首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The measured brightness temperatures of the low-frequency synchrotron radiation from intense extragalactic sources reach 1011–1012 K. If there is some amount of nonrelativistic ionized gas within such sources, it must be heated through induced Compton scattering of the radiation. If cooling via inverse Compton scattering of the same radio radiation counteracts this heating, then the plasma can be heated up to mildly relativistic temperatures kT~10–100 keV. In this case, the stationary electron velocity distribution can be either relativistic Maxwellian or quasi-Maxwellian (with the high-velocity tail suppressed), depending on the efficiency of Coulomb collisions and other relaxation processes. We derive several simple approximate expressions for the induced Compton heating rate of mildly relativistic electrons in an isotropic radiation field, as well as for the stationary electron distribution function and temperature. We give analytic expressions for the kernel of the integral kinetic equation (one as a function of the scattering angle, and the other for an isotropic radiation field), which describes the photon redistribution in frequency through induced Compton scattering in thermal plasma. These expressions can be used in the parameter range [in contrast to the formulas written out previously in Sazonov and Sunyaev (2000), which are less accurate].  相似文献   

2.
The physical conditions near pulsar surface that might give rise to gamma ray emission from Crab and Vela pulsars are not yet well understood. Here I suggest that, in the context of the vacuum discharge mechanism proposed by Ruderman and Sutherland (1975), gamma rays are produced by inverse Compton scattering of secondary electrons with the thermal radiation of the star surface as well as for curvature and synchrotron radiation. It is found that inverse Compton scattering is relevant if the neutron star surface temperature is greater than 106K or if the polar cap temperature is of the order of 5×106K. Inverse Compton scattering in anisotropic photon fields and Klein-Nishina regime is here carefully considered.  相似文献   

3.
Hot spots similar to those in the radio galaxy Cygnus A can be explained by the strong shock produced by a supersonic but classical jet \(\left( {u_{jet}< c/\sqrt 3 } \right)\) . The high integrated radio luminosity (L?2×1044 erg s?1) and the strength of mean magnetic field (B?2×10?4 G) suggest the hot spots are the downstream flow of a very strong shock which generates the ultrarelativistic electrons of energy ?≥20 MeV. The fully-developed subsonic turbulence amplifies the magnetic field of the jet up to 1.6×10?4 G by the dynamo effect. If we assume that the post-shock pressure is dominated by relativistic particles, the ratio between the magnetic energy density to the energy density in relativistic particles is found to be ?2×10?2, showing that the generally accepted hypothesis of equipartition is not valid for hot spots. The current analysis allows the determination of physical parameters inside hot spots. It is found that:
  1. The velocity of the upstream flow in the frame of reference of the shock isu 1?0.2c. Radio observations indicate that the velocity of separation of hot spots isu sep?0.05c, so that the velocity of the jet isu jet=u 1+u sep?0.25c.
  2. The density of the thermal electrons inside the hot spot isn 2?5×10?3 e ? cm?3 and the mass ejected per year to power the hot spot is ?4M 0yr?1.
  3. The relativistic electron density is less than 20% of the thermal electron density inside the hot spot and the spectrum is a power law which continues to energies as low as 30 MeV.
  4. The energy density of relativistic protons is lower than the energy density of relativistic electrons unlike the situation for cosmic rays in the Galaxy.
  相似文献   

4.
In real intensive cosmic sources it is necessary to take into account the ?erenkov reabsorption which restricts the brightness temperature of ?erenkov emission by energies of emitted relativistic electrons. As ?erenkov optical depth is given by τc~N/E, the brightness temperature of emission on frequencies near gyrofrequency is determined by electron energyE r in which τc(E r)=1. It is shown that most of the synchrotron sources (quasars, pulsars) must be powerful sources of ?erenkov emission. In these sources the high density of low frequency ?erenkov emission can give rise to many parametric effects.  相似文献   

