首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Northwest Africa (NWA) 1950 is a new member of the lherzolitic shergottite clan of the Martian meteorites recently found in the Atlas Mountains. The petrological, mineralogical, and geochemical data are very close to those of the other known lherzolitic shergottites. The meteorite has a cumulate gabbroic texture and its mineralogy consists of olivine (Fo66 to Fo75), low and high‐Ca pyroxenes (En78Fs19Wo2‐En60Fs26W14; En53Fs16Wo31‐En45Fs14Wo41), and plagioclase (An57Ab41Or1 to An40Ab57Or3; entirely converted into maskelynite during intense shock metamorphism). Accessory minerals include phosphates (merrillite), chromite and spinels, sulfides, and a glass rich in potassium. The oxygen isotopic values lie on the fractional line defined by the other SNC meteorites (Δ17O = 0.312 %o). The composition of NWA 1950 is very similar to the other lherzolitic shergottites and suggests an origin from the same magmatic system, or at least crystallization from a close parental melt. Cosmogenic ages indicate an ejection age similar to those of the other lherzolitic shergottites. The intensity of the shock is similar to that observed in other shergottites, as shown by the occurrence of small melt pockets containing glass interwoven with stishovite.  相似文献   

2.
Abstract— A stony meteorite fell near the Fuc Bin village, Vietnam, in July, 1971. Based on optical microscopy, scanning electron microscopy and electron probe microanalysis, the meteorite is classified as an L5 chondrite that contains olivine (Fa23.6), low-Ca pyroxene (Fs20.3 Wo1.3), high-Ca pyroxene (Fs7.5 Wo44.2), plagioclase (Ab83.8 Or5), chlorapatite, merrillite and opaque minerals: chromite, troilite, kamacite, taenite, tetrataenite and native copper.  相似文献   

3.
Abstract— Based on optical microscopy and electron microprobe analysis, Linum is classified as an L6b chondrite that contains olivine (Fa24), orthopyroxene (Fs20), clinopyroxene (Wo45En47Fs8), plagioclase (An10Ab84Or6), nickel-iron, troilite, chromite and accessory amounts of chlorapatite and whitlockite.  相似文献   

4.
The Loop meteorite was found in 1962 in Gaines County, Texas, at a location very close to that where the Ashmore chondrite was found in 1969. The two specimens were assumed to be fragments of the same meteorite. The Loop meteorite is a type L6 chondrite composed of olivine (Fo75.4Fa24.6), orthopyroxene (En77.6Wo1.5Fs20.9), clinopyroxene (En47.5Wo45.1Fs7.4), plagioclase (Ab84.3Or5.5An10.2), Fe-Ni metal, troilite, and chromite. Fe-Ni metal is represented by kamacite (5.8-6.4 wt % Ni, 0.88-1.00 wt % Co), taenite (30.0–52.9 wt % Ni, 0.16-0.34 wt % Co), and plessite (16.8–28.5 wt % Ni, 0.38-0.54 wt % Co). Native copper occurs as rare inclusions in Fe-Ni metal. Both chondrules and matrix have similar mineral compositions. The mineral chemistry of the Loop meteorite is quite different from that of the Ashmore, which was classified as an H5 chondrite by Bryan and Kullerud (1975). Therefore, the Ashmore and Loop meteorites are two different chondrites, even though they were recovered from the same geographic location.  相似文献   

5.
Abstract— The Yaringie Hill meteorite is a new H5 ordinary chondrite found in the Gawler Ranges, South Australia. The meteorite, which shows only minor signs of terrestrial weathering, is predominantly composed of olivine (Fa17.2), orthopyroxene (Fs15.1Wo1.1), and three distinct phases of nickeliferous iron metal (kamacite, taenite, tetrataenite). Other minerals include troilite, plagioclase (Ab81An16Or3), clinopyroxene (En52Wo42Fs6), chlorapatite, merrillite, ilmenite, and native copper. Three types of spinel with distinctive textures (coarse, skeletal aggregates, rounded aggregates) and with compositions close to the join MgAl2O4‐FeCr2O4 are also present. Chondrules within the Yaringie Hill meteorite, which often have poorly defined boundaries, are placed in a recrystallized matrix. Shock indicators suggest that the meteorite experienced only weak shock metamorphism (S3).  相似文献   

