies in the Malay and Penyu Basins, offshore Peninsular Malaysia, were analysed to determine the isostatic compensation mechanism in order to investigate their origin. These continental extensional basins contain up to 14  km of sediment fill which implies that the crust had been thinned significantly during basin development. Our results suggest, however, that the tectonic subsidence in the basins cannot be explained simply by crustal thinning and Airy isostatic compensation.
The Malay and Penyu Basins are characterized by broad negative free-air gravity anomalies of between −20 and −30  mGal. To determine the cause of the anomaly, we modelled four gravity profiles across the basins using a method that combines two-dimensional flexural backstripping and gravity modelling techniques. We assumed a model of uniform lithospheric stretching and Airy isostasy in the analysis of tectonic subsidence. Our study shows that the basins are probably underlain by relatively thinned crust, indicating that some form of crustal stretching was involved. To explain the observed gravity anomalies, however, the Moho depth that we calculated based on the free-air gravity data is about 25% deeper than the Moho predicted by assuming Airy isostasy (Backstrip Moho). This suggests that the Airy model overestimates the compensation and that the basins are probably undercompensated isostatically. In other words, there is an extra amount of tectonic subsidence that is not compensated by crustal thinning, which has resulted in the discrepancy between the gravity-derived Moho and the Backstrip Moho. We attribute this uncompensated or anomalous tectonic subsidence to thin-skinned crustal extension that did not involve the mantle lithosphere. The Malay and Penyu Basins are interpreted therefore as basins that formed by a combination of whole-lithosphere stretching and thin-skinned crustal extension.  相似文献   

17.
The Oligo-Miocene Most Basin is the largest preserved sedimentary basin within the Eger Graben, the easternmost part of the European Cenozoic Rift System (ECRIS). The basin is interpreted as a part of an incipient rift system that underwent two distinct phases of extension. The first phase, characterised by NNE–SSW- to N–S-oriented horizontal extension between the end of Eocene and early Miocene, was oblique to the rift axis and caused evolution of a fault system characterised by en-échelon-arranged E–W (ENE–WSW) faults. These faults defined a number of small, shallow initial depocentres of very small subsidence rates that gradually merged during the growth and linkage of the normal fault segments. The youngest part of the basin fill indicates accelerated subsidence caused probably by the concentration of displacement at several major bounding faults. Major post-depositional faulting and forced folding were related to a change in the extension vector to an orthogonal position with respect to the rift axis and overprinting of the E–W faults by an NE–SW normal fault system. The origin of the palaeostress field of the earlier, oblique, extensional phase remains controversial and can be attributed either to the effects of the Alpine lithospheric root or (perhaps more likely because of the dominant volcanism at the onset of Eger Graben formation) to doming due to thermal perturbation of the lithosphere. The later, orthogonal, extensional phase is explained by stretching along the crest of a growing regional-scale anticlinal feature, which supports the recent hypothesis of lithospheric folding in the Alpine–Carpathian foreland.  相似文献   

18.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

19.
We have used the S wave receiver function (SRF) technique to investigate the crustal thickness beneath two seismic profiles from the CHARGE project in the southern central Andes. A previous study employing the P wave receiver function method has observed the Moho interface beneath much of the profiles. They found, however, that the amplitude of the P to S conversion was diminished in the western part of the profiles and have attributed it to a reduction of the impedance contrast at the Moho due to lower crustal ecologitization. With SRF, we have successfully detected S to P converted waves from the Moho as well as possible conversions from other lithospheric boundaries. The continental South American crust reaches its maximum thickness of ∼70 km (along 30°S between 70°W and 68.5°W) beneath the Principal Cordillera and the Famatina system and becomes thinner towards the Sierras Pampeanas with a thickness of ∼40 km. Negative phases, possibly related to the base of the continental and oceanic lithosphere, can be recognized in the summation traces at different depths. By comparing our results with data obtained from previous investigations, we are able to further constrain the thickness of the crust and lithosphere beneath the central Andes.  相似文献   

20.
Seismic reflection profiles from the Murray Ridge in the Gulf of Oman, northwest Indian Ocean, show a significant component of extension across the predominantly strike-slip Indian–Arabian plate boundary. The Murray Ridge lies along the northern section of the plate boundary, where its trend becomes more easterly and thus allows a component of extension. The Dalrymple Trough is a 25 km wide, steep-sided half-graben, bounded by large faults with components of both strike-slip and normal motion. The throw at the seabed of the main fault on the southeastern side of the half-graben reaches 1800 m. The northwest side of the trough is delineated by a series of smaller antithetic normal faults. Wide-angle seismic, gravity and magnetic models show that the Murray Ridge and Dalrymple Trough are underlain by a crystalline crust up to 17 km thick, which may be continental in origin. Any crustal thinning due to extension is limited, and no new crust has been formed.
We favour a plate model in which the Indian–Arabian plate boundary was initially located further west than the Owen Fracture Zone, possibly along the Oman continental margin, and suggest that during the Oligocene–Early Miocene Indian Ocean plate reorganization, the plate boundary moved to the site of the present Owen Fracture Zone and that motion further west ceased. At this time, deformation began along the Murray Ridge, with both the uplift of basement highs, and subsidence in the troughs tilting the lowest sedimentary unit. Qalhat Seamount was formed at this time. Subsequent sediments were deposited unconformably on the tilted lower unit and then faulted to produce the present basement topography. The normal faulting was accompanied by hanging-wall subsidence, footwall uplift, and erosion. Flat-lying recent sediments show that the major vertical movements have ceased, although continuing earthquakes show that some faulting is still active along the plate boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号