首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
南极陨石的研究发现,有几个碳质球粒陨石富含与CI陨石类似的含水层状硅酸盐集合体及其角砾,其氧同位素比值也与CI接近,因而称之为类C1陨石。类C1陨石与C1陨石的区别是:类C1陨石中的含水层状硅酸盐既以基质的形式产出,也出现在球粒中;类C1陨石中含有球粒及有关组分,如球粒碎块、矿物集合体等。每个陨石中所含这些组分的数量不同,其矿物的成分也差别很大,从而说明它们形成的星云环境不同。因此笔者认为类C1陨  相似文献   

2.
南极陨石的研究发现,有几个碳质球粒陨石富含与C1陨石类似的含水层状硅酸盐集合体及其角砾.其氧同位素比值也与C1接近,因而称之为类C1陨石。类C1陨石与C1陨石的区别是:类C1陨石中的含水层状硅酸盐既以基质的形式产出,也出现在球粒中;类C1陨石中含有球粒及有关组分,如球粒碎块、矿物集合体等。每个陨石中所含这些组分的数量不同,其矿物的成分也差别很大,从而说明它们形成的星云环境不同。因此笔者认为类C1陨石可能是小行星区星云盘外层的星云凝聚物受到不同程度水化作用后吸积形成的陨石。  相似文献   

3.
侯渭  欧阳自远 《岩石学报》1996,12(1):115-126
建立类地行星区太阳星云凝聚过程的岩石学模型,对于合理解释陨石、地球和类地行星的成因关系,探讨地球起源和估算地球的整体成分都有着重要意义。本文中根据天体化学和太阳系演化学说关于太阳星云物理化学条件的基本分析,以及实验凝聚岩石学的研究结果,推断在太阳星云盘的类地行星区中可能有星云的气-固和气-液-固两种凝聚作用发生。通过对球粒陨石中球粒和基质矿物成分及结构构造特征的对比,论证了绝大多数球粒的气-液-固凝聚成因和基质的气-固凝聚成因,并讨论了球粒陨石各化学群的凝聚成因模式。  相似文献   

4.
简要介绍了球粒陨石中含水矿物的种类和主要特点,根据陨石中含水矿物与无水矿物,有机质的关系,太阳星云凝聚模型中有关水蒸汽与无水矿物反应的理论,以及有关的同位素资料的综合分析,推断形成含水矿物的水化作用是太阳星云凝聚作用的一个阶段,通过不同类型球粒陨石氧同位素组成和含水矿物数量的比较,论证了太阳星云盘中发生水作用的范围,从而对地球水的来源进行了讨论。  相似文献   

5.
王道德  王桂琴 《矿物学报》2012,32(3):321-340
陨石是来自含气体-尘粒的太阳早期星云盘凝聚和吸积的原始物质,大多数原始物质因吸积后的作用过程而改变(如月球、地球及火星样品),但有一些却完整的保存下来(如球粒陨石或球粒陨石中的难熔包体)。这些原始的物质通常依据同位素丰度特征来识别,依据其矿物-岩石学特征和成因可将已知的陨石划分许多更小的类型。陨石学及天体化学的新近进展包括:新近识别的陨石群;发现新类型球粒陨石及行星际尘粒中发现前太阳和星云组分;利用短寿命放射性核素完善了早期太阳系年代学;洞察宇宙化学丰度、分馏作用及星云源区及通过次生母体的作用过程阐释星云和前星云的记录。本文概述了早期太阳系内从星云到陨石的演化过程。依据这些资料,对早期太阳系所经历的多种核合成的输入、瞬时加热事件与星云动力学有一些新的认识,以及认识到小星子和行星体系的演化比以前预期的更快速。  相似文献   

6.
陨石氧同位素组成及其地学意义   总被引:1,自引:0,他引:1  
介绍了各类陨石氧同位素组成的特点,对陨石氧同位素组成的主要成因观点进行了评述,结合地球的原始物质组成,讨论了陨石氧同位素组成的地球科学意义。  相似文献   

