首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analyzed is the variability of seasonal salinity in the North Pacific. It is demonstrated that the formation and disappearance of salinity minimum in subsurface layers depends on the freshwater budget variability of different time scales. In general, the salinity minimum is a temporary phenomenon formed during the negative phase of freshwater budget, when the evaporation exceeds the precipitation. Seasonal variability of fresh water budget leads to the seasonal formation of salinity minimum on the boundary between the climatic zones. The existence of salinity minimum at intermediate depths in the tropics is caused by the negative phase of long-period variability of freshwater budget.  相似文献   

2.
El Nio events in the central equatorial Pacific (CP) are gaining increased attention,due to their increasing intensity within the global warming context.Various physical processes have been identified in the climate system that can be responsible for the modulation of El Nio,especially the effects of interannual salinity variability.In this work,a comprehensive data analysis is performed to illustrate the effects of interannual salinity variability using surface and subsurface salinity fields from the Met Office ENSEMBLES (EN3) quality controlled ocean dataset.It is demonstrated that during the developing phase of an El Nio event,a negative sea surface salinity (SSS) anomaly in the western-central basin acts to freshen the mixed layer (ML),decrease oceanic density in the upper ocean,and stabilize the upper layers.These related oceanic processes tend to reduce the vertical mixing and entrainment of subsurface water at the base of the ML,which further enhances the warm sea surface temperature (SST) anomalies associated with the El Nio event.However,the effects of interannually variable salinity are much more significant during the CP-El Nio than during the eastern Pacific (EP) El Nio,indicating that the salinity effect might be an important contributor to the development of CP-El Nio events.  相似文献   

3.
The low-frequency variability of sea surface temperature and salinity in the Arctic is analyzed using the data of the 1200-year preindustrial experiment with the INM-CM5 climate model developed in the Marchuk Institute of Numerical Mathematics of Russian Academy of Sciences. It is shown that the leading variability pattern is a regular coupled oscillation of temperature and salinity with the period of about 50 years. The empirical method based on the fluctuation-dissipation theorem was applied to evaluate influence functions which provide the optimum excitation of this oscillation phases. It is demonstrated that salinity anomalies are the main driver of this variability. The time of potential predictability of sea surface temperature and salinity was determined using the analog method, it equals about six years for 15-year means. The main source of long-term predictability is the spatial pattern associated with the leading mode of low-frequency variability of the analyzed parameters in the Arctic.  相似文献   

4.
As salinity stratification is necessary to form the barrier layer (BL), the quantification of its role in BL interannual variability is crucial. This study assessed salinity variability and its effect on the BL in the equatorial Pacific using outputs from Beijing Normal University Earth System Model (BNU-ESM) simulations. A comparison between observations and the BNU-ESM simulations demonstrated that BNU-ESM has good capability in reproducing most of the interannual features observed in nature. Despite some discrepancies in both magnitude and location of the interannual variability centers, the displacements of sea surface salinity (SSS), barrier layer thickness (BLT), and SST simulated by BNU-ESM in the equatorial Pacific are realistic. During El Niño, for example, the modeled interannual anomalies of BLT, mixed layer depth, and isothermal layer depth, exhibit good correspondence with observations, including the development and decay of El Niño in the central Pacific, whereas the intensity of the interannual variabilities is weaker relative to observations. Due to the bias in salinity simulations, the SSS front extends farther west along the equator, whereas BLT variability is weaker in the central Pacific than in observations. Further, the BNU-ESM simulations were examined to assess the relative effects of salinity and temperature variability on BLT. Consistent with previous observation-based analyses, the interannual salinity variability can make a significant contribution to BLT relative to temperature in the western-central equatorial Pacific.  相似文献   

5.
Using the data of long-term observations of the Secchi disk visibility depth and water salinity (1947-2000) and satellite monitoring of chlorophyll a concentration (1978-1986), their seasonal spatial distributions and intraannual variability in the coastal waters of the western Black Sea are considered. The estimates of seasonal variations are obtained for the coastal zone of the sea. A good agreement is demonstrated between intraannual variations in the salinity of transformed river water, chlorophyll a concentration, and transparency in the areas where these waters propagate. We studied the effects of the Danube River runoff and transformed river water on the phytoplankton development and chlorophyll a concentration which largely define water transparency.  相似文献   

