首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract— Densities and porosities for 285 ordinary chondrites have been assembled and analyzed. Measured chondrite porosities are bimodal; finds have an average porosity of <3%, whereas fall porosities average 7% but range from zero to >30%. We conclude that mild degrees of weathering fill pore spaces, lowering grain densities and porosities without significantly changing the bulk size or mass of the sample. By assuming an original pristine grain density (as a function of the meteorite's mineralogy—determined by its class), we can derive model pristine porosities. These model porosities cluster around an average value of 10% for all classes of ordinary chondrites. Ordinary chondrites do not show any correlation of porosity (model or measured) with petrographic grade or sample size (over a range from 0.2 g to 2 kg). However, we do see a correlation between shock state and porosity. Shock-blackened meteorites are less porous than other meteorites. Furthermore, less severely shocked meteorites show a much broader range of porosities, with the maximum porosity seen among meteorites of a given shock class falling linearly as a function of that shock class. This is consistent with the idea that shock compresses and closes pore space. Analysis of meteorite porosity provides a lower bound to the fine-scale porosity of asteroids. Our densities, even with 10% primordial porosity, are significantly higher than inferred densities of possible asteroid parent bodies. These asteroids are probably loose piles of rubble.  相似文献   

2.
Abstract— We observed 25143 Itokawa, the target of Japan's Hayabusa (MUSES‐C) sample‐return mission, during its 2001 close approach at Arecibo on twelve dates during March 18‐April 9 and at Goldstone on nine dates during March 20‐April 2. We obtained delay‐Doppler images with range resolutions of 100 ns (15 m) at Arecibo and 125 ns (19 m) at Goldstone. Itokawa's average circular polarization ratio at 13 cm, 0.26 ± 0.04, is comparable to that of Eros, so its cm‐to‐m surface roughness probably is comparable to that on Eros. Itokawa's radar reflectivity and polarization properties indicate a near‐surface bulk density within 20% of 2.5 g cm?3. We present a preliminary estimate of Itokawa's shape, reconstructed from images with rather limited rotation‐phase coverage, using the method of Hudson (1993) and assuming the lightcurve‐derived spin period (12.132 hr) and pole direction (ecliptic long., lat. = 355°, ?84°) of Kaasalainen et al. (2003). The model can be described as a slightly asymmetrical, slightly flattened ellipsoid with extents along its principal axes of 548 times 312 times 276 m ± 10%. Itokawa's topography is very subdued compared to that of other asteroids for which spacecraft images or radar reconstructions are available. Similarly, gravitational slopes on our Itokawa model average only 9° and everywhere are less than 27°. The radar‐refined orbit allows accurate identification of Itokawa's close planetary approaches through 2170. If radar ranging planned for Itokawa's 2004 apparition succeeds, then tracking of Hayabusa during its 2005 rendezvous should reveal Yarkovsky perturbation of the asteroid's orbit.  相似文献   

3.
Analysis of the disk-integrated solar phase curve of 433 Eros, as derived from ground-based telescopic and NEAR Shoemaker spacecraft measurements, shows that Eros's surface properties are typical of average S-type asteroids. Eros displays the same single-particle scattering characteristics and porosity vs theoretical grain size relationships as typical S-asteroids, as does Ida. Eros's single-scattering albedo, however, is higher. The geometric albedo at 550 nm derived for Eros (0.29±0.02) is higher than Ida's but is equivalent to Gaspra's within the error bars. The phase integral (0.39±0.02) and Bond albedo (0.12±0.02) for Eros are higher than those estimated for average S-type asteroids but commensurate with the values obtained for Gaspra.  相似文献   