7.
Many carbonaceous chondrites contain discrete olivine fragments that have been considered to be primitive material, i.e. direct condensates from the solar nebula or pre-solar system material. Olivine occurring in chondrules and as isolated grains in C3(0) chondrites has been characterized chemically and petrographically. Type I chondrules contain homogeneous forsterite grains that exhibit a negative correlation between FeO and CaO. Type II chondrules contain zoned fayalite olivines in which FeO is positively correlated with CaO and MnO. The isolated olivines in C3(0) chondrites form two compositional populations identical to olivines in the two types of porphyritic olivine chondrules in the same meteorites. Isolated olivines contain trapped melt inclusions similar in composition to glassy mesostasis between olivines in chondrules. Such glasses can be produced by fractional crystallization of olivine and minor spinel in the parent chondrule melts if plagioclase does not nucleate. The isolated olivine grains are apparently clastic fragments of chondrules. Some similarities between olivines in C3(0), C2, and Cl chondrites may suggest that olivine grains in all these meteorites crystallized from chondrule melts.  相似文献   

8.
综述了非球陨石(铁陨石,石铁陨石和无球粒陨石)在成分结构方面的非分异成因证据,推断其成因是:星云盘中心层中的星云发生气-液凝聚作用形成的熔滴,在较高温度下彼此合并形成了较大熔体,熔体固化后形成该类陨石母体。根据C1陨石不含球粒和其它成分特征,推断它们是星云只发生气-固凝聚作用的产物。对近年来新发现的一些特殊成分的碳质球粒陨石进行了综合分析,暂定名为类C1陨石。通过类C1陨石与其它球粒陨石及C1陨石成分结构特征的对比,推断它们是星云盘边缘层星云发生气-液-固和气-固联合凝聚作用,同时发生水化作用的产物。最后,在对所有陨石凝聚成因进行解释的基础上,建立了小行星区星云凝聚模型。  相似文献   

9.
The condensation temperatures are calculated for a number of refractory trace metals from a gas of solar composition at 10?3 and 10?4 atm. total pressure. Instrumental neutron activation analysis of Ca-Al-rich inclusions in the Allende carbonaceous chondrite reveals enrichments of 22.8 ± 2.2 in the concentrations of Ir, Sc and the rare earths relative to Cl chondrites. Such enrichments cannot be due to magmatic differentiation processes because of the marked differences in chemical behavior between Ir and Sc, exhibited by their distributions in terrestrial igneous rocks and meteorites. All of these elements should have condensed from a cooling gas of solar composition above or within the range of condensation temperatures of the major mineral phases of the inclusions, which suggests that these inclusions are high-temperature condensates from the primitive solar nebula. Gas-dust fractionation of these materials may have been responsible for the depletion of refractory elements in the ordinary and enstatite chondrites relative to the carbonaceous chondrites.  相似文献   

