首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The determination of the average path-length of photons emerging from a finite planeparallel atmosphere with molecular scattering is discussed. We examine the effects of polarisation on the average path-length of the emergent radiation by comparing the results with those obtained for the atmosphere where the scattering obeys the scalar Rayleigh function. Only the axial radiation field is considered for both cases.To solve this problem we have used the integro-differential equations of Chandrasekhar for the diffuse scattering and transmission functions (or matrices). By differentiation of these equations with respect to the albedo of single scattering we obtain new equations the solution of which gives us the derivatives of the intensities of the emergent radiation at the boundaries.As in the case of scalar transfer the principles of invariance by Chandrasekhar may be used to find an adding scheme to obtain both the scattering and transmission matrices and their derivatives with respect to the albedo of single scattering. These derivatives are crucial in determining the average path length.The numerical experiments have shown that the impact of the polarisation on the average pathlength of the emergent radiation is the largest in the atmospheres with optical thickness less than, or equal to, three, reaching 6.9% in the reflected radiation.  相似文献   

2.
Group theory is used to describe a procedure for adding inhomogeneous absorbing and scattering atmospheres in a one-dimensional approximation. The inhomogeneity originates in the variation of the scattering coefficient with depth. Group representations are derived for the composition of media in three different cases: inhomogeneous atmospheres in which the scattering coefficient varies continuously with depth, composite or multicomponent atmospheres, and the special case of homogeneous atmospheres. We extend an earlier proposal to solve problems in radiative transfer theory by first finding global characteristics of a medium (reflection and transmission coefficients) and then determining the internal radiation field for an entire family of media without solving any new equations. Semi-infinite atmospheres are examined separately. For some special depth dependences of the scattering coefficients it is possible to obtain simple analytic solutions expressed in terms of elementary functions. An algorithm for numerical solution of radiative transfer problems in inhomogeneous atmospheres is described.  相似文献   

3.
Reciprocity and symmetry relationships, representing local invariants for the scattering phase-matrix, are derived for twelve cases of particle assemblies studied by van de Hulst (1957) including situations of scattering in an arbitrary direction, in the near forward and near backward directions. These relations are used to generate corresponding relations representing global invariants for the scattering and transmission matrices of atmospheres consisting of such assemblies. The latter relations are obtained from the matrix integro-differential equations for scattering and transmission; they apply to single scattering, any finite order of scattering, and after an arbitrary cumulation of scattering orders (finite or infinite). Our results are summarized in Tables I and II for general inhomogeneous atmospheres and for particular inhomogeneous atmospheres that are symmetrical with respect to their central level. The latter case includes homogeneous atmospheres as a special case. The largest set of local relations obtained contains three independent relations (called universal, reversal, exchange) which can further be combined to yield four additional dependent relations. This circumstance happens in three out of the above twelve cases. In the remaining cases fewer relations (both independent and dependent) remain valid. Likewise, a maximal set of three independent global relations is obtained for general inhomogeneous atmospheres; they too can be linearly combined to yield seven other dependent relations. For the symmetrically inhomogeneous atmospheres, three independent and seven dependent additional relations are obtained. On the basis of these tables, it becomes a trivial matter to provide the local and global invariants (both the independent and the dependent relations) for any assembly of particles and atmospheric inhomogeneity. A mixture of Rayleigh-Cabannes scattering by anisotropic molecules or extremely small particles and Mie scattering by large isotropic particles is considered for illustration. Lastly, the group properties of these invariants are studied.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the U.S. National Aeronautics and Space Administration.  相似文献   

4.
In this paper, the Combined Operational Method developed by Busbridge (1961) in connection with the radiative transfer problems in plane-parallel atmospheres has been extended to similar problems in isotropic scattering, homogeneous spherical media. The relevant auxiliary equation has been formulated, the scattering function defined and the integro-differential equation for such function deduced. For a medium having radial distribution of source in addition to the incident flux at the outer surface, the integro-differential equations for source function and emergent intensity have been established.  相似文献   

