首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugarloaf Mountain is a 200-m high volcanic landform in central Arizona, USA, within the transition from the southern Basin and Range to the Colorado Plateau. It is composed of Miocene alkalic basalt (47.2–49.1?wt.% SiO2; 6.7–7.7?wt.% MgO) and overlying andesite and dacite lavas (61.4–63.9?wt.% SiO2; 3.5–4.7?wt.% MgO). Sugarloaf Mountain therefore offers an opportunity to evaluate the origin of andesite magmas with respect to coexisting basalt. Important for evaluating Sugarloaf basalt and andesite (plus dacite) is that the andesites contain basaltic minerals olivine (cores Fo76-86) and clinopyroxene (~Fs9-18Wo35-44) coexisting with Na-plagioclase (An48-28Or1.4–7), quartz, amphibole, and minor orthopyroxene, biotite, and sanidine. Noteworthy is that andesite mineral textures include reaction and spongy zones and embayments in and on Na-plagioclase and quartz phenocrysts, where some reacted Na-plagioclases have higher-An mantles, plus some similarly reacted and embayed olivine, clinopyroxene, and amphibole phenocrysts.Fractional crystallization of Sugarloaf basaltic magmas cannot alone yield the andesites because their ~61 to 64?wt.% SiO2 is attended by incompatible REE and HFSE abundances lower than in the basalts (e.g., Ce 77–105 in andesites vs 114–166?ppm in basalts; Zr 149–173 vs 183–237; Nb 21–25 vs 34–42). On the other hand, andesite mineral assemblages, textures, and compositions are consistent with basaltic magmas having mixed with rhyolitic magmas, provided the rhyolite(s) had relatively low REE and HFSE abundances. Linear binary mixing calculations yield good first approximation results for producing andesitic compositions from Sugarloaf basalt compositions and a central Arizona low-REE, low-HFSE rhyolite. For example, mixing proportions 52:48 of Sugarloaf basalt and low incompatible-element rhyolite yields a hybrid composition that matches Sugarloaf andesite well ? although we do not claim to have exact endmembers, but rather, viable proxies. Additionally, the observed mineral textures are all consistent with hot basalt magma mixing into rhyolite magma. Compositional differences among the phenocrysts of Na-plagioclase, clinopyroxene, and amphibole in the andesites suggest several mixing events, and amphibole thermobarometry calculates depths corresponding to 8–16?km and 850° to 980?°C. The amphibole P-T observed for a rather tight compositional range of andesite compositions is consistent with the gathering of several different basalt-rhyolite hybrids into a homogenizing ‘collection' zone prior to eruptions. We interpret Sugarloaf Mountain to represent basalt-rhyolite mixings on a relatively small scale as part of the large scale Miocene (~20 to 15 Ma) magmatism of central Arizona. A particular qualification for this example of hybridization, however, is that the rhyolite endmember have relatively low REE and HFSE abundances.  相似文献   

2.
Basaltic glasses from the three alkalic areas of Iceland (Snaefellsnes Volcanic Zone, Sudurland Volcanic Zone and Vestmannaeyjar Volcanic Area) contain plagioclase, olivine, clinopyroxene, chromian spinel and titanomagnetite as phenocryst phases. The glasses are hypersthene to nepheline normative alkali basaltic with FeO/ MgO ratios between 1.4–4.7. Olivine ranges in composition from Fo90 to Fo55, plagioclase from An90 to An50 and clinopyroxene from En45Fs10Wo45 to En40Fs17Wo43. Clinopyroxene reveals systematic Ti:Al metastable crystallization trends related to the composition of the enclosing glass. Two types of phenocryst are present in most glasses and show a bimodality in size and composition. Microphenocryst phases are those most likely to have crystallized from the enclosing glass, while macrophenocrysts may have crystallized from a liquid of slightly less evolved composition. The glasses show complex phenocryst-glass relations which can be related to a polybaric effect. The normative glass compositions are related to 2-phase cotectic surfaces in the basalt tetrahedron and define the position of the 3-phase cotectic line. In general with increasing FeO/MgO in the glass the phenocryst assemblages vary from clinopyroxene, olivine and plagioclase along a clinopyroxene-olivine surface to olivine and plagioclase along an olivine-plagioclase surface. The normative glass compositions show a deflection from clinopyroxene-bearing to clinopyroxene-free glasses. The appearance of plagioclase together with clinopyroxene and olivine can be explained in the light of experimental investigations of the effect of pressure on phase relations. The major element variation of the glasses is interpreted as representing mantle derived magma batches of primary liquids, modified to some degree by high (6 kbar) and intermediate to low pressure (below 3 kbar) crystal fractionation towards equilibrium phase relations during ascent and residence in crustal magma chambers. The observed deflection in normative compositions of the glasses marks the position of the high pressure 3-phase cotectic line. The bimodality in size and composition of plagioclase and olivine phenocrysts can be related to high pressure crystal fractionation in the melt. The Fe-Ti basalt glasses from Sudurland are believed to be quenched high pressure compositions.  相似文献   

