首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
NWA 10214 is an LL3‐6 breccia containing ~8 vol% clasts including LL5, LL6, and shocked‐darkened LL fragments as well as matrix‐rich Clast 6 (a new kind of chondrite). This clast is a dark‐colored, subrounded, 6.1 × 7.0 mm inclusion, consisting of 60 vol% fine‐grained matrix, 32 vol% coarse silicate grains, and 8 vol% coarse opaque grains. The large chondrules and chondrule fragments are mainly Type IB; one small chondrule is Type IIA. Also present are one 450 × 600 μm spinel‐pyroxene‐olivine CAI and one 85 × 110 μm AOI. Clast 6 possesses a unique set of properties. (1) It resembles carbonaceous chondrites in having relatively abundant matrix, CAIs, and AOIs; the clast's matrix composition is close to that in CV3 Vigarano. (2) It resembles type‐3 OC in its olivine and low‐Ca pyroxene compositional distributions, and in the Fe/Mn ratio of ferroan olivine grains. Its mean chondrule size is within 1σ of that of H chondrites. The O‐isotopic compositions of the chondrules are in the ordinary‐ and R‐chondrite ranges. (3) It resembles type‐3 enstatite chondrites in the minor element concentrations in low‐Ca pyroxene grains and in having a high low‐Ca pyroxene/olivine ratio in chondrules. Clast 6 is a new variety of type‐3 OC, somewhat more reduced than H chondrites or chondritic clasts in the Netschaevo IIE iron; the clast formed in a nebular region where aerodynamic radial drift processes deposited a high abundance of matrix material and CAIs. A chunk of this chondrite was ejected from its parent asteroid and later impacted the LL body at low relative velocity.  相似文献   

2.
Abstract— The CV (Vigarano‐type) chondrites are a petrologically diverse group of meteorites that are divided into the reduced and the Bali‐like and Allende‐like oxidized subgroups largely based on secondary mineralogy (Weisberg et al., 1997; Krot et al., 1998b). Some chondrules and calcium‐aluminum‐rich inclusions (CAIs) in the reduced CV chondrite Vigarano show alteration features similar to those in Allende: metal is oxidized to magnetite; low‐Ca pyroxene, forsterite, and magnetite are rimmed and veined by ferrous olivine (Fs40–50); and plagioclase mesostases and melilite are replaced by nepheline and sodalite (Sylvester et al., 1993; Kimura and Ikeda, 1996, 1997, 1998). Our petrographic observations indicate that Vigarano also contains individual chondrules, chondrule fragments, and lithic clasts of the Bali‐like oxidized CV materials. The largest lithic clast (about 1 times 2 cm in size) is composed of opaque matrix, type‐I chondrules (400–2000 μm in apparent diameter) surrounded by coarse‐grained and fine‐grained rims, and rare CAIs. The matrix‐chondrule ratio is about 1.1. Opaque nodules in chondrules in the clast consist of Cr‐poor and Cr‐rich magnetite, Ni‐ and Co‐rich metal, Ni‐poor and Ni‐rich sulfide; low‐Ni metal nodules occur only inside chondrule phenocrysts. Chromium‐poor magnetite is preferentially replaced by fayalite. Chondrule mesostases are replaced by phyllosilicates; low‐Ca pyroxene and olivine phenocrysts appear to be unaltered. Matrix in the clast consists of very fine‐grained (<1 μm) ferrous olivine, anhedral fayalite grains (Fa80–100), rounded objects of porous Ca‐Fe‐rich pyroxenes (Fs10–50Wo50), Ni‐poor sulfide, Ni‐ and Co‐rich metal, and phyllosilicates; magnetite is rare. On the basis of the presence of the Bali‐like lithified chondritic clast—in addition to individual chondrules and CAIs of both Bali‐like and Allende‐like materials—in the reduced CV chondrite Vigarano, we infer that (1) all three types of materials were mixed during regolith gardening on the CV asteroidal body, and (2) the reduced and oxidized CV materials may have originated from a single, heterogeneously altered asteroid.  相似文献   