6.
Seasonal variability of the salinity field shows that the salinity minimum at subsurface (intermediate) depths is a temporal phenomenon and not a water mass in the common interpretation of the term. This extremum in the vertical salinity distribution appears and disappears as the freshwater budget changes sign on different timescales. Its characteristics are a function of the freshwater budget; they change in time. The salinity minimum appears and disappears seasonally in the transition zone associated with an ocean basin where the freshwater budget changes sign on the seasonal timescale. The long-lasting salinity minimum at intermediate depths in the arid ocean zone is attributed to air-sea interaction on long-term (climate) timescales. Its existence is due to one of the phases of this interaction, the continuous salt flux from the ocean surface.  相似文献   

7.
基于美国国家航天局(NASA)发射的水瓶座(Aquarius/SAC-D)卫星和欧洲航天局(ERA)发射的土壤湿度与海洋盐度(SMOS)卫星的观测资料,以及Argo海表盐度资料,重点分析了阿拉伯海中北部海表盐度的季节和年际变化.年平均情况下,Argo、Aquarius和SMOS表现出相似的海表盐度分布形态,均表现了阿拉伯海中北部高达36.5 psu的高盐特征.阿拉伯海中北部海表盐度在2—3月出现最低值,在4月之后快速升高,并在夏季西南季风的成熟阶段达到最高.阿拉伯海中北部海表盐度显著的季节变化与季风风场引起的大量蒸发和平流输送相关.夏季风期间,Ras al Hadd急流将来自阿曼湾的高盐水向东向南输送到阿拉伯海中北部海域,使海表盐度升高并达到最高值;冬季风期间,冬季风环流系统在印度半岛西侧海域形成向北的低盐水输送,造成阿拉伯海中北部海表盐度降低.该低盐水平流在冬季风后期能够影响到阿曼海.阿拉伯海中北部海表盐度年际变化主要与季风驱动的季风环流系统的变化相关,尤其是冬季风期间向北流动的印度西侧沿岸流的强弱与该区域海表盐度年际变化关系密切.  相似文献   

8.
The decadal variability of the North Atlantic thermohaline circulation(THC) is investigated within a three-dimensional ocean circulation model using the conditional nonlinear optimal perturbation method. The results show that the optimal initial perturbations of temperature and salinity exciting the strongest decadal THC variations have similar structures: the perturbations are mainly in the northwestern basin at a depth ranging from 1500 to 3000 m. These temperature and salinity perturbations act as the optimal precursors for future modifications of the THC, highlighting the importance of observations in the northwestern basin to monitor the variations of temperature and salinity at depth. The decadal THC variation in the nonlinear model initialized by the optimal salinity perturbations is much stronger than that caused by the optimal temperature perturbations, indicating that salinity variations might play a relatively important role in exciting the decadal THC variability. Moreover, the decadal THC variations in the tangent linear and nonlinear models show remarkably different characteristics, suggesting the importance of nonlinear processes in the decadal variability of the THC.  相似文献   

9.
Carried out is analysis of variations of temperature, salinity, and currents in the Bering Strait area based on the data of American and Russian-American studies of the Bering Strait during the period from 1992 to 2010. Major attention is paid to the analysis of the long-term variability of water dynamics using the data of observations at the autonomous buoy stations in the Russian and American parts of the Bering Strait. Revealed are the trends towards the increase in the velocity of the Pacific water transport to the Chukchi Sea and Arctic Ocean, as well as the absence of the significant trend towards the changes in the temperature and salinity of deep waters in the Bering Strait. Estimated is the seasonal variability of hydrophysical conditions.  相似文献   