3.
Compositions of immiscible liquids in volcanic rocks   总被引:8,自引:5,他引:8  
Immiscible liquids, preserved as chemically distinct, glassy globules, (Si-rich and Fe-rich) occur in many tholeiitic basalts and some alkaline and calcalkaline lavas. The glasses typically form part of a dark mesostasis containing skeletal magnetite crystals. In thick flows, the Si-rich liquid may crystallize to granophyric patches, and the Ferich one to aggregates of hedenbergite, magnetite, and accessory phases. The mesostases containing these immiscible phases constitute from 20% of a primitive olivine tholeiite (MgO=7.5%) to 50% of a highly fractionated quartz tholeiite (MgO=2.8%), but may be less if the rock is oxidized. Abundant ferric iron promotes early crystallization of magnetite and prevents the iron enrichment necessary to reach the immiscibility field; thus, aa flows rarely exhibit immiscibility, whereas the more reduced pahoehoe ones do.Alumina and alkalis are concentrated in the Si-rich liquid, whereas the remainder of the major elements are concentrated in the Fe-rich melt; but the partitioning of Fe, Mg, Ca, and P is less pronounced in alkaline rocks than in tholeiites. Conjugate liquids have compositions of granite and Fe-rich pyroxenite, though the Si-rich melt in alkaline rocks is more syenitic and the Fe-rich one contains considerable normative alkali feldspar. The liquids coexist with plagioclase and augite of, respectively, An50 and Ca34Mg19Fe47 compositions in tholeiites, and An40 and Ca42Mg29Fe29 in alkaline rocks. Immiscibility is not restricted to K-rich residual liquids, but the miscibility gap is narrower for Na-rich compositions. In tholeiitic basalts with 52% SiO2, the Na2O/K2O ratios in conjugate liquids are equal, but at lower silica contents the Si-rich liquid is relatively more sodic, whereas at higher silica contents it is relatively more potassic. This may explain the association of sodic granites with mid ocean ridge basalts.Immiscible liquids are present in sufficient amounts in so many volcanic rocks that magma unmixing should be considered a viable means of differentiation during the late stages of fractionation of common magmas, at least at low pressures.  相似文献   

4.
Melt inclusions were examined in phenocrysts in basalt, andesite, dacite, and rhyodacite from the Karymskii volcanic center in Kamchatka and dacite form Golovnina volcano in Kunashir Island, Kuriles. The inclusions were examined by homogenization and by analyzing glasses in more than 80 inclusions on an electron microscope and ion microprobe. The SiO2 concentrations in the melt inclusions in plagioclase phenocrysts from basalts from the Karymskii volcanic center vary from 47.4 to 57.1 wt %, these values for inclusions in plagioclase phenocrysts from andesites are 55.7–67.1 wt %, in plagioclase phenocrysts from the dacites and rhyodacites are 65.9–73.1 wt %, and those in quartz in the rhyodacites are 72.2–75.7 wt %. The SiO2 concentrations in melt inclusions in quartz from dacites from Golovnina volcano range from 70.2 to 77.0 wt %. The basaltic melts are characterized by usual concentrations of major components (wt %): TiO2 = 0.7–1.3, FeO = 6.8–11.4, MgO = 2.3–6.1, CaO = 6.7–10.8, and K2O = 0.4–1.7; but these rocks are notably enriched in Na2O (2.9–7.4 wt % at an average of 5.1 wt %, with the highest Na2O concentration detected in the most basic melts: SiO2 = 47.4–52.0 wt %. The concentrations of volatiles in the basic melts are 1.6 wt % for H2O, 0.14 wt % for S, 0.09 wt % for Cl, and 50 ppm for F. The andesite melts are characterized by high concentrations (wt %) of FeO (6.5 on average), CaO (5.2), and Cl (0.26) at usual concentrations of Na2O (4.5), K2O (2.1), and S (0.07). High water concentrations were determined in the dacite and rhyodacite melts: from 0.9 to 7.3 wt % (average of 15 analyses equals 4.5 wt %). The Cl concentration in these melts is 0.15 wt %, and those of F and S are 0.06 and 0.01 wt %, respectively. Melt inclusions in quartz from the dacites of Golovnina volcano are also rich in water: they contain from 5.0 to 6.7 wt % (average 5.6 wt %). The comparison of melt compositions from the Karymskii volcanic center and previously studied melts from Bezymyannyi and Shiveluch volcanoes revealed their significant differences. The former are more basic, are enriched in Ti, Fe, Mg, Ca, Na, and P but significantly depleted in K. The melts of the Karymskii volcanic center are most probably less differentiated than the melts of Bezymyannyi and Shiveluch volcanoes. The concentrations of water and 20 trace elements were measured in the glasses of 22 melt inclusions in plagioclase and quartz from our samples. Unusually high values were obtained for Li concentrations (along with high Na concentrations) in the basaltic melts from the Karymskii volcanic center: from 118 to 1750 ppm, whereas the dacite and rhyolite melts contain 25 ppm Li on average. The rhyolite melts of Golovnina volcano are much poorer in Li: 1.4 ppm on average. The melts of the Karymskii volcanic center are characterized by relative minima at Nb and Ti and maxima at B and K, as is typical of arc magmas.  相似文献   