6.
We report on the discovery of a new shergottite from Tunisia, Ksar Ghilane (KG) 002. This single stone, weighing 538 g, is a coarse‐grained basaltic shergottite, mainly composed of maskelynitized plagioclase (approximately 52 vol%) and pyroxene (approximately 37 vol%). It also contains Fe‐rich olivine (approximately 4.5 vol%), large Ca‐phosphates, including both merrillites and Cl‐apatites (approximately 3.4 vol%), minor amounts of silica or SiO2‐normative K‐rich glass, pyrrhotite, Ti‐magnetite, ilmenite, and accessory baddeleyite. The largest crystals of pyroxene and plagioclase reach sizes of approximately 4 to 5 mm. Pyroxenes (Fs26–96En5–50Wo2–41). They typically range from cores of about Fs29En41Wo30 to rims of about Fs68En14Wo17. Maskelynite is Ab41–49An39–58Or1–7 in composition, but some can be as anorthitic as An93. Olivine (Fa91–96) occurs mainly within symplectitic intergrowths, in paragenesis with ilmenite, or at neighboring areas of symplectites. KG 002 is heavily shocked (S5) as indicated by mosaic extinction of pyroxenes, maskelynitized plagioclase, the occurrence of localized shock melt glass pockets, and low radiogenic He concentration. Oxygen isotopes confirm that it is a normal member of the SNC suite. KG 002 is slightly depleted in LREE and shows a positive Eu anomaly, providing evidence for complex magma genesis and mantle processes on Mars. Noble gases with a composition thought to be characteristic for Martian interior is a dominant component. Measurements of 10Be, 26Al, and 53Mn and comparison with Monte Carlo calculations of production rates indicate that KG 002 has been exposed to cosmic rays most likely as a single meteoroid body of 35–65 cm radius. KG 002 strongly resembles Los Angeles and NWA 2800 basaltic shergottites in element composition, petrography, and mineral chemistry, suggesting a possible launch‐pairing. The similar CRE ages of KG 002 and Los Angeles may suggest an ejection event at approximately 3.0 Ma.  相似文献   

7.
The Beaver-Harrison, Utah chondrite (find July 24, 1979), a single, shock-veined stone of 925 grams, consists of major olivine (Fa25.0), low-Ca pyroxene (En77.3Fs21.1Wo1.6) and metallic nickel-iron; minor troilite and plagioclase (Ab82.6An11.1Or6.3), accessory high-Ca pyroxene (En47.0Fs8.5Wo44.5), chromite (Cm8.7Sp10.6Uv9.4Pc0.6Hc0.7), chlorapatite and whitlockite; and hydrous ferric oxide of terrestrial weathering origin. Mineral compositions indicate L-group classification, and homogeneity of minerals, highly recrystallized texture and presence of clear plagioclase suggest that the meteorite belongs to petrologic type 6.  相似文献   

8.
Abstract— The Frontier Mountain (FRO) 93001 meteorite is a 4.86 g fragment of an unshocked, medium‐ to coarse‐grained rock from the acapulcoite‐lodranite (AL) parent body. It consists of anhedral orthoenstatite (Fs13.3 ± 0.4Wo3.1 ± 0.2), augite (Fs6.1 ± 0.7Wo42.3 ± 0.9; Cr2O3 = 1.54 ± 0.03), and oligoclase (Ab80.5 ± 3.3Or3.1 ± 0.6) up to >1 cm in size enclosing polycrystalline aggregates of fine‐grained olivine (average grain size: 460 ± 210 μm) showing granoblastic textures, often associated with Fe,Ni metal, troilite, chromite (cr# = 0.91 ± 0.03; fe# = 0.62 ± 0.04), schreibersite, and phosphates. Such aggregates appear to have been corroded by a melt. They are interpreted as lodranitic xenoliths. After the igneous (the term “igneous” is used here strictly to describe rocks or minerals that solidified from molten material) lithology intruding an acapulcoite host in Lewis Cliff (LEW) 86220, FRO 93001 is the second‐known silicate‐rich melt from the AL parent asteroid. Despite some similarities, the silicate igneous component of FRO 93001 (i.e., the pyroxene‐plagioclase mineral assemblage) differs in being coarser‐grained and containing abundant enstatite. Melting‐crystallization modeling suggests that FRO 93001 formed through high‐degree partial melting (≥35 wt%; namely, ≥15 wt% silicate melting and ?20 wt% metal melting) of an acapulcoitic source rock, or its chondritic precursor, at temperatures ≥1200 °C, under reducing conditions. The resulting magnesium‐rich silicate melt then underwent equilibrium crystallization; prior to complete crystallization at ?1040 °C, it incorporated lodranitic xenoliths. FRO 93001 is the highest‐temperature melt from the AL parent‐body so far available in laboratory. The fact that FRO 93001 could form by partial melting and crystallization under equilibrium conditions, coupled with the lack of quench‐textures and evidence for shock deformation in the xenoliths, suggests that FRO 93001 is a magmatic rock produced by endogenic heating rather than impact melting.  相似文献   