3.
Abstract— CK carbonaceous chondrites contain rare (~0.1 vol%) magnetite-sulfide chondrules. These objects range from ~240 to 500 μm in apparent diameter and have ellipsoidal to spheroidal morphologies, granular textures and concentric layering. They are very similar in size, shape, texture, mineralogy and mineral composition to the magnetite-sulfide nodules which occur inside mafic silicate chondrules in CK chondrites. It seems likely that the magnetite-sulfide chondrules constitute the subset of magnetite-sulfide nodules that escaped as immiscible droplets from their molten silicate chondrule hosts during chondrule formation. The intactness of the magnetite-sulfide chondrules and nodules implies that oxidation of CK metal occurred before agglomeration; otherwise, the factor of two increase in molar volume associated with the conversion of metallic Fe-Ni into magnetite would have disrupted the objects and destroyed their concentrically layered textures. Hence, the pervasive silicate darkening of CK chondrites documented previously was caused by the shock mobilization of magnetite and sulfide, not metallic Fe-Ni and sulfide as in shock-darkened ordinary chondrites.  相似文献   

4.
Abstract— We have studied the CB carbonaceous chondrites Queen Alexandra Range (QUE) 94411, Hammadah al Hamra (HH) 237, and Bencubbin with an emphasis on the petrographical and mineralogical effects of the shock processing that these meteorite assemblages have undergone. Iron‐nickel metal and chondrule silicates are the main components in these meteorites. These high‐temperature components are held together by shock melts consisting of droplets of dendritically intergrown Fe,Ni‐metal/sulfide embedded in silicate glass, which is substantially more FeO‐rich (30–40 wt%) than the chondrule silicates (FeO <5 wt%). Fine‐grained matrix material, which is a major component in most other chondrite classes, is extremely scarce in QUE 94411 and HH 237, and has not been observed in Bencubbin. This material occurs as rare, hydrated matrix lumps with major and minor element abundances roughly similar to the ferrous silicate shock melts (and CI). We infer that hydrated, fine‐grained material, compositionally similar to these matrix lumps, was originally present between the Fe,Ni‐metal grains and chondrules, but was preferentially shock melted. Other shock‐related features in QUE 94411, HH 237, and Bencubbin include an alignment and occasionally strong plastic deformation of metal and chondrule fragments. The existence of chemically zoned and metastable Fe,Ni‐metal condensates in direct contact with shock melts indicates that the shock did not substantially increase the average temperature of the rock. Because porphyritic olivine‐pyroxene chondrules are absent in QUE 94411, HH 237, and Bencubbin, it is difficult to determine the precise shock stage of these meteorites, but the shock was probably relatively light (S2–S3), consistent with a bulk temperature increase of the assemblages of less than ?300 °C. The apparently similar shock processing of Bencubbin, Weatherford, Gujba (CBa) and QUE 94411/HH 237 (CBb) supports the idea of a common asteroidal parent body for these meteorites.  相似文献   