5.
Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone.Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55–61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted.The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to undercooling phenomena that suggest smaller T. Vertical compositional zonation in magma chambers has been documented through study of products of voluminous pyroclastic eruptions. Magmatic inclusions in volcanic rocks provide evidence for compositional zonation and mixing processes in igneous systems when only lava is erupted.  相似文献   

6.
Major and trace element compositions of rocks and coexisting phenocrysts of the Thingmúli volcano suggest a revision of the existing models for the formation of intermediate and silicic melts in Iceland. The new data define two compositional tholeiitic trends with a significant gap between them. A high-iron trend (HFe) contains 6–14 wt% total FeO in silicic rocks with c. 1 wt% MgO, as well as sodic plagioclase and hedenbergite phenocrysts. A low-iron trend (LFe) contains 3–5 wt% FeO at c. 1 wt% MgO, which is typical of Iceland but higher than MORB compositions. The most evolved phenocrysts of the LFe trend do not reach iron-rich end members. The HFe trend is interpreted as a result of fractional crystallization; numerical modelling using the MELTS algorithm suggests that crystallization took place under redox conditions constrained to one-log unit below the fayalite-magnetite-quartz oxygen buffer (FMQ-1). The LFe trend is explained by a combination of mixing between rhyolite and ferrobasalt, assimilation of hydrated crust and fractional crystallization under higher redox conditions (FMQ). The two trends and the gap are best defined in a plot of Mg# versus SiO2 that is useful to unravel petrogenetic processes. For example, intermediate and silicic rocks of the Holocene volcanic systems of spreading rifts (e.g. Krafla), propagating rifts (e.g. Hekla) and off-rifts (Öræfajökull) also fall into high- and low-iron fields and outline a gap similar to Thingmúli. The identification of two compositional trends in erupted intermediate and silicic volcanic products shows that processes in the deep roots of single volcanic systems are highly diverse and likely controlled by local variations in the thermal gradients and the extend of hydrothermal alteration. Generalizations about the relationship between the compositions of intermediate and silicic rocks and plate tectonic setting, therefore, should be avoided.  相似文献   

7.
Matrix glass and melt inclusions in phenocrysts from pantellerite lavas of the Boseti volcanic complex, Ethiopia, record extreme fractionation of peralkaline silicic magma, with Al2O3 contents as low as 2.3?wt.%, FeO* contents up to 17?wt.% and SiO2 contents ~65?wt.%. The new data, and published data for natural and experimental glasses, suggest that the effective minimum composition for peralkaline silicic magmas has ~5?wt.% Al2O3, 13?wt.% FeO* and 66?±?2?wt.% SiO2. The dominant fractionating assemblage is alkali feldspar?+?fayalite?+?hedenbergite?+?oxides?±?quartz. Feldspar – melt relationships indicate that the feldspar is close to the minimum on the albite-orthoclase solid solution loop through the entire crystallization history. There is petrographic, mineralogical and geochemical evidence that magma mixing may have been a common process in the Boseti rhyolites.  相似文献   

8.
The Were Ilu ignimbrites are unlike other Oligocene rhyolites from the Ethiopian continental flood basalt province, in that they consist of plagioclase (An19–54), augite, pigeonite and Ti-magnetite, instead of anorthoclase, sodic sanidine, aegirine-augite and ilmenite. The minerals occur as (micro-)phenocrysts isolated within a glassy matrix or forming gabbroic and dioritic cumulophyric clots. Plagioclase is partially re-melted (sieve-textures with infilling glass). It is zoned with sudden changes in composition. However, the bulk zoning is normal with An-rich core (An45–54) and more sodic rim (An19–28). Ba and Sr concentration profiles of two plagioclase phenocrysts show a bulk rimward increase with compositions ranging from 250 ppm to 1,060 ppm and from 400 ppm to 1,590 ppm, respectively. The matrix glass has low CaO content (0.1–0.5 wt.%), a peralkalinity index of 0.79–1.04 and average Sr and Ba contents of 48±22 and 525±129 ppm, respectively. Geochemical modelling of Ba and Sr zoning profiles of plagioclase, based on experimental constraints, suggests that the cumulophyric clots can be derived from fractional crystallisation associated with limited assimilation (8 wt.%) from melts slightly less evolved than their rhyolitic matrix glass. These clots are not witnesses of intermediate magmas allowing the Daly Gap to be filled, but are cumulates differentiated from rhyodacitic melt. This indicates that parental magmas were stored in crustal magma chambers where they differentiated before being erupted at the surface.  相似文献   