9.
The Jezersko meteorite is a newly confirmed stony meteorite found in 1992 in the Karavanke mountains, Slovenia. The meteorite is moderately weathered (W2), indicating short terrestrial residence time. Chondrules in partially recrystallized matrix are clearly discernible but often fragmented and have mean diameter of 0.73 mm. The meteorite consists of homogeneous olivine (Fa19.4) and low‐Ca pyroxenes (Fs16.7Wo1.2), of which 34% are monoclinic, and minor plagioclase (Ab83An11Or6) and Ca‐pyroxene (Fs6Wo45.8). Troilite, kamacite, zoned taenite, tetrataenite, chromite, and metallic copper comprise about 16.5 vol% of the meteorite. Phosphates are represented by merrillite and minor chlorapatite. Undulatory extinction in some olivine grains and other shock indicators suggests weak shock metamorphism between stages S2 and S3. The bulk chemical composition generally corresponds to the mean H chondrite composition. Low siderophile element contents indicate the oxidized character of the Jezersko parent body. The temperatures recorded by two‐pyroxene, olivine‐chromite, and olivine‐orthopyroxene geothermometers are 854 °C, 737–787 °C, and 750 °C, respectively. Mg concentration profiles across orthopyroxenes and clinopyroxenes indicate relatively fast cooling at temperatures above 700 °C. A low cooling rate of 10 °C Myr?1 was obtained from metallographic data. Considering physical, chemical, and mineralogical properties, meteorite Jezersko was classified as an H4 S2(3) ordinary chondrite.  相似文献   

10.
Grove Mountains (GRV) 020090 is a “lherzolitic” shergottite found in the Grove Mountains, Antarctica. It exhibits two distinct textures: poikilitic and nonpoikilitic. In poikilitic areas, large pyroxene oikocrysts enclose subhedral olivine and chromite chadacrysts. Pyroxene oikocrysts are zoned from pigeonite cores to augite rims. In nonpoikilitic areas, olivine, pyroxene, and interstitial maskelynite occur as major phases, and minor phases include chromite and merrillite. Compared with typical “lherzolitic” shergottites, GRV 020090 contains a distinctly higher abundance of maskelynite (19 vol%). Olivine and pyroxene are more ferroan (Fa28–40, En57–72Fs24–31Wo4–14 and En46–53Fs17–21Wo26–35), and maskelynite is more alkali‐rich (Ab43–65Or2–7). The major phases, whole‐rock (estimated) and fusion crust of GRV 020090, are relatively enriched in light rare earth elements (LREE), similar to those of the geochemically enriched basaltic shergottites, but distinct from those of LREE‐depleted “lherzolitic” shergottites. Combined with a high oxygen fugacity of log fO2 = QFM ? 1.41 ± 0.04 (relative to the quartz‐fayalite‐magnetite buffer), it is clear that GRV 020090 sampled from an oxidized and enriched mantle reservoir similar to those of other enriched shergottites. The calculated REE abundances and patterns of the melts in equilibrium with the cores of major phases are parallel to but higher than that of the whole rock, suggesting that GRV 020090 originated from a single parent magma and experienced progressive fractional crystallization in a closed system. The crystallization age recorded by baddeleyite is 192 ± 10 (2σ) Ma, consistent with the young internal isochron ages of enriched shergottites. Baddeleyite dating results further demonstrated that the young ages, rather than ancient ages (>4 Ga), appear to represent the crystallization of Martian surface lava flow. GRV 020090 shares many similarities with Roberts Massif (RBT) 04261/2, the first enriched “lherzolitic” shergottite. Detailed comparisons suggest that these two rocks are petrologically and geochemically closely related, and probably launch paired.  相似文献   

11.
Abstract— The Loxton meteorite is a single stone of 22 g found in South Australia in 1968. It has been classified as an L5 chondrite, shock facies ‘a,’ and contains olivine (Fa24), orthopyroxene (Fs21–22), clinopyroxene (Wo44.7En45.9Fs9.4), nickel-iron, troilite, chromite and chlorapatite.  相似文献   