5.
6.
This series of papers is devoted to multiple scattering of light in plane parallel, inhomogeneous atmospheres. The approach proposed here is based on Ambartsumyan's method of adding layers. The main purpose is to show that one can avoid difficulties with solving various boundary value problems in the theory of radiative transfer, including some standard problems, by reducing them to initial value problems. In this paper the simplest one dimensional problem of diffuse reflection and transmission of radiation in inhomogeneous atmospheres with finite optical thicknesses is considered as an example. This approach essentially involves first determining the reflection and transmission coefficients of the atmosphere, which, as is known, are a solution of the Cauchy problem for a system of nonlinear differential equations. In particular, it is shown that this system can be replaced with a system of linear equations by introducing auxiliary functions P and S. After the reflectivity and transmissivity of the atmosphere are determined, the radiation field in it is found directly without solving any new equations. We note that this approach can be used to obtain the required intensities simultaneously for a family of atmospheres with different optical thicknesses. Two special cases of the functional dependence of the scattering coefficient on the optical thickness, for which the solutions of the corresponding equations can be expressed in terms of elementary functions, are examined in detail. Some numerical calculations are presented and interpreted physically to illustrate specific features of radiative transport in inhomogeneous atmospheres.  相似文献   

7.
In the present paper, with the aid of invariance principles in connection with the scattering matrix, we get the exact solution of diffuse reflection and transmission problems by finite inhomogeneous, anisotropically scattering atmospheres bounded by reflecting sufaces. On making use of the reflection and transmission integral operators, we show how to obtain the non-linear integro-differential equations for these operators, which do not depend on the initial condition. Then, we have a system of the required integro-differential equations for the scattering and transmission functions. The obtained result is new, so far as we know. Finally, using the scattering matrix, we reduce the diffuse reflection and transmission problems for planetary atmospheres with reflecting surfaces to the standard diffuse reflection and transmission problems.Supported by the National Science Foundation under Grant No. GP29049 and the Atomic Energy Comminission, Division of Research under Contract No. AT(40-3)-133, Project 19.  相似文献   

8.
This paper is a continuation of a study of radiative transfer in one-dimensional inhomogeneous atmospheres. Two of the most important characteristics of multiple scattering in these media are calculated: the photon escape probability and the average number of scattering events. The latter is determined separately for photons leaving the medium and for photons that have undergone thermalization in the medium. The problem of finding the radiation field in an inhomogeneous atmosphere containing energy sources is also examined. It is assumed that the power of these sources, as well as the scattering coefficient, can vary arbitrarily with depth. It is shown that knowledge of the reflection and transmission coefficients of the atmosphere makes it possible to reduce all these problems to solving some first order linear differential equations with specified initial conditions. A series of new analytic results are obtained. Numerical calculations are done for two types of atmosphere with different depth dependences for the scattering coefficient. These are interpreted physically.  相似文献   

9.
An accurate numerical method is presented for the solution of the transfer equations in a plane-parallel atmosphere in which scattering occurs according to Rayleigh's law. Some results are given for the polarization and limb darkening of both integrated and monochromatic radiation emerging from grey atmospheres with various ratios of scattering to absorption. The method is equally applicable to non-grey atmospheres.  相似文献   

10.
In connection with Chandrasekhar's planetary problem of radiative transfer the total scattering and the diffuse transmission functions have been discussed by several authors (cf. Chandrasekhar, 1950; van de Hulst, 1948; Sobolev, 1948; Bellman,et al., 1967; Kagiwada and Kalaba, 1971). With the aid of the Bellman-Krein formula for the resolvent kernel of the auxiliary equation governing the source function, we show how the invariant imbedding equations governing the diffuse scattering and transmission functions can readily be obtained. So far as we know, the Cauchy system of the functional equations for the scattering and transmission functions is new and is well-suited for the numerical computation.Supported by the National Science Foundation under Grant No. GP 29049, and by the Atomic Energy Commission under Grant No. AT (40-3)-113 Project 19.  相似文献   

11.
The approach proposed in the previous parts of this series of papers is used to solve the radiative transfer problem in scattering and absorbing multicomponent atmospheres. Linear recurrence relations are obtained for both the reflectance and transmittance of these kinds of atmospheres, as well as for the emerging intensities when the atmosphere contains energy sources. Spectral line formation in a one-dimensional inhomogeneous atmosphere is examined as an illustration of the possibility of generalizing our approach to the matrix case. It is shown that, in this case as well, the question reduces to solving an initial value problem for linear differential equations. Some numerical calculations are presented.  相似文献   