9.
 Pleistocene-Holocene volcanism in the Jalisco block of western Mexico is confined to two conspicuous grabens, where potassic eruptives range from absarokites (48–52% SiO2) and minettes (49–54% SiO2) through basaltic andesites (53–57% SiO2), the most voluminous type, to andesites and their lamprophyric equivalent spessartite (58–62% SiO2); there are no contemporary rhyolitic rocks. This suite has high concentrations of Mg, Cr (<550 ppm) and Ni (<450 ppm) accompanied by large concentrations of K, P, Ba (<4000 ppm) and Sr (<5000 ppm) and elements such as LREE and Zr (<600 ppm). No combination of crystal fractionation and/or crustal contamination can reproduce the compositional range of these magmas, which nevertheless are believed to be genetically related because of their proximity in time and space. Hydrous minerals in the lamprophyres and the typical absence of plagioclase phenocrysts in both basaltic andesites and andesites reflect the relatively high concentrations of water in the magmas, which suppressed the crystallisation of feldspar. Experimental verification of the minimal amounts of water required to reproduce the phenocryst assemblages in selected rocks range from 3.5 to 6%. During ascent in a volcanic conduit, andesitic magma may lose water and consequently precipitate plagioclase, or it may ascend more rapidly, retaining more of its initial water, which stabilises phenocrysts of hornblende at the expense of plagioclase. Our estimates of water concentrations, which are consistent with the various low pressure phenocryst assemblages, will be minimal for the magmas in their source regions, and the process of magmatic dewatering on ascent may be typical in well established volcanic conduits. In accord with the compositions of phenocrystic olivine in the basaltic andesites and the minettes, the values of FeO and Fe2O3 of the bulk lavas and scoriae are demonstrably pristine. As a consequence, there are two characteristic features of the Mascota suite: the high range of relative oxygen fugacities (ΔNNO=1–5) and the high Mg# (MgO/MgO+FeO) that ranges from 0.70 to 0.91 (with only one andesite as low as 0.66). From the evidence of phlogopite phenocrysts, a partial melt involving phlogopite would have a higher Mg# than one from olivine (Fo90) and pyroxene alone. As the Mascota series shows a correlation between K2O and Mg#, we conclude that it was generated by partial fusion of the mantle wedge, with a variable contribution of phlogopite and apatite from veins throughout the lherzolitic assemblage. In conformity with an origin by varying increments of partial fusion of a phlogopite-bearing mantle, all incompatible elements vary linearly with Ti (or K) as if phlogopite (+apatite) in the source dominated their contribution to the partial melts. Fluids from dehydration of the subducting slab presumably deposit hydrous and other minerals in veins in the mantle wedge and also increase its redox state. As the Mascota volcanism occurs in grabens closer to the trench than the main andesite arc, it is concluded that the eruption of these small volumes of hydrous magmas require the tectonically favored ascent paths offered by the extensional grabens to reach the surface from their mantle sources. Received: 24 January 1995 / Accepted: 21 February 1996  相似文献   

10.
The rhyolite of Little Glass Mountain (73–74% SiO2) is a single eruptive unit that contains inclusions of quenched andesite liquid (54–61% SiO2) and partially crystalline cumulate hornblende gabbro (53–55% SiO2). Based on previous studies, the quenched andesite inclusions and host rhyolite lava are related to one another through fractional crystallization and represent an example of a fractionation-generated composition gap. The hornblende gabbros represent the cumulate residue associated with the rhyolite-producing and composition gap-forming fractionation event. This study combines textural (Nomarski Differential Interference Contrast, NDIC, imaging), major element (An content) and trace element (Mg, Fe, Sr, K, Ti, Ba) data on the style of zonation of plagioclase crystals from representative andesite and gabbro inclusions, to assess the physical environment in which the fractionation event and composition gap formation took place. The andesite inclusions (54–61% SiO2) are sparsely phyric with phenocrysts of plagioclase, augite and Fe-oxide±olivine, +/–orthopyroxene, +/–hornblende set within a glassy to crystalline matrix. The gabbro cumulates (53–55% SiO2) consist of an interconnected framework of plagioclase, augite, olivine, orthopyroxene, hornblende and Fe-oxide along with highly vesicular interstitial glass (70–74% SiO2). The gabbros record a two-stage crystallization history of plagioclase+olivine+augite (Stage I) followed by plagioclase+orthopyroxene+ hornblende+Fe-oxide (Stage II). Texturally, the plagioclase crystals in the andesite inclusions are characterized by complex, fine-scale oscillatory zonation and abundant dissolution surfaces. Compositionally (An content) the crystals are essentially unzoned from core-to-rim. These features indicate growth within a dynamic (convecting?), reservoir of andesite magma. In contrast, the plagioclase crystals in the gabbros are texturally smooth and featureless with strong normal zonation from An74 at the core to around An30. K, and Ba abundances increase and Mg abundances decrease steadily towards the rim. Ti, Fe, and Sr abundances increase and then decrease towards the rim. The trace element variations are fully consistent with the two-stage crystallization sequence inferred from the gabbro mineralogy. These results indicate progressive closed-system in situ crystallization in a quiescent magmatic boundary layer environment located along the margins of the andesite magma body. The fractional crystallization that generated the host rhyolite lava is one of inward solidification of a crystallizing boundary layer followed by melt extraction and accumulation of highly evolved interstitial liquid. This mechanism explains the formation of the composition gap between parental andesite and rhyolite magma compositions.  相似文献   