12.
Abstract We report a new chondrite that fell in Hashima City in central Japan sometime during the period 1868–1912. The chondrite weighs 1110.64 g and exhibits distinct chondritic structure. Chondrules occupy 24 vol% of the stone and consist of olivine (average Fa17,8), low-Ca pyroxene (average Fs15,8 Wo0.9), devitrified glass and lesser amounts of oligoclase (ca. Ab80Or4), kamacite, taenite, troilite and chromian spinel. Matrix occupying 76 vol% of the stone consists of olivine, low-Ca pyroxene, kamacite, taenite, troilite, cryptocrystalline minerals and lesser amounts of chromian spinel and chlorapatite. Matrix minerals have the same compositions as those in chondrules. Mineral chemistry, bulk chemistry and magnetic properties indicate that Hashima is an H-group chondrite. Well-defined chondrules, scarcely recrystallized oligoclase and relatively small variations of olivine and low-Ca pyroxene compositions indicate that Hashima is of petrologic type 4.  相似文献   

13.
Abstract— We have performed a detailed petrologic and mineralogic study of two chondritic clasts from the polymict eucrite Lewis Cliff (LEW) 85300, and performed chemical analyses by INAA and RNAA on one of these. Petrologically, the clasts are identical and are composed of dispersed aggregates, chondrules and chondrule fragments supported by matrix. The aggregates and chondrules are composed of olivine (Fo100–45), orthopyroxene (Wo1–2En98–60), plus some diopside. The matrix consists of fine-grained olivine (Fo60–53), and lesser orthopyroxene and augite. Fine-grained saponite is common in the matrix. The bulk major element composition of the matrix is identical in both clasts and similar to that of CM, CO and CV chondrites. The bulk composition of the clast studied by INAA and RNAA shows unusual abundance patterns for lithophile, siderophile and chalcophile elements but is basically chondritic. The INAA/RNAA data preclude assignment of the LEW 85300,15 clast to any commonly accepted group of carbonaceous chondrite. The unusual rare earth element abundance pattern may, in part, be due to terrestrial alteration.  相似文献   

14.
The unusual achondrite Shergotty resembles terrestrial diabases, and textural and chemical evidence indicates pre-settling and post-settling crystallization of zoned augite (En48Fs19Wo33-En25Fs47Wo28) and pigeonite (En61Fs26Wo13-En21Fs61Wo18) coupled with late crystallization of plagioclase (Ab43An56/Or1-Ab56An41Or3: now shocked to maskelynite), titanomagnetite-ilmenite composite grains, mesostasis (normative Qz34Ab21An5Or38Fs2, assuming Fe as ferrous), whitlockite, pyrrhotite (Fe0.94S), fayalite (Fo10), baddeleyite and chlorapatite. The oxide compositions (Usp62Mt38, Al2O3 2.4, Cr2O3 0.8 wt %; Ilm95Hm5) indicate ~ 850 °C and log oxygen fugacity ? 14, while the occurrence of fayalite rims on mesostasis next to ilmenite indicates 890 °C. Bearing in mind experimental uncertainties, these data are consistent with late-stage crystallization under relatively high oxygen fugacity, as indicated by coexistence of fayalite, Ti-magnetite and a silica glass. The high alkali content of the maskelynite and mesostasis, coupled with the redox state, indicates that the Shergotty meteorite resembles terrestrial basalts more than any other meteorites. Nevertheless the absence of H2O, as shown by the occurrence of phosphorus in whitlockite rather than in hydroxylapatite, distinguish the Shergotty achondrite from typical terrestrial diabases. Whereas the FeO/MnO ratios of pyroxenes from the Moon, Earth and several differentiated meteorites are independent of FeO, the ratio for Shergotty pyroxenes changes from 30 to 40 with increasing FeO, and the linear trend extrapolates to 0.2 MnO for zero iron. Hence caution is needed in using FeO/MnO as a planetary indicator. For pyroxenes, Na is almost independent of Fe/Mg while Ti increases and Cr decreases with increasing Fe/Mg. Maskelynite contains 0.5–0.25 wt % K2O, 0.6 wt % FeO, 0.04 TiO2, 0.04–0.07 MgO, ~ 0.01 BaO and 0.02–0.03 P2O5. A bulk analysis calculated from the mode and compositions of the minerals matches quite well with two bulk chemical analyses but not with a third.  相似文献   