5.
Abstract— We measured the sizes and textural types of 719 intact chondrules and 1322 chondrule fragments in thin sections of Semarkona (LL3.0), Bishunpur (LL3.1), Krymka (LL3.1), Piancaldoli (LL3.4) and Lewis Cliff 88175 (LL3.8). The mean apparent diameter of chondrules in these LL3 chondrites is 0.80 φ units or 570 μm, much smaller than the previous rough estimate of ~900 μm. Chondrule fragments in the five LL3 chondrites have a mean apparent cross‐section of 1.60 φ units or 330 μm. The smallest fragments are isolated olivine and pyroxene grains; these are probably phenocrysts liberated from disrupted porphyritic chondrules. All five LL3 chondrites have fragment/ chondrule number ratios exceeding unity, suggesting that substantial numbers of the chondrules in these rocks were shattered. Most fragmentation probably occurred on the parent asteroid. Porphyritic chondrules (porphyritic olivine + porphyritic pyroxene + porphyritic olivine‐pyroxene) are more readily broken than droplet chondrules (barred olivine + radial pyroxene + cryptocrystalline). The porphyritic fragment/chondrule number ratio (2.0) appreciably exceeds that of droplet‐textured objects (0.9). Intact droplet chondrules have a larger mean size than intact porphyritic chondrules, implying that large porphyritic chondrules are fragmented preferentially. This is consistent with the relatively low percentage of porphyritic chondrules within the set of the largest chondrules (57%) compared to that within the set of the smallest chondrules (81%). Differences in mean size among chondrule textural types may be due mainly to parent‐body chondrule‐fragmentation events and not to chondrule‐formation processes in the solar nebula.  相似文献   

6.
Abstract— The low modal abundances of relict chondrules (1.8 vol%) and of coarse (i.e., ≥200 μm‐size) isolated mafic silicate grains (1.8 vol%) in Spade relative to mean H6 chondrites (11.4 and 9.8 vol%, respectively) show Spade to be a rock that has experienced a significant degree of melting. Various petrographic features (e.g., chromite‐plagioclase assemblages, chromite veinlets, silicate darkening) indicate that melting was caused by shock. Plagioclase was melted during the shock event and flowed so that it partially to completely surrounded nearby mafic silicate grains. During crystallization, plagioclase developed igneous zoning. Low‐Ca pyroxene that crystallized from the melt (or equilibrated with the melt at high temperatures) acquired relatively high amounts of CaO. Metallic Fe‐Ni cooled rapidly below the Fe‐Ni solvus and transformed into martensite. Subsequent reheating of the rock caused transformation of martensite into abundant duplex plessite. Ambiguities exist in the shock stage assignment of Spade. The extensive silicate darkening, the occurrence of chromite‐plagioclase assemblages, and the impact‐melted characteristics of Spade are consistent with shock stage S6. Low shock (stage S2) is indicated by the undulose extinction and lack of planar fractures in olivine. This suggests that Spade reached a maximum prior shock level equivalent to stage S6 and then experienced post‐shock annealing (probably to stage S1). These events were followed by a less intense impact that produced the undulose extinction in the olivine, characteristic of shock stage S2. Annealing could have occurred if Spade were emplaced near impact melts beneath the crater floor or deposited in close proximity to hot debris within an ejecta blanket. Spade firmly establishes the case for post‐shock annealing. This may have been a common process on OC asteroids.  相似文献   

7.
Abstract– Chondrule compositions suggest either ferroan precursors and evaporation, or magnesian precursors and condensation. Type I chondrule precursors include granoblastic olivine aggregates (planetary or nebular) and fine‐grained (dustball) precursors. In carbonaceous chondrites, type I chondrule precursors were S‐free, while type II chondrules have higher Fe/Mn than in ordinary chondrites. Many type II chondrules contain diverse forsteritic relicts, consistent with polymict dustball precursors. The relationship between finer and coarser grained type I chondrules in ordinary chondrites suggests more evaporation from more highly melted chondrules. Fe metal in type I, and Na and S in type II chondrules indicate high partial pressures in ambient gas, as they are rapidly evaporated at canonical conditions. The occurrence of metal, sulfide, or low‐Ca pyroxene on chondrule rims suggests (re)condensation. In Semarkona type II chondrules, Na‐rich olivine cores, Na‐poor melt inclusions, and Na‐rich mesostases suggest evaporation followed by recondensation. Type II chondrules have correlated FeO and MnO, consistent with condensation onto forsteritic precursors, but with different ratios in carbonaceous chondrites and ordinary chondrites, indicating different redox history. The high partial pressures of lithophile elements require large dense clouds, either clumps in the protoplanetary disk, impact plumes, or bow shocks around protoplanets. In ordinary chondrites, clusters of type I and type II chondrules indicate high number densities and their similar oxygen isotopic compositions suggest recycling together. In carbonaceous chondrites, the much less abundant type II chondrules were probably added late to batches of type I chondrules from different O isotopic reservoirs.  相似文献   