5.
The problem of single Compton scattering is considered and the resulting spectrum, angular distribution and polarization of scattered photons in a general case are obtained. The inverse Compton scattering (ICS) for arbitrary energies of electronsE and photons 0 is investigated in detail. In the case of isotropically-distributed initial photons and relativistic electrons, a strong rise of the scattered spectrum near the upper edge takes place, starting from the values of the characteristic parameterb4E 010 (in units of mc2=1). The energy-loss rate of relativistic electrons due to ICS is calculated. It is shown that the relativistic electrons of the energiesE100 MeV, when scattering on the X-rays with 0~10KeV, transmit the dominant part of their energy to the photons which fall after scattering into the energy range of the electrons (100 MeV).The radiation spectrum of ICS, as well as the energy-losses of relativistic electrons distributed by power-lawE , are calculated. The radiation spectrum reveals the power-law behaviour with the different indices in two limits: the dependence –(1)/2 at 01 gradually changes to –(+1) ln (0) law for 01.  相似文献   

6.
Based on data from the SONG and SPR-N multichannel hard electromagnetic radiation detectors onboard the CORONAS-F space observatory and the X-ray monitors onboard GOES satellites, we have distinguished the thermal and nonthermal components in the X-ray spectrum of an extreme solar flare on January 20, 2005. In the impulsive flare phase determined from the time of the most efficient electron and proton acceleration, we have obtained parameters of the spectra for both components and their variations in the time interval 06:43–06:54 UT. The spectral index in the energy range 0.2–2 MeV for a single-power-law spectrum of accelerated electrons is shown to have been close to 3.4 for most of the time interval under consideration. We have determined the time dependence of the lower energy cutoff in the energy spectrum of nonthermal photons E γ0(t) at which the spectral flux densities of the thermal and nonthermal components become equal. The power deposited by accelerated electrons into the flare volume has been estimated using the thick-target model under two assumptions about the boundary energy E 0 of the electron spectrum: (i) E 0 is determined by E γ0(t) and (ii) E 0 is determined by the characteristic heated plasma energy (≈5kT (t)). The reality of the first assumption is proven by the fact that plasma cooling sets in at a time when the radiative losses begin to prevail over the power deposited by electrons only in this case. Comparison of the total energy deposited by electrons with a boundary energy E γ0(t) with the thermal energy of the emitting plasma in the time interval under consideration has shown that the total energy deposited by accelerated electrons at the beginning of the impulsive flare phase before 06:47 UT exceeds the thermal plasma energy by a factor of 1.5–2; subsequently, these energies become approximately equal and are ~(4–5) × 1030 erg under the assumption that the filling factor is 0.5–0.6.  相似文献   

7.
The thermal evolution of an inter-cluster gas of relativistic electrons heated by quasars with redshifts up toz=3 and 4 is studied in the framework of a Friedmann-Robertson-Walker universe. The gas cools by Compton scattering with the microwave backgroud radiation and by adiabatic cooling due to the universe expansion. Power and exponential laws of cosmological evolution of the comoving density of sources are considered. The obtained temperatures are sensitive to the form of these laws and to the heating epochs. Compared to the nonrelativistic models, the results obtained in the case of the power law present strong differences. These differences decrease when the exponential law is considered. Thermalization times are compared to the characteristic time of variation of the universe energy density and to the time-scales of energy loss by bremsstrahlung radiation and by Compton scattering. It is shown that, in some cases, nonequilibrium effects may be important. The time delay effects in the propagation of electromagnetic waves in cosmic plasma are shown to be very important for the analysis of theoretical models.  相似文献   

8.
The intensity and polarization of two-photon annihilation in a magnetic fuieldBB cr =4.4×1013 G are studied in detail for a, one-dimensional thermal distribution of annihilating electrons and positrons on the ground Landau level. With the increase of temperatureT the total annihilation rate and energy losses decrease, being higher than for the isotropic thermal distributions at the sameT. The shapes of intensity spectra at sin =0 ( is the angle betweenB and wave-vector) are close to those in the isotropic case. The widths and blue-shifts of the spectra decrease with increasing sin and increase with increasingT. Logarthmic singularities arise in the spectra atE»mc 2/sin . Power-like parts are formed in the wings of the spectra forkTmc 2 and not too small sin . The direction-integrated spectra reach their (finite) maxima, atE=mc 2 for anyT. The radiation concentrates near the plane, perpendicular to the magnetic field forE close tomc 2 and is beamed along the magnetic field forE far frommc 2. Energy-integrated angular distributions are stretched alongB, the stronger the higherT. The rediation is linearly polarized in the plane formed by the magnetic field and weve-vector. Typical values of the polarization inside the cores of the annihilation spectra are (kT/mc 2) sin and [ln (kT/mc 2)]–1 forkTmc 2 andkT sin mc 2, respectively. Annihilation radiation dominates over Bremsstrahlung in thee plasma atkT7mc 2. The results are useful for interpretation of the annihilation radiation in the gamma-ray bursts. They permit to estimate temperature, gravitational potential, and emission measure of radiating regions and the beaming of the radiation.  相似文献   