11.
St. Kitts lies in the northern Lesser Antilles, a subduction-related intraoceanic volcanic arc known for its magmatic diversity and unusually abundant cognate xenoliths. We combine the geochemistry of xenoliths, melt inclusions and lavas with high pressure–temperature experiments to explore magma differentiation processes beneath St. Kitts. Lavas range from basalt to rhyolite, with predominant andesites and basaltic andesites. Xenoliths, dominated by calcic plagioclase and amphibole, typically in reaction relationship with pyroxenes and olivine, can be divided into plutonic and cumulate varieties based on mineral textures and compositions. Cumulate varieties, formed primarily by the accumulation of liquidus phases, comprise ensembles that represent instantaneous solid compositions from one or more magma batches; plutonic varieties have mineralogy and textures consistent with protracted solidification of magmatic mush. Mineral chemistry in lavas and xenoliths is subtly different. For example, plagioclase with unusually high anorthite content (An≤100) occurs in some plutonic xenoliths, whereas the most calcic plagioclase in cumulate xenoliths and lavas are An97 and An95, respectively. Fluid-saturated, equilibrium crystallisation experiments were performed on a St. Kitts basaltic andesite, with three different fluid compositions (XH2O = 1.0, 0.66 and 0.33) at 2.4 kbar, 950–1025 °C, and fO2 = NNO ? 0.6 to NNO + 1.2 log units. Experiments reproduce lava liquid lines of descent and many xenolith assemblages, but fail to match xenolith and lava phenocryst mineral compositions, notably the very An-rich plagioclase. The strong positive correlation between experimentally determined plagioclase-melt KdCa–Na and dissolved H2O in the melt, together with the occurrence of Al-rich mafic lavas, suggests that parental magmas were water-rich (> 9 wt% H2O) basaltic andesites that crystallised over a wide pressure range (1.5–6 kbar). Comparison of experimental and natural (lava, xenolith) mafic mineral composition reveals that whereas olivine in lavas is predominantly primocrysts precipitated at low-pressure, pyroxenes and spinel are predominantly xenocrysts formed by disaggregation of plutonic mushes. Overall, St. Kitts xenoliths and lavas testify to mid-crustal differentiation of low-MgO basalt and basaltic andesite magmas within a trans-crustal, magmatic mush system. Lower crustal ultramafic cumulates that relate parental low-MgO basalts to primary, mantle -derived melts are absent on St. Kitts.  相似文献   

12.
Stratigraphically important Quaternary rhyolitic tephra deposits that erupted from the Okataina and Taupo volcanic centers in New Zealand can be geochemically identified using the FeO and MgO contents of their biotite phenocrysts. The FeO/MgO ratio in biotite does not correlate with FeO/MgO in the coexisting glass phase so that tephra beds with similar glass compositions can be discriminated by their different biotite compositions. Some individual tephra deposits display sequential changes in biotite composition that allow separate phases of the eruption to be identified, greatly increasing the potential precision for correlation. In addition, devitrified lavas that are unsuitable for glass analysis can be correlated to coeval tephra deposits by their biotite compositions. Biotite is common in high-K2O (>4 wt%) tephra beds and is widely dispersed in ash plumes because of its platy form, thus making it important in correlation studies.  相似文献   