10.
We have determined abundances of presolar diamond, silicon carbide, graphite, and Xe-P1 (Q-Xe) in eight carbonaceous chondrites by measuring the abundances of noble gas tracers in acid residues. The meteorites studied were Murchison (CM2), Murray (CM2), Renazzo (CR2), ALHA77307 (CO3.0), Colony (CO3.0), Mokoia (CV3ox), Axtell (CV3ox), and Acfer 214 (CH). These data and data obtained previously by Huss and Lewis (1995) provide the first reasonably comprehensive database of presolar-grain abundances in carbonaceous chondrites. Evidence is presented for a currently unrecognized Ne-E(H) carrier in CI and CM2 chondrites.After accounting for parent-body metamorphism, abundances and characteristics of presolar components still show large variations across the classes of carbonaceous chondrites. These variations correlate with the bulk compositions of the host meteorites and imply that the same thermal processing that was responsible for generating the compositional differences between the various chondrite groups also modified the initial presolar-grain assemblages. The CI chondrites and CM2 matrix have the least fractionated bulk compositions relative to the sun and the highest abundances of most types of presolar material, particularly the most fragile types, and thus are probably most representative of the material inherited from the sun's parent molecular cloud. The other classes can be understood as the products of various degrees of heating of bulk molecular cloud material in the solar nebula, removing the volatile elements and destroying the most fragile presolar components, followed by chondrule formation, metal-silicate fractionation in some cases, further nebula processing in some cases, accretion, and parent body processing. If the bulk compositions and the characteristics of the presolar-grain assemblages in various chondrite classes reflect the same processes, as seems likely, then differential condensation from a nebula of solar composition is ruled out as the mechanism for producing the chondrite classes. Presolar grains would have been destroyed if the nebula had been completely vaporized. Our analysis shows that carbonaceous chondrites reflect all stages of nebular processing and thus are no more closely related to one another than they are to ordinary and enstatite chondrites.  相似文献   

11.
王道德  戴诚达 《地球化学》1995,24(2):110-120
类地行星挥发性元素普遍亏损很可能是由于太阳星云早期剧烈的太阳活动引起的。当气体、尘粒、挥发性元素和水被驱赶出内太阳系时,只有米级到公里级的物质保存下来并堆积成星子,最终吸积星子形成类地行星。我们认为类地行星的初始物质主要是已分异的星子和一些未分异的球粒陨石质星子或不同类型的陨石母体,最靠近太阳形成的星子具有最低的FeO/(FeO+MgO)值,水星是在靠近太阳的高度还原条件下吸积成分类似EH球粒陨石的星子形成的。地球的初始物质为分异的铁陨石及H群球粒陨石。随着距太阳距离增大及温度降低,陨石形成的部位大致为:EH、EL-IAB-SNC(辉玻无球粒陨石、辉橄无球粒陨石、纯橄无球粒陨石)-Euc(钙长辉长无球粒陨石)-H、L、LL-CV、CM、CO-Cl-彗星。物体之间、星子之间及行星与星子之间的碰撞对太阳系的形成和演化起着重要的作用。  相似文献   

12.
The history of the solar system is locked within the planets, asteroids and other objects that orbit the Sun. While remote observations of these celestial bodies are essential for understanding planetary processes, much of the geological and geochemical information regarding solar system heritage comes directly from the study of rocks and other materials originating from them. The diversity of materials available for study from planetary bodies largely comes from meteorites; fragments of rock that fall through Earth's atmosphere after impact‐extraction from their parent planet or asteroid. These extra‐terrestrial objects are fundamental scientific materials, providing information on past conditions within planets, and on their surfaces, and revealing the timing of key events that affected a planet's evolution. Meteorites can be sub‐divided into four main groups: (1) chondrites, which are unmelted and variably metamorphosed ‘cosmic sediments’ composed of particles that made up the early solar nebula; (2) achondrites, which represent predominantly silicate materials from asteroids and planets that have partially to fully melted, from a broadly chondritic initial composition; (3) iron meteorites, which represent Fe‐Ni samples from the cores of asteroids and planetesimals; and (4) stony‐iron meteorites such as pallasites and mesosiderites, which are mixtures of metal and dominantly basaltic materials. Meteorite studies are rapidly expanding our understanding of how the solar system formed and when and how key events such as planetary accretion and differentiation occurred. Together with a burgeoning collection of classified meteorites, these scientific advances herald an unprecedented period of further scientific challenges and discoveries, an exciting prospect for understanding our origins.  相似文献   