9.
The advent of three-dimensional, electromagnetic, and fully relativistic particle simulations allows a detailed study of a magnetized, rotating plasma, galaxy model. When two such models are simulated, an interaction yielding results resembling observational data from double radio sources, including the emission of synchrotron radiation, are obtained. Simulation derived morphologies, radiation intensities, frequency spectra, and isophote patterns are directly compared to observations. The constituent plasma parameters associated with the source Cygnus A are found to ben e =1.8×10?3 cm?3,T=2.8 keV,B=20–30 gamma, with a small population of electrons accelerated to GeV energies by a rotation induced electric field. The results of these simulations, involving a computational resource of five CDC 7600 and five Cray-1 computers, strongly supports an inhomogeneous version of the Klein world model.  相似文献   

10.
This paper discusses the experimental results on electron precipitation in a diffuse aurora obtained by a sounding rocket launched from ANDENES (L ~ 6·2) on 3 November 1968. A considerable increase in the intensity of low energy electrons, Ee ? 5 keV, followed a large precipitation of more energetic electrons Ee ? 5 keV. From the observation of angular distributions and an estimate of the diffusion coefficient (Dα ? 10?3 (sec)?2), it is suggested that this higher energy precipitation is induced by gyroresonant interactions of magnetospheric electrons with radiation in the whistler mode. The lower energy precipitation separated in time and/or space, shows quasi-periodic modulations in the 5–15 sec range with periods close to the bounce period. It is suggested that this precipitation is the result of bounce-resonance interactions with electrostatic waves in the equatorial plane. Finally, from a comparison between the experimental energy spectra and plasma sheet spectra it can be concluded that these electrons are injected from the plasma sheet during a substorm and are then diffused and precipitated by energy dependent mechanisms.  相似文献   

11.
Studies of Compton scattering by relativistic electrons in a strong magnetic field have been restricted to either incident photon angles θ′ aligned along the magnetic field B or incident photon energies ω′ below the first pair creation threshold $\omega'_{PC}$ . When these restrictions are relaxed there is a resonance in Compton scattering associated with pair creation (PC), that is analogous to but independent of known resonances associated with gyromagnetic absorption (GA). As with the GA resonances, that may be labeled by the Landau quantum numbers of the relevant states, there is a sequence of PC resonances where the scattering cross section diverges. In this paper, the lowest divergence is studied for incident photon energies satisfying ω2sin2 θ′/(2eB)?1, assuming that the scattering electron is in its ground (Landau) state. This lowest resonance affects only parallel-polarized photons.  相似文献   

12.
We carried out a brief campaign in September 1998 to determine Jupiter’s radio spectrum at frequencies spanning a range from 74 MHz up to 8 GHz. Eleven different telescopes were used in this effort, each uniquely suited to observe at a particular frequency. We find that Jupiter’s spectrum is basically flat shortwards of 1-2 GHz, and drops off steeply at frequencies greater than 2 GHz. We compared the 1998 spectrum with a spectrum (330 MHz-8 GHz) obtained in June 1994, and report a large difference in spectral shape, being most pronounced at the lowest frequencies. The difference seems to be linear with log(ν), with the largest deviations at the lowest frequencies (ν).We have compared our spectra with calculations of Jupiter’s synchrotron radiation using several published models. The spectral shape is determined by the energy-dependent spatial distribution of the electrons in Jupiter’s magnetic field, which in turn is determined by the detailed diffusion process across L-shells and in pitch angle, as well as energy-dependent particle losses. The spectral shape observed in September 1998 can be matched well if the electron energy spectrum at L = 6 is modeled by a double power law Ea (1+(E/E0))b, with a = 0.4, b = 3, E0 = 100 MeV, and a lifetime against local losses τ0 = 6 × 107 s. In June 1994 the observations can be matched equally well with two different sets of parameters: (1) a = 0.6, b = 3, E0 = 100 MeV, τ0 = 6 × 107 s, or (2) a = 0.4, b = 3, E0 = 100 MeV, τ0 = 8.6 × 106 s. We attribute the large variation in spectral shape between 1994 and 1998 to pitch angle scattering, coulomb scattering and/or energy degradation by dust in Jupiter’s inner radiation belts.  相似文献   