13.
Calculated mineral equilibria are used to account for the formation of sapphirine–plagioclase, spinel–plagioclase and corundum–plagioclase symplectites replacing kyanite in quartz–plagioclase–garnet–kyanite granulite facies gneisses from the Southern Domain of the Athabasca granulite terrane, a segment of the Snowbird tectonic zone in northern Saskatchewan, Canada. Metamorphic conditions of >14 kbar and 800 °C are established for the high pressure, garnet–kyanite assemblage using constraints from P–T pseudosections and Zr‐in‐rutile thermometry. Replacement of kyanite by symplectites reflects the reaction of kyanite with the matrix following near‐isothermal decompression to <10 kbar. The chemical potential gradients developed between the kyanite and the matrix led to diffusion that attempted to flatten the gradients, kyanite persisting as a stable phase while it is consumed by symplectite from its edge. In this local equilibrium model, the mineral and mineral compositional spatial relationships are shown to correspond to paths in μ(Na2O)–μ(CaO)–μ(K2O)–μ(FeO)–μ(MgO) in the model chemical system, Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2 (NCKFMAS), with SiO2 and Al2O3 taken to be completely immobile. The values of μ(Na2O) and μ(CaO) are constrained by fixing P–T conditions and choosing appropriate μ(Na2O) and μ(CaO) values that correspond to the observed plagioclase compositions. μ(FeO)–μ(MgO) diagrams show the corresponding spatial relationships with kyanite and the symplectite phases. These results demonstrate that the replacement of kyanite by sapphirine–plagioclase and spinel–plagioclase appears to be metastable with respect to replacement by corundum–plagioclase. Replacement by corundum–plagioclase does also occur, apparently overprinting pre‐existing symplectite and also kyanite. Ignoring corundum, the resulting diagrams account for the spatial relationships and compositions observed in the spinel–plagioclase and sapphirine–plagioclase symplectites. They are predicted to occur over both a wide range of P–T conditions (6–11 kbar, 650–850 °C) and plagioclase compositions (XAn = 0.5–0.9). The wide range of P–T conditions that may result in identical spatial and compositional relationships suggests that such reaction textures may be of limited use in accurately quantifying the P–T conditions of retrograde metamorphism.  相似文献   

14.
Three complete analyses and one partial analysis are recorded of unzoned sodic anorthites having compositions An94,9, An94,0, An92,7 and An92 (mol per cent). Although crystallising at a high temperature the K and Sr contents are low. X-ray parameters show the material to be in a relatively high structural state comparable with material from Japanese volcanics. Available data indicate small but real differences in optical parameters between sodic anorthites of volcanic and plutonic origin but this needs further clarification. Refractive indices and specific gravities of the analysed samples are also recorded. Anorthite (An90-An100) occurs widely as phenocrysts in basic lavas and as crystal ejecta in the calc-alkaline rock suites of the circumoceanic islands. Anorthite can be precipitated from sub-alkaline magmas under certain conditions and does not require the postulation of special magmas or of contamination. It is apparent that factors other than the normative feldspar composition of the magma determine the composition of the plagioclase precipitated. Evidence from experimental work on synthetic systems indicates that an increase in both hydrostatic pressure and water vapour pressure will influence the plagioclase composition but it is not possible to evaluate these effects fully at the present time. The occurrence of anorthite is interpreted as evidence of extensive crystal accumulation at depth from fractionating basic magmas in circumoceanic calc-alkaline suites.  相似文献   

15.
《International Geology Review》2012,54(10):1179-1190
Andesite magmatism plays a major role in continental crustal growth, but its subduction-zone origin and evolution is still a hotly debated topic. Compared with whole-rock analyses, melt inclusions (MIs) can provide important direct information on the processes of magma evolution. In this article, we synthesize data for melt inclusions hosted by phenocrysts in andesites, extracted from the GEOROC global compilation. These data show that melt inclusions entrapped by different phenocrysts have distinct compositions: olivine-hosted melt inclusions have basalt and basaltic andesite compositions, whereas melt inclusions in clinopyroxene and othopyroxene are mainly dacitic to rhyolitic. Hornblende-hosted melt inclusions have rhyolite composition. The compositions of melt inclusions entrapped by plagioclase are scattered, spanning from andesite to rhyolite. On the basis of the compositional data, we propose a mixing model for the genesis of the andesite, and a two-chamber mechanism to account for the evolution of the andesite. First, andesite melt is generated in the lower chamber by mixing of a basaltic melt derived from the mantle and emplaced in the lower crust with a felsic melt resulting from partial melting of crustal rocks. Olivine and minor plagioclase likely crystallize in the lower magma chamber. Secondly, the andesite melt ascends into the upper chamber where other phenocrysts crystallize. According to SiO2-MgO diagrams of the MIs, evolution of the andesite in the upper chamber can be subdivided into two distinct stages. The early stage (I) is characterized by a phenocrystal assemblage of clinopyroxene + othopyroxene + plagioclase, whereas the late stage (II) is dominated by crystallization of plagioclase + hornblende.  相似文献   