4.
Abstract— Goldstone and Arecibo delay‐Doppler radar imaging of asteroid 1998 ML 14 shortly after its discovery reveals a 1 km diameter spheroid with prominent topography on one side and subdued topography on the other. The object's radar and optical properties are typical for S‐class near‐Earth asteroids. The gravitational slopes of a shape model derived from the images and assumed to have a uniform density are shallow, exceeding 30° over only 4% of the surface. If 1998 ML14's density distribution is uniform, then its orbital environment is similar to a planetary body with a spheroidal gravitational field and is relatively stable. Integration of a radar‐refined orbit reveals that the 1998 apparition was the asteroid's closest approach to Earth since at least 1100 and until 2283, when it approaches to within 2.4 lunar distances. Outside of that time interval, orbit uncertainties based on the present set of observations preclude reliable prediction.  相似文献   

5.
Abstract— High signal‐to‐noise near‐infrared spectrometer (NIS) spectra acquired during the low phase flyby of the near‐Earth asteroid rendezvous (NEAR) mission to 433 Eros are analyzed to determine mineral chemistry and proportions of mafic silicates across the asteroid's surface at 2.68 × 5.50 km spatial resolution. Spectral band parameters are derived, and compared with those of laboratory samples of known mineral composition, grain size distribution and terrestrial, meteoritic and lunar pyroxene spectral properties. The NIS derived band parameters are consistent with ordinary chondrite meteorites. We invoke the presence of a clinopyroxene component in the spectra, which is consistent with ordinary chondrite mineralogy and/or some degree of partial melting of ordinary chondritic material. Spectra measured across the surface of Eros can reveal small but real spectral variations. Most relative spectra are uniform to within 1–2%. Some areas suggest compositional variations of a few percent. Spectral slope variations of a few percent are seen indicating a non‐uniform distribution of materials affecting the slope parameter but with no resolved absorption bands. We find no correlation of slope with viewing geometry or compositional variation. The band parameter values do not consistently indicate a specific ordinary chondrite class but Eros is definitely undifferentiated with possible compositional variations of no more than 1–2%.  相似文献   

6.
B. Zellner  J. Gradie 《Icarus》1976,28(1):117-123
Linear polarizations measured for asteroid 433 Eros at various wavelengths and at solar phase angles ranging from 9° to 53° are presented. The polarization results are entirely typical of main-belt S asteroids, and indicate a dusty surface with geometric albedo 0.20. The derived effective diameter at photometric maximum is 21 km. Eros is quite uniform polarimetrically; no dependence on aspect is detected, and the polarization is shown to be constant during a single rotation with a precision of one part in forty.  相似文献   

7.
Abstract– We present results of a numerical model of the dynamics of ejecta emplacement on asteroid 433 Eros. Ejecta blocks represent the coarsest fraction of Eros’ regolith and are important, readily visible, “tracer particles” for crater ejecta‐blanket units that may be linked back to specific source craters. Model results show that the combination of irregular shape and rapid rotation of an asteroid can result in markedly asymmetric ejecta blankets (and, it follows, ejecta block spatial distribution), with locally very sharp/distinct boundaries. We mapped boulder number densities in NEAR‐Shoemaker MSI images across a portion of a predicted sharp ejecta‐blanket boundary associated with the crater Valentine and confirm a distinct and real ejecta‐blanket boundary, significant at least at the 3‐sigma level. Using our dynamical model, we “back track” the landing trajectories of three ejecta blocks with associated landing tracks in an effort to constrain potential source regions where those blocks were ejected from Eros’ surface in impact events. The observed skip distances of the blocks upon landing on Eros’ surface and the landing speeds and elevation angles derived from our model allow us to estimate the coefficient of restitution, ε, of Eros’ surface for impacts of 10‐m‐scale blocks at approximately 5 m s?1 impact speeds. We find mean values of ε of approximately 0.09–0.18.  相似文献   