13.
X-ray and γ-ray observations can help understand the origin of the electron and positron signals reported by ATIC, PAMELA, PPB-BETS, and Fermi. It remains unclear whether the observed high-energy electrons and positrons are produced by relic particles, or by some astrophysical sources. To distinguish between the two possibilities, one can compare the electron population in the local neighborhood with that in the dwarf spheroidal galaxies, which are not expected to host as many pulsars and other astrophysical sources. This can be accomplished using X-ray and γ-ray observations of dwarf spheroidal galaxies. Assuming the signal detected by Fermi and ATIC comes from dark matter and using the inferred dark matter profile of the Draco dwarf spheroidal galaxy as an example, we calculate the photon spectrum produced by electrons via inverse Compton scattering. Since little is known about the magnetic fields in dwarf spheroidal galaxies, we consider the propagation of charged particles with and without diffusion. Extending the analysis of Fermi collaboration for Draco, we find that for a halo mass ∼109 M, even in the absence of diffusion, the γ-ray signal would be above the upper limits. This conclusion is subject to uncertainties associated with the halo mass. If dwarf spheroidal galaxies host local magnetic fields, the diffusion of the electrons can result in a signal detectable by future X-ray telescopes.  相似文献   

14.
The propagation and modulation of electrons in the heliosphere play an important part in improving our understanding and assessment of the modulation processes. A full three-dimensional numerical model is used to study the modulation of galactic electrons, from Earth into the inner heliosheath, over an energy range from 10 MeV to 30 GeV. The modeling is compared with observations of 6–14 MeV electrons from Voyager 1 and observations at Earth from the PAMELA mission. Computed spectra are shown at different spatial positions. Based on comparison with Voyager 1 observations, a new local interstellar electron spectrum is calculated. We find that it consists of two power-laws: In terms of kinetic energy E, the results give E ?1.5 below ~500 MeV and E ?3.15 at higher energies. Radial intensity profiles are computed also for 12 MeV electrons, including a Jovian source, and compared to the 6–14 MeV observations from Voyager 1. Since the Jovian and galactic electrons can be separated in the model, we calculate the intensity of galactic electrons below 100 MeV at Earth. The highest possible differential flux of galactic electrons at Earth with E=12 MeV is found to have a value of 2.5×10?1 electrons m?2?s?1?sr?1?MeV?1 which is significantly lower (a factor of 3) than the Jovian electron flux at Earth. The model can also reproduce the extraordinary increase of electrons by a factor of 60 at 12 MeV in the inner heliosheath. A lower limit for the local interstellar spectrum at 12 MeV is estimated to have a value of (90±10) electrons m?2?s?1?sr?1?MeV?1.  相似文献   

15.
We consider the plasma mechanism of sub-terahertz emission from solar flares and determine the conditions for its realization in the solar atmosphere. The source is assumed to be localized at the chromospheric footpoints of coronal magnetic loops, where the electron density should reach n ≈ 1015 cm?3. This requires chromospheric heating at heights h ? 500 km to coronal temperatures, which provides a high degree of ionization needed for Langmuir frequencies ν p ≈ 200–400 GHz and reduces the bremsstrahlung absorption of the sub-THz emission as it escapes from the source. The plasma wave excitation threshold for electron-ion collisions imposes a constraint on the lower density limit for energetic electrons in the source, n 1 > 4 × 109 cm?3. The generation of emission at the plasma frequency harmonic ν ≈ 2ν p rather than the fundamental tone turns out to be preferred. We show that the electron acceleration and plasma heating in the sub-THz emission source can be realized when the ballooning mode of the flute instability develops at the chromospheric footpoints of a flare loop. The flute instability leads to the penetration of external chromospheric plasma into the loop and causes the generation of an inductive electric field that efficiently accelerates the electrons and heats the chromosphere in situ. We show that the ultraviolet radiation from the heated chromosphere emerging in this case does not exceed the level observed during flares.  相似文献   