10.
Results from an ice-ocean coupled model are used to investigate the impact of long-term variability in sea ice transport at the Fram Strait on the intensity of the Atlantic deep circulation. An increase (or decrease) in sea ice transport through the Fram Strait leads to a stronger (or weaker) deep circulation in the Atlantic. Change in the sea ice transport is accompanied by a salinity anomaly in the surface layer of the Arctic Ocean. Such an anomaly could inversely affect the Atlantic circulation once it reaches deep water formation regions. If the Canadian Archipelago is closed, the anomaly is subsequently transported through the Fram Strait, and counters the initial changes in the Atlantic deep circulation. On the other hand, if the Canadian Archipelago is open, some of the anomaly is transported to the Canadian Archipelago, and the initial change in the Atlantic deep circulation persists. In the Arctic Ocean basin, the time scale and path of the salinity anomalys propagation depends on the large-scale flow at the surface of the Arctic Ocean. Our results suggest that the salinity anomaly transport and its propagation pathway out of the Arctic Ocean are important determinants of the role of sea ice transport variability through the Fram Strait in controlling the intensity of the Atlantic deep circulation.  相似文献   

11.
The information acquired from Argo floats such as temperature and salinity profiles is used to study water mass properties in the Arabian Sea from 2002 to 2004. An examination of water mass structure at different locations reveals the presence of high salinity water of marginal seas in the Arabian Sea. During the southwest monsoon season, the impact of the early onset of southwesterlies is noticed in the upper ocean temperature and salinity structure over the Western Arabian Sea (WAS) during 2002. Surface density variations are found to be more during the southwest monsoon season due to strong wind forcing. Argo temperature and salinity profiles showed that the winter cooling and the formation of Arabian Sea High Salinity Water (ASHSW) over the Northern Arabian Sea (NAS) began during the second half of November within the upper 100 m depth. In the NAS, the Persian Gulf Water (PGW) salinity is above 36, as PGW moves towards the south along isopycnal layer of 26.6σθθ is potential density) salinity decreases. It is observed that the PGW high salinity water is not continuously prominent over the WAS in 2002 and in 2003. In the WAS the 27.2σθ isopycnal layer depth, corresponding to Red Sea Water (RSW), did not exactly follow the pattern of isotherms as is seen in the northern and eastern Arabian Sea. The variability related to RSW salinity is due to the underwater currents. The present study also confirms that RSW is prominent in the southeast Arabian Sea at the potential density of 27.2 with a maximum in summer monsoon compared to other seasons. The observed peak in the salinity at 27.2 density level during the spring intermonsoon is due to the influence of winter time spreading of RSW to the south of Socotra in 2002. Westward movement of Argo floats in the region east of Socotra during the winter is evident in both the observations and model studies. Water mass properties change when they move away from their source region due to the consistent horizontal advection. The changes in the water mass properties along the Argo float trajectory are confirmed by comparing with the climatological mean monthly values from the World Ocean Atlas 2001 data set.  相似文献   

12.
It is shown that the salinity minimum at subsurface depths of the tropical Pacific is a local phenomenon. Characteristics of the salinity minimum are relative by absolute values and variable in time. It appears and disappears in the intertropical convergence zone according to variability of the freshwater budget sign. The salinity minimum appears during the negative phase of the freshwater budget on the background of the previous freshening of the sea surface. The salinity minimum at intermediate depths in both hemispheres is a single phenomenon of climatic time scale. At present, it exists at intermediate layers in the arid zones of both hemispheres due to the negative phase of the freshwater budget. This minimum is related to the Earth climate system variability at the geological time scale. Differences in its properties in the Northern and Southern hemispheres reflect differences in the freshwater budget values and the duration of their influence at the geological time scale.  相似文献   

13.
Atlantic Multidecadal Variability (AMV) is investigated in a millennial control simulation with the Kiel Climate Model (KCM), a coupled atmosphere–ocean–sea ice model. An oscillatory mode with approximately 60 years period and characteristics similar to observations is identified with the aid of three-dimensional temperature and salinity joint empirical orthogonal function analysis. The mode explains 30 % of variability on centennial and shorter timescales in the upper 2,000 m of the North Atlantic. It is associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) of ±1–2 Sv and Atlantic Sea Surface Temperature (SST) of ±0.2 °C. AMV in KCM results from an out-of-phase interaction between horizontal and vertical ocean circulation, coupled through Irminger Sea convection. Wintertime convection in this region is mainly controlled by salinity anomalies transported by the Subpolar Gyre (SPG). Increased (decreased) dense water formation in this region leads to a stronger (weaker) AMOC after 15 years, and this in turn leads to a weaker (stronger) SPG after another 15 years. The key role of salinity variations in the subpolar North Atlantic for AMV is confirmed in a 1,000 year long simulation with salinity restored to model climatology: No low frequency variations in convection are simulated, and the 60 year mode of variability is absent.  相似文献   