13.
The highly unequilibrated LL3 chondrites Krymka and Chainpur preserve a relatively unaltered record of formation in the solar nebula in the texture and chemistry of their opaque mineral assemblages. A moderate degree of diversity among these meteorites and Bishunpur is apparently associated with formation under differing conditions.Spheroidal kamacite, some Cr-bearing, is present in chondrule interiors. Fine-grained metal within the Fe-rich opaque matrix of Krymka consists exclusively of taenite and minor tetrataenite; kamacite occurs inside metal-sulfide nodules. These nodules are surrounded by an inner layer of FeO-rich, fine-grained silicate material (FeO/(FeO + MgO) > 80%) and an outer troilite-rich layer, and contain variable amounts of a hydrated Fe-oxide phase. It appears that the nodules were melted, often incompletely, possibly during the chondrule formation process. Some nodule metal is Si- and Cr-bearing, indicating little reaction with nebular H2O. Nodules are much less common in Chainpur than in Krymka and rare in Bishunpur.Most metal-poor chondrules in Krymka, Bishunpur and Chainpur appear to have formed from precursors that had acquired significant amounts of FeO as a result of reaction with the nebular gas down to low temperatures; metal-rich chondrules seem to have derived from aggregates of coarse, high-temperature Fe-poor silicates. Low Ni concentrations (34–41 mg/g) in chondrule kamacite may largely result from dilution by Fe reduced from the silicates during chondrule formation.The opaque silicate matrix of Krymka is considerably more oxidized than that of Bishunpur and Chainpur, it contains no kamacite and its composition is very uniform. This may either reflect the growth of silicate grains during incipient recrystallization in the matrices of Bishunpur and Chainpur or, more likely, a lower mean grain size of the Krymka matrix components, possibly indicating later formation of the Krymka parent planetesimal.  相似文献   

14.
富钙长石-橄榄石包体与其他部分典型包体W-L边的成因   总被引:1,自引:1,他引:0  
球粒陨石中的富Ca、Al包体(简称CAI)形成于星云演化的最初始阶段,保存了大量星云形成和演化的各种信息。研究认为,包体的成因主要包括星云直接凝聚和熔融结晶,少部分甚至经历过高温蒸发过程。部分CAI最外层具有由一种或几种矿物组成的Warking-Lovering边(简称为W-L边),CAI和其W-L边对于认识早期星云环境和界定CAI的形成时间等均具有重要意义。目前,对于W-L边的形成过程研究并不深入,且一直存在争议。本文主要介绍了三个典型包体:C#1(富钙长石-橄榄石包体)、GRV 022459-2RI5(A型包体)和GRV 021579-3RI5(富尖晶石球粒状包体)及其W-L边的矿物岩石学和氧同位素组成特征。C#1包体明显经历过熔融结晶过程,W-L边氧同位素组成具有与包体内部矿物相似的富~(16)O同位素特征,表明W-L边的成因与包体的形成过程密切相关,形成于同一富~(16)O同位素组成区域,且W-L边属于包体熔融结晶过程后期的产物。矿物岩石学特征表明,GRV 022459-2RI5属于星云直接凝聚形成,其W-L边为包体形成过程最晚期星云凝聚产物。GRV021579-3RI5经历过熔融结晶过程,其W-L边为包体结晶最后阶段的产物。  相似文献   

15.
Three new carbonaceous chondrites (GRV 020025,021579 and 022459) collected from the Grove Mountains (GRV), Antarctica, have been classified as the CM2, CO3 and CV3 chondrites, respectively. A total of 27 Ca- and Al-rich inclusions have been found in the three meteorites, which are the earliest assemblages formed in the solar nebula. Most of the inclusions are intensively altered, with abundant phyllosilicates in the inclusions from GRV 020025 and FeO enrichment of spinel in those from GRV 022459. Except for one spinel-spherule in each of GRV 020025 and  相似文献   