8.
We describe Arecibo (2380 MHz, 12.6 cm) Doppler-only radar detections of near-Earth Asteroids 1915 Quetzalcoatl, 3199 Nefertiti, 3757 (1982 XB), and 4034 (1986 PA) obtained between 1981 and 1989. Estimates of the echo spectral bandwidths, radar cross-sections, and circular polarization ratios of these objects constrain their sizes, radar albedos, surface roughnesses, taxonomic classes, rotation periods, and pole directions. Our radar constraints on the diameters of Quetzalcoatl and Nefertiti are most consistent with sizes determined using thermal-radiometry and the Fast Rotation Model (FRM); this consistency may indicate that these asteroids have surfaces of high thermal inertia (i.e., little or no regolith). Constraints on Quetzalcoatl's radar albedo rule out a “metallic M” classification. The radar constraints for Nefertiti are inconsistent with a rotation pole published by Kaasalainen et al. (2004, Icarus 167, 178). Our estimates of 1982 XB's size are consistent with previously published estimates. The radar bandwidth of 1986 PA places an upper bound of about 24 h on its rotation period.  相似文献   

9.
Abstract— In this review, we summarize the data published up to December 2001 on the porosity and density of stony meteorites. These data were taken from 925 samples of 454 different meteorites by a variety of techniques. Most meteorites have densities on the order of 3 to 4 g/cm3, with lower densities only for some volatile‐rich carbonaceous meteorites and higher densities for stony irons. For the vast majority of stones, porosity data alone cannot distinguish between different meteorite compositions. Average porosities for most meteorite classes are around 10%, though individual samples can range as high as 30% porosity. Unbrecciated basaltic achondrites appear to be systematically less porous unless vesicles are present. The measured density of ordinary chondrites is strongly controlled by the amount of terrestrial weathering the sample has undergone with porosities steadily dropping with exposure to the terrestrial environment. A theoretical grain density based on composition can model “pre‐weathered” porosities. The average model porosity for H and LL chondrites is 10%, while L chondrite model porosities average only 6%, a statistically significant difference.  相似文献   

10.
Abstract— The global high‐resolution imaging of asteroid 433 Eros by the Near‐Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft has made it possible to develop the first comprehensive picture of the geology of a small S‐type asteroid. Eros displays a variety of surface features, and evidence of a substantial regolith. Large scale facets, grooves, and ridges indicate the presence of at least one global planar structure. Directional and superposition relations of smaller structural features suggest that fracturing has occurred throughout the object. As with other small objects, impact craters dominate the overall shape as well as the small‐scale topography of Eros. Depth/diameter ratios of craters on Eros average ~0.13, but the freshest craters approach lunar values of ~0.2. Ejecta block production from craters is highly variable; the majority of large blocks appear to have originated from one 7.6 km crater (Shoemaker). The interior morphology of craters does not reveal the influence of discrete mechanical boundaries at depth in the manner of craters formed on lunar mare regolith and on some parts of Phobos. This lack of mechanical boundaries, and the abundant evidence of regolith in nearly every high‐resolution image, suggests a gradation in the porosity and fracturing with depth. The density of small craters is deficient at sizes below ~200 m relative to predicted slopes of empirical saturation. This characteristic, which is also found on parts of Phobos and lunar highland areas, probably results from the efficient obliteration of small craters on a body with significant topographic slopes and a thick regolith. Eros displays a variety of regolith features, such as debris aprons, fine‐grained “ponded” deposits, talus cones, and bright and dark streamers on steep slopes indicative of efficient downslope movement of regolith. These processes serve to mix materials in the upper loose fragmental portion of the asteroid (regolith). In the instance of “ponded” materials and crater wall deposits, there is evidence of processes that segregate finer materials into discrete deposits. The NEAR observations have shown us that surface processes on small asteroids can be very complex and result in a wide variety of morphologic features and landforms that today seem exotic. Future missions to comets and asteroids will surely reveal still as yet unseen processes as well as give context to those discovered by the NEAR Shoemaker spacecraft.  相似文献   