15.
Abstract— We report a previously undocumented set of high‐pressure minerals in shock‐induced melt veins of the Umbarger L6 chondrite. High‐pressure minerals were identified with transmission electron microscopy (TEM) using selected area electron diffraction and energy‐dispersive X‐ray spectroscopy. Ringwoodite (Fa30), akimotoite (En11Fs89), and augite (En42Wo33Fs25) were found in the silicate matrix of the melt vein, representing the crystallization from a silicate melt during the shock pulse. Ringwoodite (Fa27) and hollandite‐structured plagioclase were also found as polycrystalline aggregates in the melt vein, representing solid state transformation or melting with subsequent crystallization of entrained host rock fragments in the vein. In addition, Fe2SiO4‐spinel (Fa66‐Fa99) and stishovite crystallized from a FeO‐SiO2‐rich zone in the melt vein, which formed by shock melting of FeO‐SiO2‐rich material that had been altered and metasomatized before shock. Based on the pressure stabilities of the high‐pressure minerals, ringwoodite, akimotoite, and Ca‐clinopyroxene, the melt vein crystallized at approximately 18 GPa. The Fe2SiO4‐spinel + stishovite assemblage in the FeO‐SiO2‐rich melts is consistent with crystallization of the melt vein matrix at the pressure up to 18 GPa. The crystallization pressure of ?18 GPa is much lower than the 45–90 GPa pressure one would conclude from the S6 shock effects in melt veins (Stöffler et al. 1991) and somewhat less than the 25–30 GPa inferred from S5 shock effects (Schmitt 2000) found in the bulk rock.  相似文献   

16.
Abstract— ALH84001, originally classified as a diogenite, is a coarse-grained, cataclastic, orthopyroxenite meteorite related to the martian (SNC) meteorites. The orthopyroxene is relatively uniform in composition, with a mean composition of Wo3.3En69.4Fs27.3. Minor phases are euhedral to subhedral chromite and interstitial maskelynite, An31.1Ab63.2Or5.7, with accessory augite, Wo42.2En45.1Fs12.7, apatite, pyrite and carbonates, Cc11.5Mg58.0Sd29.4Rd1.1. The pyroxenes and chromites in ALH84001 are similar in composition to these phases in EETA79001 lithology A megacrysts but are more homogeneous. Maskelynite is similar in composition to feldspars in the nakhlites and Chassigny. Two generations of carbonates are present, early (pre-shock) strongly zoned carbonates and late (post-shock) carbonates. The high Ca content of both types of carbonates indicates that they were formed at moderately high temperature, possibly ~700 °C. ALH84001 has a slightly LREE-depleted pattern with La 0.67x and Lu 1.85x CI abundances and with a negative Eu anomaly (Eu/Sm 0.56x CI). The uniform pyroxene composition is unusual for martian meteorites, and suggests that ALH84001 cooled more slowly than did the shergottites, nakhlites or Chassigny. The nearly monomineralic composition, coarse-grain size, homogenous orthopyroxene and chromite compositions, the interstitial maskelynite and apatite, and the REE pattern suggest that ALH84001 is a cumulate orthopyroxenite containing minor trapped, intercumulus material.  相似文献   

17.
Abstract— The petrographic and chemical characteristics of a fresh Indian meteorite fall at Sabrum are described. Its mean mineral composition is defined by olivine (Fa31.4), orthopyroxene (Fs25.1,Wo2.0), clinopyroxene (Wo45En45.6Fs9.4) and plagioclase (An10.6Ab83.6Or5.8). The meteorite shows moderate shock features, which indicate that it belongs to the S4 category. Based on mineralogical and chemical criteria the meteorite is classified as an LL6 brecciated veined chondrite. Several cosmogenic radioisotopes (46Sc, 7Be, 54Mn, 22Na and 26Al), noble gas (He, Ne, Ar, Kr and Xe), nitrogen isotopes, and particle tracks density have been measured. Concentrations of cosmogenic 21Ne and 38Ar indicate that its cosmic‐ray exposure age is 24.8 Ma. Small amounts of trapped Kr and Xe, consistent with petrologic class 5/6, are present. The track density in olivines is found to be (1.3 ± 0.3) × 106/cm2. Activities of most of the short‐lived isotopes are lower than those expected from solar cycle variation. 22Na/26Al (1.12 ± 0.02) is found to be significantly anomalous, being ?25% lower than expected from the Climax neutron monitor data. These results indicate that the cosmic‐ray flux during the terminal segment of the meteoroid orbit was low. The activities of 26Al and 60Co and the track density indicate small meteoroid size with a radius ?15 cm.  相似文献   