16.
The enstatite chondrites formed under highly reducing (and/or sulfidizing) conditions as indicated by their mineral assemblages and compositions, which are sharply different from those of other chondrite groups. Enstatite is the major silicate mineral. Kamacite is Si-bearing and the enstatite chondrites contain a wide variety of monosulfide minerals that are not present in other chondrite groups. The unequilibrated enstatite chondrites are comprised of two groups (EH3 and EL3) and one anomalous member (LEW 87223), which can be distinguished by differences in their mineral assemblages and compositions. EH3 chondrites have >1.8 wt.% Si in their kamacite and contain the monosulfide niningerite (MgS), whereas EL3 chondrites have less than 1.4 wt.% Si in their kamacite and contain the monosulfide alabandite (MnS). The distinct mineralogies, compositions and textures of E3 chondrites make comparisons with ordinary chondrites (OCs) and carbonaceous chondrites (CCs) difficult, however, a range of recrystallization features in the E3s are observed, and some may be as primitive as type 3.1 OCs and CCs. Others, especially the EL3 chondrites, may have been considerably modified by impact processes and their primary textures disturbed. The chondrules in E3 chondrites, although texturally similar to type I pyroxene-rich chondrules, are sharply different from chondrules in other chondrite groups in containing Si-bearing metal, Ca- and Mg–Mn-rich sulfides and silica. This indicates formation in a reduced nebular environment separate from chondrules in other chondrites and possibly different precursor materials. Additionally the oxygen isotope compositions of E3 chondrules indicate formation from a unique oxygen reservoir. Although the abundance, size distribution, and secondary alteration minerals are not always identical, CAIs in E3 chondrites generally have textures, mineral assemblages and compositions similar to those in other groups. These observations indicates that CAIs in O, C and E chondrites all formed in the reservoir under similar conditions, and were redistributed to the different chondrite accretion zones, where the secondary alteration took place. Thus, chondrule formation was a local process for each particular chondrite group, but all CAIs may have formed in the similar nebular environment. Lack of evidence of water (hydrous minerals), and oxygen isotope compositions similar to Earth and Moon suggest formation of the E chondrites in the inner solar system and make them prime candidates as building blocks for the inner planets.  相似文献   

17.
本文评述了星云和星子假说、太阳星云的崩塌、星盘的形成和演化、颗粒生长、星子增生、类地行星和类木行星的形成、行星迁移,以及太阳和行星的演化。  相似文献   

18.
Neutron activation analysis was used to determine As, Au, Bi, Cd, Co, Cu, Ga, In, Sb, Se, Te, Tl and Zn in 11 samples representing 9 chondrites of grades E4–6. These chondrites exhibit systematic intra- and inter-grade differences particularly for highly-variable elements, the differences being E4 ? E3 > E6 ? E5. The abundance pattern for these 13 and an additional 16 elements in E3-6 chondrites differs from those of other primitive meteorites—the carbonaceous and unequilibrated ordinary chondrites. A search for statistically-significant interelement relationships among the 13 elements (for grades E4–6) reveal that 40 elementpairs are linearly and/or exponentially correlated. Similar consideration of data for 37 elements in 12 chondrites (grades E3–6) reveals that 191 element-pairs exhibit such relationships, 170 involving linear and/or exponential correlations, the remainder involving anti-correlations. The patterns depicting these relationships—i.e. the correlation profiles—and elemental abundance patterns, factor analysis and two-element correlation diagrams are consistent with all enstatite chondrites representing a single evolutionary sequence. The primary process responsible for the chemical trends of these chondrites involved thermal fractionation accompanied by geochemical fractionation of sulfide-plus-metal from silicate, probably during condensation and accretion of solid material from the solar nebula. Chalcophile elements may have been fractionated during condensation or, after accretion, during thermal metamorphism in the parent body. No genetic model proposed thus far accounts for the detailed chemical trends, although the constrained equilibrium theory and two-component condensation theories qualitatively seem most satisfactory. The correlation profiles of enstatite, carbonaceous and unequilibrated ordinary chondrites are distinctly different, pointing to major differences in the formation conditions of these different sorts of primitive meteorites.  相似文献   