11.
We observed ten M- and X-class main-belt asteroids with the Arecibo Observatory's S-band (12.6 cm) radar. The X-class asteroids were targeted based on their albedos or other properties which suggested they might be M-class. This work brings the total number of main-belt M-class asteroids observed with radar to 14. We find that three of these asteroids have rotation rates significantly different from what was previously reported. Based on their high radar albedo, we find that only four of the fourteen—16 Psyche, 216 Kleopatra, 758 Mancunia, and 785 Zwetana—are almost certainly metallic. 129 Antigone has a moderately high radar albedo and we suggest it may be a CH/CB/Bencubbinite parent body. Three other asteroids, 97 Klotho, 224 Oceana, and 796 Sarita have radar albedos significantly higher than the average main belt asteroid and we cannot rule out a significant metal content for them. Five of our target asteroids, 16 Psyche, 129 Antigone, 135 Hertha, 758 Mancunia, and 785 Zwetana, show variations in their radar albedo with rotation. We can rule out shape and composition in most cases, leaving variations in thickness, porosity, or surface roughness of the regolith to be the most likely causes. With the exception of 129 Antigone, we find no hydrated M-class asteroids (W-class; Rivkin, A.S., Howell, E.S., Lebofsky, L.A., Clark, B.E., Britt, D.T., 2000. Icarus 145, 351-368) to have high radar albedos.  相似文献   

12.
We describe a new approach to estimate asteroid masses from planetary range measurements. The approach significantly simplifies the process of parameter estimation and allows an effective control of systematic errors introduced by the omission of asteroids from the dynamical model. All asteroid masses are adjusted individually thus avoiding the usual distinction between masses considered individually and masses based on densities within the C, S and M taxonomic classes. Regularization is achieved by accounting, on each mass, for a prior uncertainty determined from available estimations of asteroid diameters and densities.The new approach is used to fit the asteroid model of the JPL planetary ephemeris to Mars range data. The adjusted planetary solutions exhibit similar extrapolation capacity as previous releases of the JPL ephemeris. Up to 27 asteroid masses are determined to better than 35%. The masses agree well with estimates obtained independently by other authors. The determined masses are also robust with respect to cross-validation on a dataset with a shorter time-span and with respect to a different selection of asteroids in the model.  相似文献   

13.
We present a method to constrain the albedo and diameters of near-Earth asteroids (NEAs) based on thermal flux in their near-infrared spectra (0.7–2.5 μm) using the Standard Thermal Model. Near-infrared spectra obtained with the SpeX instrument on NASA Infrared Telescope Facility are used to estimate the albedo and diameters of 12 NEAs (1992 JE, 1992 UY4, 1999 JD6, 2004 XP14, 2005 YY93, 2007 DS84, 2005 AD13, 2005 WJ56, 1999 JM8, 2005 RC34, 2003 YE45, and 2008 QS11). Albedo estimates were compared with average albedo for various taxonomic classes outlined by Thomas et al. (Thomas, C.A. et al. [2011]. Astron. J. 142(3)) and are consistent with their results. Spectral band parameters, like band centers, are derived and compared to spectra of laboratory mineral mixtures and meteorites to constrain their composition and possible meteorite analogs. Based on our study we estimate the albedos and diameters of these NEAs and compare them with those obtained by other techniques such as ground-based mid-infrared, Spitzer thermal infrared and Arecibo radar. Our results are broadly consistent with the results from other direct methods like radar. Determining the compositions of low albedo asteroids is a challenge due to the lack of deep silicate absorption features. However, based on weak absorption features and albedo, we suggest possible meteorite analogs for these NEAs, which include black chondrites, CM2 carbonaceous chondrites and enstatite achondrites. We did not find any specific trends in albedo and composition among the asteroids we observed.  相似文献   

14.
The outcomes of asteroid collisional evolution are presently unclear: are most asteroids larger than 1 km size gravitational aggregates reaccreted from fragments of a parent body that was collisionally disrupted, while much smaller asteroids are collisional shards that were never completely disrupted? The 16 km mean diameter S-type asteroid 433 Eros, visited by the NEAR mission, has surface geology consistent with being a fractured shard. A ubiquitous fabric of linear structural features is found on the surface of Eros and probably indicates a globally consolidated structure beneath its regolith cover. Despite the differences in absolute scale and in lighting conditions for NEAR and Hayabusa, similar features should have been found on 25143 Itokawa if present. This much smaller, 320 m diameter S-asteroid was visited by the Hayabusa spacecraft. Comparative analyses of Itokawa and Eros geology reveal fundamental differences, and interpretation of Eros geology is illuminated by comparison with Itokawa. Itokawa lacks a global lineament fabric, and its blocks, craters, and regolith may be inconsistent with formation and evolution as a fractured shard, unlike Eros. An object as small as Itokawa can form as a rubble pile, while much larger Eros formed as a fractured shard. Itokawa is not a scaled-down Eros, but formed by catastrophic disruption and reaccumulation.  相似文献   