18.
Nepheline and sodalite have been found in association with glass in a barred olivine chondrule from the Allende C3V meteorite. The major minerals of the chondrule are olivine (Fo80–88), bronzite (En85Fs12Wo3), and chromite. Olivine bars are separated by glass of nearly pure plagioclase composition (An81–99). Olivine composition is more Fe-rich than predicted by olivine-liquid equilibria (Fo96). Conditions of non-equilibrium are implied from this and the presence of plagioclase glass and small amounts of subcalcic diopside (En75Fs12Wo13) in the chondrule. The properties of this chondrule are consistent with liquid condensation, but melting of an amoeboid olivine aggregate or similar object could also have generated the chondrule-forming liquid. Nepheline and sodalite appear to have crystallized from this liquid under non-equilibrium conditions.  相似文献   

19.
Abstract– Metamorphosed clasts in the CV carbonaceous chondrite breccias Mokoia and Yamato‐86009 (Y‐86009) are coarse‐grained, granular, polymineralic rocks composed of Ca‐bearing (up to 0.6 wt% CaO) ferroan olivine (Fa34–39), ferroan Al‐diopside (Fs9–13Wo47–50, approximately 2–7 wt% Al2O3), plagioclase (An37–84Ab63–17), Cr‐spinel (Cr/(Cr + Al) = 0.19–0.45, Fe/(Fe + Mg) = 0.60–0.79), nepheline, pyrrhotite, pentlandite, Ca‐phosphate, and rare grains of Ni‐rich taenite; low‐Ca pyroxene is absent. Most clasts have triple junctions between silicate grains, indicative of prolonged thermal annealing. Based on the olivine‐spinel and pyroxene thermometry, the estimated metamorphic temperature recorded by the clasts is approximately 1100 K. Few clasts experienced thermal metamorphism to a lower degree and preserved chondrule‐like textures. The Mokoia and Y‐86009 clasts are mineralogically unique and different from metamorphosed chondrites of known groups (H, L, LL, R, EH, EL, CO, CK) and primitive achondrites (acapulcoites, brachinites, lodranites). On a three‐isotope oxygen diagram, compositions of olivine in the clasts plot along carbonaceous chondrite anhydrous mineral line and the Allende mass‐fractionation line, and overlap with those of the CV chondrule olivines; the Δ17O values of the clasts range from about ?4.3‰ to ?3.0‰. We suggest that the clasts represent fragments of the CV‐like material that experienced metasomatic alteration, high‐temperature metamorphism, and possibly melting in the interior of the CV parent asteroid. The lack of low‐Ca pyroxene in the clasts could be due to its replacement by ferroan olivine during iron‐alkali metasomatic alteration or by high‐Ca ferroan pyroxene during melting under oxidizing conditions.  相似文献   

20.
Shergottites have provided abundant information on the volcanic and impact history of Mars. Northwest Africa (NWA) 14672 contributes to both of these aspects. It is a vesicular ophitic depleted olivine–phyric shergottite, with average plagioclase An61Ab39Or0.2. It is highly ferroan, with pigeonite compositions En49-25Fs41-61Wo10-14 like those of basaltic shergottites, for example, NWA 12335. Olivine (Fo53-15) has discrete ferroan overgrowths, more ferroan when in contact with plagioclase than when enclosed by pyroxene. The pyroxene (a continuum of augite, subcalcic augite, and pigeonite) is patchy, with ragged “cores” enveloped or invaded by ferroan pyroxene. Magma mixing may be responsible for capture of olivine and formation of pyroxene mantles. The plagioclase is maskelynite-like in appearance, but the original laths were (congruently) melted and the melt partly crystallized as fine dendrites. Most of the 14% vesicles occur within plagioclase. Olivine, pyroxene, and ilmenite occur in part as fine aggregates crystallized after congruent melting with limited subsequent liquid mixing. There are two fine-grained melt components, barred plagioclase with interstitial Fe-bearing phases, and glass with olivine dendrites, derived by melting of mainly plagioclase and mainly pyroxene, respectively. Rare silica particles contain coesite and/or quartz, and silica glass. The rock has experienced >50% melting, compatible with peak pressure >~65 GPa. It is the most highly shocked shergottite so far, at shock stage S6/7. It may belong to the group of depleted shergottites ejected at ~1 Myr from Tooting Crater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号