12.
In a manner similar to that given in a preceding paper (cf. Castiet al., 1970), in this paper we show how to get a Cauchy system for the scattering and transmission matrices of the azimuth-independent term of partially polarized light in accordance with Rayleigh scattering in a homogeneous atmosphere bounded by a specular reflector. This set of integro-differential equations for the scattering and transmission matrices is suitable for numerical computation by high-speed digital computer.  相似文献   

13.
We have considered six scalar equations which are obtained from the vector transport equation for radiative transfer to the problem of diffuse reflection and transmission in finite plane-parallel Rayleigh scattering atmosphere. By use of the Laplace transform and the theory of linear singular operators these equations have been solved exactly to get the angular distribution of the intensity diffusely reflected from the surface and diffusely transmitted below the surface.  相似文献   

14.
An exact formal solution of then-approximation radiative transfer equations for the Compton scattering in a spherically symmetric atmosphere is obtained. In view of further applications, the simple case of a density ?(r)=?0/r is fully developed and the 20 approximation equations have been studied with the computer.  相似文献   

15.
A probabilistic model for solving transfer problems in non-homogeneous, isotropic, and non-coherent scattering cylindrical shell media has been proposed. The source function is considered to be frequency independent. The scattering and transmission functions have been defined for the case of complete redistribution in frequency. A tractable integrodifferential equation for the scattering function has been derived.  相似文献   

16.
A system of linear differential equations determining the amplitude of reflection R and the amplitude of transmission T for a plane wave (or an electron) and for an arbitrary medium (or a one-dimensional potential of an arbitrary type) is obtained. It is shown that the problem of determining the scattering parameters R and T reduces, in general, to a Cauchy problem for a stationary wave equation (or for the Schrödinger equation).  相似文献   

17.
The computation of synthetic spectra for planetary atmospheres in which multiple scattering is important usually requires lengthy numerical work. We obtain solutions to the appropriate equation of radiative transfer by use of a variational principle whose extremum is essentially the reflectivity. When considering light diffusely reflected from the atmospheres of the outer planets, the technique reduces the computational work enormously and is applicable to models in which the albedo varies strongly with optical depth as well.  相似文献   

18.
The general formalism, presented in a previous paper of this series (Landi Degl'Innocenti, 1983a), is particularized to deduce the radiative transfer equations for polarized radiation and the statistical equilibrium equations for a multi-level atom in the zero-magnetic field, collisionless regime. The formulae are developed both in the standard representation and in the representation of the statistical tensors. For resonance scattering in a two-level atom, in the limiting case of complete depolarization of the ground level, we recover the classical results for Rayleigh scattering and we derive the expression of the phase matrix in terms of ordinary rotation matrices. The law of scattering is then generalized to take properly into account the influence of the anisotropy of the radiation field on the atomic polarization of the ground level (depopulation pumping).  相似文献   

19.
S. I. Grachev 《Astrophysics》1994,37(3):243-246
We consider nonstationary radiative transfer in a line in stellar atmospheres simulated as a stationary semi-infinite plane-parallel medium. We assume complete frequency redistribution in the elementary act of scattering. We assume that the time a photon spends in the medium is determined only by the mean time spent in the absorbed state. We obtain an explicit expression for the resolvent of the nonstationary integral equation of transfer, which is a bilinear expansion with respect to the eigenfunctions found in [12] for the corresponding stationary transfer equation.Translated fromAstrofizika, Vol. 37, No. 3, 1994.I am grateful to the American Astronomical Society for financial support of this work.  相似文献   

20.
The Combined Operations Method is utilised to solve Diffuse Reflection and Transmission Problems in inhomogeneous, isotropically and non-coherently scattering, spherical shell media. The source function is assumed to be frequency independent. TheN-solution of an auxiliary equation is sought, and tractable equations for the scattering and transmission functions are established. The solution of the problem for a scattering and emitting medium have been considered for a perfectly absorbing core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号