16.
Chichi-jima, Bonin Islands, consists of dominant Eocene submarine volcanic rocks, comprising boninites, andesites and dacites, and subordinate sedimentary rocks. The dacites occur frequently in breccias and pillows overlying a boninite pillow lava sequence. The boninite pillows are intruded by a multiple dike, in which a core boninite is chilled against outer dacites. A density-stratified chamber may have been capped by a dacite magma. The dacites, which can be divided into quartz dacite and quartz-free dacite, are differentiates from the boninite-forming magmas, because they vary continuously in composition from boninites through andesites. The quartz dacites, corresponding to rhyolite in SiO2, are lower in Na2O and K2O than most orogenic dacites. Some of the dacites are characterized by ferropigeonite (Wo7–16En23–39Fs68-54) phenocrysts and are clearly ferrodacite, producing variable amounts of Fs-rich normative pyroxenes. The relation of SiO2 to total FeO/MgO ratio indicates that many of both types of dacites, with glasses in boninites, are enriched in total FeO despite the strong calc-alkalic affinity of boninites. The crystallization temperature of ferropigeonite with Mg value 30 in a quartz dacite is estimated to be 900° C and that in a quartz-free dacite to be 1050° C, which are unusually high for differentiated silicic rocks. Some Chichi-jima rocks are fresh, having a low ratio of Fe2O3 to FeO. On the basis of the experimental study of magmatic ferric-ferrous equilibria at 1 bar, the oxygen fugacities are calculated as 10–13.6 bars at 900° C for a ferropigeonite quartz dacite and 10–8.9 bars at 1200° C for a boninite with the lowest Fe3+/Fe2+. Both values lie below the quartz-fayalite-magnetite buffer line. The boninite series volcanic rocks have preserved low oxygen fugacities as well as high temperatures until the latest differentiation stage. The ferropigeonite phenocrysts have crystallized from the dacite magmas under the conditions of moderately high temperatures, very low oxygen fugacities and high total FeO and SiO2 concentrations.  相似文献   

17.
Fe-rich tholeiitic liquids are preserved as chilled pillows and as the chilled base of a 27 meter thick macrorhythmic layer in the Pleasant Bay mafic-silicic layered intrusion. The compositions of olivine (Fo1) and plagioclase (An13−8) in these extremely fine grained rocks suggest that they represent nearly end stage liquids that formed by fractionation of tholeiitic basalt. Their major element compositions (∼17.5 wt% FeOT and 54 wt%SiO2) closely resemble highly evolved glasses in the Loch Ba ring dike and some recent estimates of end-stage liquids related to the Skaergaard layered intrusion, and are consistent with recent experimental studies of tholeiite fractionation. Their trace element compositions are consistent with extensive earlier fractionation of plagioclase, olivine, clinopyroxene, ilmenite, magnetite and apatite. The mineral assemblage of the chilled rocks (olivine, clinopyroxene, quartz, ilmenite and magnetite), apatite saturation temperatures, and very low Fe3+/Fe2+indicate conditions of crystallization at temperatures of about 950 °C and f O 2 about two log units below FMQ. Cumulates that lie about 3 meters above the chilled base of the macrorhythmic layer contain cumulus plagioclase, olivine, clinopyroxene, ilmenite, apatite and zircon. This mineral assemblage and the Fe-Mg ratio in clinopyroxene cores suggest that this cumulate was in equilibrium with a liquid having a composition identical to that of the chilled margin which lies directly beneath it. The high FeOT and low SiO2 concentrations of this cumulate (23.3 and 45.8 wt%, respectively) are comparable to those in late stage cumulates of the Skaergaard and Kiglapait intrusions. This association of a chilled liquid and cumulate in the Pleasant Bay intrusion suggests that late stage liquids in tholeiitic layered intrusions may have been more SiO2-rich than field-based models suggest and lends support to recent experimental studies of tholeiite fractionation at low f O2 which indicate that saturation of an Fe-Ti oxide phase should cause FeOT to decrease in the remaining liquid. Received: 17 January 1997 / Accepted: 10 June 1997  相似文献   

18.
The Cindery Tuff is an unusual tephra fall deposit that contains evidence for the mixing of basaltic and rhyolitic liquids prior to eruption. It contains clear rhyolitic glass shards together with brown basaltic glass spheres and a broadly bimodal phenocryst assemblage. Brown glasses are ferrobasaltic in composition and are similar to the voluminous Pliocene tholeiites of the surrounding west-central Afar volcanic field; both are enriched in the light rare earth and incompatible elements and possess higher 87Sr/86Sr and lower 143Nd/144Nd than MORB. Rhyolitic glasses are subalkaline and, compared to the basaltic glasses, are strongly depleted in the compatible elements and enriched in the incompatible elements. Both glass types have similar incompatible element and isotopic ratios, and with the rhyolite glass showing a 2-fold parallel enrichment in rare earth element abundances over the basaltic glass. These observations suggest that the two glasses are genetically related.Rare glasses with intermediate compositions occur as phenocryst melt inclusions, as mantles on phenocrysts and as free pumice clasts. Their major element contents do not point to an origin by simple hybrid mixing of the basaltic and rhyolitic melts. Rather, major element mixing calculations indicate formation of the intermediate and rhyolite melts by fractionation of the observed phenocryst assemblage, using a starting composition of the observed basaltic glass. Model calculations from trace element data, though lacking from the intermediate glasses, support fractional crystallization. The bimodal mineral assemblage argues against an immiscible liquid origin for the contrasting glass compositions.  相似文献   