16.
By now there is no doubt that the gamma-ray bursts (GRB) have a cosmological origin. This allows to regard GRB as the most powerful known energy sources, ε∼ 1054 erg (with a total number of gamma quanta N_γ∼ 1060). A plausible mechanism of coherent synchrotron radiation (CSR) of relativistic electrons driven by a local magnetic field is studied in this paper. We consider relativistic electrons arising in the Compton scattering of a GRB in directions close to that of the ray from the source to a ground-based observer. The synchrotron pulses from Compton electrons located at different points on the line between the GRB source and the observer arrive at the observation point simultaneously. This simultaneity ensures the coherence of the detected radiation. Both molecular clouds in the host galaxy of the GRB and our own Galaxy, as well as the Earth atmosphere are assumed to be scatterers of the GRB radiation. Signals of each scatterer reach the Earth surface, and can be detected at radio wavelengths. We estimate the characteristics of this radiation. The comparison of GRB data with the corresponding information on CSR pulses offers a way to determine some global characteristics of the medium between the Earth and the GRB source.  相似文献   

17.
The non-linear Schrödinger equation, describing the non-linear Langmuir waves in a relativistic Vlasov plasma in a strong magnetic field, is derived. In the relativistic limit,KT>mc 2, this equation gives envelope solitons which are discussed from a point of view of their applications to pulsars.  相似文献   

18.
The eclipse observations were performed at the Laboratory of Radio Astronomy of the CrAO in Katsiveli with stationary instrumentation of the Solar Patrol at wavelengths of 10.5 and 12.0 cm. The data obtained were used to determine the brightness temperature of the undisturbed Sun at solar activity minimum between 11-year cycles 23 and 24: T d10.5 = (43.7 ± 0.5) × 103 K at 10.5 cm and T d12.0 = (51.8 ± 0.5) × 103 K at 12.0 cm. The radio brightness distribution above the limb group of sunspots NOAA 0866 was calculated. It shows that at both wavelengths the source consisted of a compact bright nucleus about 50 × 103 km in size with temperatures T b10.5 = 0.94 × 106 K and T b12.0 = 2.15 × 106 K located, respectively, at heights h 10.5 = 33.5 × 103 km and h 12.0 = 43.3 × 103 km above the sunspot and an extended halo with a temperature T b = (230–300) × 103 K stretching to a height of 157 × 103 km above the photosphere. The revealed spatial structure of the local source is consistent with the universally accepted assumption that the radiation from the bright part of the source is generated by electrons in the sunspot magnetic fields at the second-third cyclotron frequency harmonics and that the halo is the bremsstrahlung of thermal electrons in the coronal condensation forming an active region. According to the eclipse results, the electron density near the upper boundary of the condensation was N e ≈ 2.3 × 108 cm?3, while the optical depth was τ ≈ 0.1 at an electron temperature T e ≈ 106 K. Thus, the observations of the March 29, 2006 eclipse have allowed the height of the coronal condensation at solar activity minimum to be experimentally determined and the physical parameters of the plasma near its upper boundary to be estimated.  相似文献   

19.
We discuss the time profiles and the energy spectra of the γ-ray burst event of 1979 March 5. We find: (1) the energy spectrum in the burst phase (< 0s, 3) can be fitted by a thermal bremsstrahlung with kT ? 50KeV, plus a bremsstrahlung of relativistic electrons with equivalent Lorentz factor γ = 3.3 and a broad line at 430KeV. (2) The average spectrum in the pulsating phase can be fitted with a bremsstrahlung of thermal electrons with kT ? 40KeV. (3) The time profile in the pulsating phase can be fitted by the bremsstrahlung of a radiative region which is cooling in time. Accordingly, we propose the following morphological model: somehow a large amount of matter is suddenly injected onto the surface of a neutron star at its magnetic poles. The gravitational energy of the electrons is transformed into radiation during the burst phase through the bremsstrahlung of the electrons. The gravitational energy of the protons is first transformed into heat in a radiative region, which then radiates during the pulsating phase by the bremsstrahlung of the thermal electrons.  相似文献   

20.
Based on the observed radio spectrum for the supernova remnant Cassiopeia A, we have established that it represents synchrotron radiation of relativistic electrons with a nonpower-law energy spectrum in the form of Kaplan-Tsytovich’s standard distribution. The total density of relativistic electrons is 10?3 cm?3, only 20% of which form the radio spectrum. The particle number ratio of the proton-nuclear and electron cosmicray components inside the shell differs significantly from the mean Galactic ratio (100) and probably does not exceed unity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号