19.
We report neutron activation data for Ag, As, Bi, Cd, Co, Cs, Cu, Ga, In, Rb, Se, Te, Tl and Zn in samples of Abee heated at temperatures of 1000–1400°C in a low-pressure environment (initially ~ 10?5 atm H2) and in 9 enstatite achondrites (aubrites) and the silicate portion of the unique stony-iron, Mt Egerton. Trace element losses in heated Abee progress with temperature, the lowest retention being 2.4 × 10?6 of initial contents. These data indicate trace element loss above 1000°C via diffusion-controlled processes having apparent activation energies of 8–55 kcal/mol ; only Co exhibits a significantly higher energy. These trace element data and those for aubrites, Mt Egerton and E4–6 chondrites, and mineralogic and isotopic evidence link all enstatite meteorites to a common parent body. Volatile, mobile elements vary inversely with cobalt content in aubrites and Mt Egerton but directly in E4–6 chondrites; this is inconsistent with all genetic models positing fractionation of such elements during nebular condensation and accretion. However, the data are consistent with the idea that aubrites and Mt. Egerton reflect fractional crystallization of a magma produced from enstatite chondrite-like parent material (probably E6) and late introduction of chalcophiles and mobile elements transported by FeS-Fe eutectic from an E4–6 region experiencing open-system metamorphism. As suggested earlier, the only primary process that affected enstatite meteorites involved fractionation of non-volatile lithophiles from sulfides and metal during condensation and accretion of chondritic parent material from the nebula. If, as seems likely, volatile/mobile elements reflect secondary processes, they can only be used to establish alteration conditions within the enstatite parent body and not to estimate temperatures during primary nebular condensation and accretion.  相似文献   

20.
It appears that the highly unequilibrated Bishunpur ordinary chondrite preserves phase relations acquired during solar nebular processes to a relatively high degree; metamorphic temperatures may not have exceeded 300–350°C. The major categories of metal are: 3 kinds of metal in the metal matrix, three kinds in chondrule interiors and 2 kinds in chondrule rims. The fine-grained matrix metal is highly variable in composition: the kamacite Co content (7.8 ± 2.0 mg/g) is within the L-group range (6.7–8.2 mg/g) but extends well above and below; its Ni content (38 ± 5 mg/g) is considerably lower than in more equilibrated chondrites and taenite is Ni-rich ( > 450 mg/g) and unzoned. These compositions imply equilibration at very low temperatures of about 300–350°C. It seems unlikely that volume diffusion could account for the observed relatively unzoned phases; a better model involves mass transport by grain boundary diffusion and grain growth at the indicated temperatures. We find no evidence that the matrix was ever at higher temperatures. Large (50–650 μm) polycrystalline metal aggregates consisting of individually zoned crystals are also found in the matrix; they probably represent clusters formed in the solar nebula. A few large (50–250 μm) round monocrystalline grains are also present in the matrix.Metal-bearing chondrules tend to be highly reduced; they contain low-Ni metal that occasionally contains Si and/or Cr. Silicates in these chondrules tend to have low FeO(FeO + MgO) ratios. The Si-rich metal grains are never in contact with silicates and are always surrounded by troilite with a poorly characterized Ca, Cr-sulfide at the metal-troilite interface; they appear to be high temperature nebular condensates that avoided oxidation even during the chondrule forming process. Silicon contents drop below our detection limit when the sulfide coating is absent. Much more common in chondrule interiors are Si-free spheroidal metal grains not associated with sulfides. These have Ni and Co contents very similar to the Si-bearing grains, and appear to be oxidized variants of the same material. The third class of chondrule metal is fine ( ~1 μm) dusty grains inside individual olivine grains. These seem to reflect high temperature in situ reduction of FeO from the olivine.The composition of kamacite is different in sulfide-rich and sulfide-poor chondrule rims and in both cases it is dissimilar to the compositions in the chondrule interiors and matrix; this indicates that chondrule rims could not have resulted from reactions with the matrix, but are primary features acquired prior to accretton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号