15.
Abstract— We report major element ratios determined for the S‐class asteroid 433 Eros using remote‐sensing x‐ray fluorescence spectroscopy with the near‐Earth asteroid rendezvous Shoemaker x‐ray spectrometer (XRS). Data analysis techniques and systematic errors are described in detail. Data acquired during five solar flares and during two extended “quiet Sun” periods are presented; these results sample a representative portion of the asteroid's surface. Although systematic uncertainties are potentially large, the most internally consistent and plausible interpretation of the data is that Eros has primitive Mg/Si, Al/Si, Ca/Si and Fe/Si ratios, closely similar to H or R chondrites. Global differentiation of the asteroid is ruled out. The S/Si ratio is much lower than that of chondrites, probably reflecting impact‐induced volatilization and/or photo‐ or ion‐induced sputtering of sulfur at the surface of the asteroid. An alternative explanation for the low S/Si ratio is that it reflects a limited degree of melting with loss of an FeS‐rich partial melt. Size‐sorting processes could lead to segregation of Fe‐Ni metal from silicates within the regolith of Eros; this could indicate that the Fe/Si ratios determined by the x‐ray spectrometer are not representative of the bulk Eros composition.  相似文献   

16.
P. Scheirich  P. Pravec 《Icarus》2009,200(2):531-547
We present a numerical method for inverting long-period components of lightcurves of asynchronous binary asteroids. Data of five near-Earth binary asteroids, (175706) 1996 FG3, (65803) Didymos, (66391) 1999 KW4, (185851) 2000 DP107 and (66063) 1998 RO1, for two of them from more than one apparition, were inverted. Their mutual orbits' poles and Keplerian elements, size ratios, and ellipsoidal shape axial ratios were estimated via this inversion. The pole solutions and size ratios for 1999 KW4 and 2000 DP107 are in a good agreement with independent estimates from radar measurements. We show that uncertainties of estimates of bulk densities of binary systems can be large, especially when observed on short arcs.  相似文献   

17.
The highly hydrated, petrologic type 1 CM and CI carbonaceous chondrites likely derived from primitive, water‐rich asteroids, two of which are the targets for JAXA's Hayabusa2 and NASA's OSIRIS‐REx missions. We have collected visible and near‐infrared (VNIR) and mid infrared (MIR) reflectance spectra from well‐characterized CM1/2, CM1, and CI1 chondrites and identified trends related to their mineralogy and degree of secondary processing. The spectral slope between 0.65 and 1.05 μm decreases with increasing total phyllosilicate abundance and increasing magnetite abundance, both of which are associated with more extensive aqueous alteration. Furthermore, features at ~3 μm shift from centers near 2.80 μm in the intermediately altered CM1/2 chondrites to near 2.73 μm in the highly altered CM1 chondrites. The Christiansen features (CF) and the transparency features shift to shorter wavelengths as the phyllosilicate composition of the meteorites becomes more Mg‐rich, which occurs as aqueous alteration proceeds. Spectra also show a feature near 6 μm, which is related to the presence of phyllosilicates, but is not a reliable parameter for estimating the degree of aqueous alteration. The observed trends can be used to estimate the surface mineralogy and the degree of aqueous alteration in remote observations of asteroids. For example, (1) Ceres has a sharp feature near 2.72 μm, which is similar in both position and shape to the same feature in the spectra of the highly altered CM1 MIL 05137, suggesting abundant Mg‐rich phyllosilicates on the surface. Notably, both OSIRIS‐REx and Hayabusa2 have onboard instruments which cover the VNIR and MIR wavelength ranges, so the results presented here will help in corroborating initial results from Bennu and Ryugu.  相似文献   