14.
We investigate some aspects of the variability of the Arctic freshwater content during the 1965–2002 period using the DRAKKAR eddy admitting global ocean/sea-ice model (12 km resolution in the Arctic). A comparison with recent mooring sections shows that the model realistically represents the major advective exchanges with the Arctic basin, through Bering, Fram and Davis Straits, and the Barents Sea. This allows the separate contributions of the inflows and outflows across each section to be quantified. In the model, the Arctic freshwater content variability is explained by the sea-ice flux at Fram and the combined variations of ocean freshwater inflow (at Bering) and outflow (at Fram and Davis). At all routes, except trough Fram Strait, the freshwater transport variability is mainly accounted for by the liquid component, with small contributions from the sea-ice flux. The ocean freshwater transport variability through both Davis and Fram is controlled by the variability of the export branch (Baffin Island Current and East Greenland Current, respectively), the variability of the inflow branches playing a minor role. We examine the respective role of velocity and salinity fluctuations in the variability of the ocean freshwater transport. Fram and Davis Straits offer a striking contrast in this regard. Freshwater transport variations across Davis Strait are completely determined by the variations of the total volume flux (0.91 correlation). On the other hand, the freshwater transport through Fram Strait depends both on variations of volume transport and salinity. As a result, there is no significant correlation between the variability of freshwater flux at Fram and Davis, although the volume transports on each side of Greenland are strongly anti-correlated (−0.84). Contrary to Davis Strait, the salinity of water carried by the East Greenland Current through Fram Strait varies strongly due to the ice-ocean flux north of Greenland.  相似文献   

15.
Freshwater (FW) leaves the Arctic Ocean through sea-ice export and the outflow of low-salinity upper ocean water. Whereas the variability of the sea-ice export is known to be mainly caused by changes in the local wind and the thickness of the exported sea ice, the mechanisms that regulate the variability of the liquid FW export are still under investigation. To better understand these mechanisms, we present an analysis of the variability of the liquid FW export from the Arctic Ocean for the period 1950–2007, using a simulation from an energy and mass conserving global ocean–sea ice model, coupled to an Energy Moisture Balance Model of the atmosphere, and forced with daily winds from the NCEP reanalysis. Our results show that the simulated liquid FW exports through the Canadian Arctic Archipelago (CAA) and the Fram Strait lag changes in the large-scale atmospheric circulation over the Arctic by 1 and 6 years, respectively. The variability of the liquid FW exports is caused by changes in the cyclonicity of the atmospheric forcing, which cause a FW redistribution in the Arctic through changes in Ekman transport in the Beaufort Gyre. This in turn causes changes in the sea surface height (SSH) and salinity upstream of the CAA and Fram Strait, which affect the velocity and salinity of the outflow. The SSH changes induced by the large-scale atmospheric circulation are found to explain a large part of the variance of the liquid FW export, while the local wind plays a much smaller role. We also show that during periods of increased liquid FW export from the Arctic, the strength of the simulated Atlantic meridional overturning circulation is reduced and the ocean heat transport into the Arctic is increased. These results are particularly relevant in the context of global warming, as climate simulations predict an increase in the liquid FW export from the Arctic during the twenty-first century.  相似文献   

16.
We present an analysis of the inter-annual variability of hydrography—temperature and salinity – and ice conditions at the coastal site of Tvärminne, Gulf of Finland, Baltic Sea during the period 1927–2012. The aim is to analyze the natural variability and trends of the hydrographic characteristics, freezing and breakup dates, ice thickness, and the heat content during the last century. The study also includes the inter-connections between the ice season and the surface temperature and salinity in the open water season. The results showed a significant decrease of the ice season length, by almost 30 days. The maximum annual ice thickness decreased by 8 cm in the last 40 years. The surface water temperature increased by almost 1 °C and there was also an increasing trend in the heat content. The thermal memory of the system was 2–2.5 months. The surface salinity increased by 0.5 psu in the last 85 years. The results are discussed and compared to related studies.  相似文献   