19.
Relicts of silicate-iron fluid media were found in the Early Cretaceous rhyolites of the Nilginskaya depression, Central Mongolia. They are localized in matrix cavities and in the inclusions in quartz and sanidine phenocrysts. The mineral composition of rhyolites and aggregates of silicate-iron phases has been studied. Calculations showed that crystallization of ilmenite and magnetite in a matrix occurred within a temperature range of 593–700°C and oxygen fugacity $\Delta \log f_{O_2 }$ NNO from ?2.29 to 1.68. The average compositions of the rhyolites and residual glasses in melt inclusions (MI) have A/CNK index of 1.03–1.05. The compositions of MI glasses define a trend from agpaitic to plumasitic types (A/NK and A/CNK change from 0.8–0.9 to 1.1–1.2). According to calculations, the rhyolitic melt was solidified at 640–750°C. Based on cathodoluminescent study, inclusions with silicate-iron phases are observed separately or together with MI in the early and intermediate growth zones of quartz and sanidine crystals. Aggregates found in the inclusions are represented by loose matter consisting of silica with small admixture of Al, Na, K, and Cl; silicate-iron aggregates with wide variations of Fe and Si; essentially Fe-rich micaceous and mica-silicate-iron aggregates. They usually have variable composition (wt %): 30–60 SiO2, 10–25 Al2O3, 10–30 FeO, up to 3 TiO2, 1.5–4 MgO, up to 3 CaO, up to 3 Na2O, up to 3 K2O, and up to 4 P2O5. They presumably contain up to 10–15 wt % H2O. Some inclusions comprise large segregations of siderophyllite enriched in F (3–10 wt %) and Cl (0.1–3.3 wt %). Evolution of the rhyolitic melt from magmatic chamber to its vitrification after ejection led to the decrease of F content. The highest F content (1–1.8 wt %) is typical of MI glasses, while the lowest content (0.05–0.1 wt %) was found in the glassy matrix and rhyolitic samples. The melt degassing was accompanied by the release of F-rich fluid containing up to 1.3 wt % F (based on partition coefficient fluid/meltDF) or 0.2–0.8 mol/dm3 HF (based on composition of micas from matrix and inclusions). Segregations of silicate-iron media existed in the rhyolitic magma. During formation of rhyolitic pile, these media were in a liquid state. The silicate-iron fluid media captured in MI could not be true fluids or silicate melts. They were likely formed during fluid-magmatic interaction and transformation of fluid phases of different density (vapor and liquid true solutions) that existed in a F-rich melt. The high concentrations of F and Cl and elevated alkalinity of fluids contribute their enrichment in silica and other elements, which could lead to the formation of hydrosilicate liquids. It is suggested that such liquids (gels) in dispersed (colloidal) state extracted F and many trace elements (P, Ti, Mg, Ca, REE, As, Nb, Th, and V) from surrounding rhyolitic magma.  相似文献   

20.
An experimental investigation of plagioclase crystallization in broadly basaltic/andesitic melts of variable Ca# (Ca/(Ca+Na)*100) and Al# (Al/(Al+Si)*100) values and H2O contents has been carried out at high pressures (5 and 10 kbar) in a solid media piston-cylinder apparatus. The H2O contents of glasses coexisting with liquidus or near-liquidus plagioclases in each experiment were determined via an FTIR spectroscopic technique. This study has shown that melt Ca# and Al#, H2O content and crystallization pressure all control the composition of liquidus plagioclase. Increasing melt Ca# and Al# increase An content of plagioclase, whereas the effect of increasing pressure is the opposite. However, the importance of the role played by each of these factors during crystallization of natural magmas varies. Melt Ca# has the strongest control on plagioclase An content, but melt Al# also exerts a significant control. H2O content can notably increase the An content of plagioclase, up to 10 mol % for H2O-undersaturated melts, and 20 mol % for H2O-saturated melts. Exceptionally calcic plagioclases (up to An100) in some primitive subduction-related boninitic and related rocks cannot be attributed to the presence of the demonstrated amounts of H2O (up to 3 wt %). Rather, they must be due to the involvement of extremely refractory (CaO/Na2O>18) magmas in the petrogenesis of these rocks. Despite the refractory nature of some primitive MORB glasses, none are in equilibrium with the most calcic plagioclase (An94) found in MORB. These plagioclases were likely produced from more refractory melts with CaO/Na2O = 12–15, or from melts with exceptionally high Al2O3(>18%). Magmas of appropriate compositions to crystallize these most calcic plagioclases are sometimes found as melt inclusions in near liquidus phenocrysts from these rocks, but are not known among wholerock or glass compositions. The fact that such melts are not erupted as discrete magma batches indicates that they are effectively mixed and homogenized with volumetrically dominant, less refractory magmas. The high H2O contents (∼ 6 wt%) in some high-Al basaltic arc magmas may be responsible for the existence of plagioclases up to An95 in arc lavas. However, an alternative possibility is that petrogenesis involving melts with abnormally high CaO/Na2O values (> 8) may account for the presence of highly anorthitic plagioclases in these rocks. Received: 31 August 1993 / Accepted: 20 May 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号