18.
Abstract— Visual photometry, which measures reflected solar radiation, can be combined with infrared radiometry, which measures absorbed and re‐radiated solar energy, to determine key properties of small solar system objects. This method can be applied via thermophysical model concepts not only for albedo and diameter determination, but also for studies of thermal parameters like thermal inertia, surface roughness or emissivity. Hence, a detailed analysis of the asteroid surface is possible and topics like surface mineralogy, the density of the regolith or the presence of a rocky surface, lightcurve influences due to shape or albedo, porosity of the surface material, etc. can be addressed. The “radiometric technique” based on a recently developed thermophysical model is presented. The model was extensively tested against observations from the infrared space observatory, including spectroscopic and photometric measurements at infrared wavelengths between 2 and 200 μm of more than 40 asteroids. The possible model applications are discussed in terms of the different levels of knowledge for individual asteroids. The effects of the thermal parameters are illustrated and methods are presented as to how to separate different aspects. Possibilities and limitations are evaluated for the possible transfer of this model to near‐Earth asteroids. In the long run, this kind of study of near‐Earth asteroids may provide answers to questions about their surface properties which are crucial to develop mitigation scenarios.  相似文献   

19.
We observed the E-class main-belt Asteroids (MBAs) 44 Nysa and 434 Hungaria with Arecibo Observatory's S-band (12.6 cm) radar. Both asteroids exhibit polarization ratios higher than those measured for any other MBA: Nysa, μc=0.50±0.02 and Hungaria, μc=0.8±0.1. This is consistent with the high polarization ratios measured for every E-class near-Earth asteroid (NEA) observed by Benner et al. [Benner, L.A.M., and 10 collegues, 2008. Icarus, submitted for publication] and suggests a common cause. Our estimates of radar albedo are 0.19±0.06 for Nysa and 0.22±0.06 for Hungaria. These values are higher than those of most MBAs and, when combined with their high polarization ratios, suggest that the surface bulk density of both asteroids is high. We model Nysa as an ellipsoid of dimension 113×67×65 km (±15%) giving an effective diameter Deff=79±10 km, consistent with previous estimates. The echo waveforms are not consistent with a contact binary as suggested by Kaasalainen et al. [Kaasalainen, M., Torppa, J., Piironen, J., 2002. Astron. Astrophys. 383, L19-L22]. We place a constraint on Hungaria's maximum diameter, Dmax?11 km consistent with previous size estimates.  相似文献   

20.
The surprisingly low S/Si ratio of Asteroid 433 Eros measured by the NEAR Shoemaker spacecraft probably reflects a surface depletion rather than a bulk property of the asteroid. The sulfur X-ray signal originates at a depth <10 μm in the regolith. The most efficient process for vaporizing minerals at the heliocentric distance of Eros are sputtering by solar wind ions and hypervelocity impacts. These are the same processes that account for the changes in optical properties of asteroids attributed to “space weathering” of lunar surface materials, although the relative importance of sputtering and impacts need not be the same for the Moon and asteroids. Troilite, FeS, which is the most important sulfide mineral in meteorites, and presumably on S-type asteroids like Eros, can be vaporized by much less energy than other major minerals, and will therefore be preferentially lost. Within 106 years either process can remove sulfide from the top 10-100 μm of regolith. Sulfur will be lost into space and some sulfur will migrate to deeper regolith layers. We also consider other possible mechanisms of surficial sulfur depletion, such as mineral segregation in the regolith and perhaps even incipient melting. Although we consider solar wind sputtering the most likely cause of the sulfur depletion on Eros, we cannot entirely rule out other processes as causes of the sulfur deficiency. Laboratory simulations of the relevant processes can address some of the open questions. Simulations will have to be carried out in such a way that potential sulfur loss processes as well as resurfacing can be studied simultaneously, requiring a large and complex environmental chamber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号