17.
The termination of the Equatorial Undercurrent (EUC) in the eastern equatorial Atlantic during boreal summer and fall, and the fate of the associated saline water masses, are analyzed from in situ hydrological and currents data collected during 19 hydrographic cruises between 2000 and 2007, complemented by observations from Argo profiling floats and PIRATA moorings, and from a numerical simulation of the Tropical Atlantic Ocean for the period 1993–2007. An intense variability of the circulation and hydrological properties is evidenced from observations in the upper thermocline (24.5–26.2 isopycnal layer) between June and November. During early boreal summer, saline water masses are transported eastward in the upper thermocline to the African coast within the EUC, and recirculate westward on both sides of the EUC. In mid-boreal summer, the EUC weakens in the upper thermocline and the equatorial salinity maximum disappears due to intense mixing with the surface waters during the upwelling season. The extra-equatorial salinity maxima are also partially eroded during the boreal summer, with a slight poleward migration of the southern hemisphere maximum until late boreal summer. The upper EUC reappears in September, feeding again the eastern equatorial Atlantic with saline waters until boreal spring. During December–January, numerical results suggest a second seasonal weakening of the EUC in the Gulf of Guinea, with a partial erosion of the associated equatorial salinity maximum.  相似文献   

18.
The mercury concentration levels in the water of aquatic ecosystem of the Northern Dvina River delta are defined. The interrelations of mercury concentrations with physicochemical parameters of the water body, namely with pH, Eh, temperature, salinity, oxygen and organic matter content are studied. The dominant forms of mercury migration and its presence in the water are revealed. Regularities of changes and spatial variability of the mercury concentrations in the estuarine area of the river, peculiarities of mercury compound migration and transformation in the barrier zone of the Northern Dvina River-Dvina Bay of the White Sea are studied.  相似文献   

19.
We investigate the formation process and pathways of deep water masses in a coupled ice–ocean model of the Arctic and North Atlantic Oceans. The intent is to determine the relative roles of these water masses from the different source regions (Arctic Ocean, Nordic Seas, and Subpolar Atlantic) in the meridional overturning circulation. The model exhibits significant decadal variability in the deep western boundary current and the overturning circulation. We use detailed diagnostics to understand the process of water mass formation in the model and the resulting effects on the North Atlantic overturning circulation. Particular emphasis is given to the multiple sources of North Atlantic Deep Water, the dominant deep water masses of the world ocean. The correct balance of Labrador Sea, Greenland Sea and Norwegian Sea sources is difficult to achieve in climate models, owing to small-scale sinking and convection processes. The global overturning circulation is described as a function of potential temperature and salinity, which more clearly signifies dynamical processes and clarifies resolution problems inherent to the high latitude oceans. We find that fluxes of deep water masses through various passages in the model are higher than observed estimates. Despite the excessive volume flux, the Nordic Seas overflow waters are diluted by strong mixing and enter the Labrador Sea at a lighter density. Through strong subpolar convection, these waters along with other North Atlantic water masses are converted into the densest waters [similar density to Antarctic Bottom Water (AABW)] in the North Atlantic. We describe the diminished role of salinity in the Labrador Sea, where a shortage of buoyant surface water (or excess of high salinity water) leads to overly strong convection. The result is that the Atlantic overturning circulation in the model is very sensitive to the surface heat flux in the Labrador Sea and hence is correlated with the North Atlantic Oscillation. As strong subpolar convection is found in other models, we discuss broader implications.  相似文献   

20.
A 1-degree global model is used to investigate the skill of spectral nudging at coarse resolution by performing two numerical experiments, one with spectral nudging and the other without. In the spectral nudging experiment, the model temperature and salinity are nudged to an observed climatological monthly-mean field. The study compares the model mean state, as well as the interannual and decadal variability of oceanic quantities with observations, (e.g., sea surface height (SSH) and sea surface temperature (SST)). Spectral nudging is found to be effective in constraining model drift from the observed mean state of temperature and salinity in the global ocean, which has been reported in previous studies. The present study further shows that spectral nudging significantly improves the model skill of topostrophy (a measure of currents flowing along the topography) in water depth below 2000?m with no clear improvement elsewhere. Despite its known ability to damp oceanic variability at various time scales, spectral nudging can still represent the interannual and decadal variability of SSH and SST well, to a degree comparable to the other experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号