8.
Dar al Gani (DaG) 978 is an ungrouped type 3 carbonaceous chondrite. In this study, we report the petrography and mineralogy of Ca,Al‐rich inclusions (CAI), amoeboid olivine aggregates (AOAs), chondrules, mineral fragments, and the matrix in DaG 978. Twenty‐seven CAIs were found: 13 spinel‐diopside‐rich inclusions, 2 anorthite‐rich inclusions, 11 spinel‐troilite‐rich inclusions, and 1 spinel‐melilite‐rich inclusion. Most CAIs have a layered texture that indicates a condensation origin and are most similar to those in R chondrites. Compound chondrules represent a high proportion (approximately 8%) of chondrules in DaG 978, which indicates a local dusty chondrule‐forming region and multiple heating events. Most spinel and olivine in DaG 978 are highly Fe‐rich, which corresponds to a petrologic type of >3.5 and a maximum metamorphic temperature of approximately 850–950 K. This conclusion is also supported by other observations in DaG 978: the presence of coarse inclusions of silicate and phosphate in Fe‐Ni metal, restricted Ni‐Co distributions in kamacite and taenite, and low S concentrations in the matrix. Mineralogic records of iron‐alkali‐halogen metasomatism, such as platy and porous olivine, magnetite, hedenbergite, nepheline, Na‐rich in CAIs, and chlorapatite, are present, but relatively limited, in DaG 978. The fine‐grained, intergrowth texture of spinel‐troilite‐rich inclusions was probably formed by reaction between pre‐existing Al‐rich silicates and shock‐induced, high‐temperature S‐rich gas on the surface of the parent body of DaG 978. A shock‐induced vein is present in the matrix of DaG 978, which indicates that the parent body of DaG 978 at least experienced a shock event with a shock stage up to S3.  相似文献   

9.
Abstract— Two types of mesostasis coexist within some porphyritic chondrules in Tieschitz. One type is smooth. The other, confined to chondrule margins, is blocky on a 5–10 μm scale. Mesostases in one porphyritic olivine-pyroxene (POP) chondrule and one porphyritic olivine (PO) chondrule were analysed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectrometry (EDS), as was white matrix nearby. Mesostases in the PO chondrule and in four others were analysed by ion probe. Pyroxene phenocrysts or dendrites extend across contacts between smooth and blocky mesostasis with no compositional change. Relative to smooth mesostasis, blocky mesostasis is enriched in Al, alkalis, Ba, F, and Cl but depleted in Si, Fe, and Ca. White matrix fills channels between the chondrules. It is physically and chemically similar to blocky mesostasis, but three ion probe analyses indicate that, unlike the mesostases, it is poor in Sc and has variable and fractionated rare earth elements (REEs). Smooth mesostasis is interpreted as solidified primary chondrule liquid; whereas blocky mesostasis is its alteration product or, less likely, a precipitate replacing smooth mesostasis leached out by aqueous fluid. White matrix may have formed by secondary alteration or replacement of mesostases that had been expelled from chondrules during accretion, or as a precipitate filling interchondrule voids. Iron may have been lost from the bulk meteorite, but most other elements merely underwent internal redistribution. Disturbed isotopic systems indicate that aqueous fluid may have been active on the Tieschitz parent body only 2 Ga ago. If correct, this would be the first evidence that an ordinary chondrite parent body underwent internal reprocessing significantly later than 4.5 Ga ago.  相似文献   

10.
Abstract— Rumuruti (R) chondrites constitute a new, well‐established chondrite group different from the carbonaceous, ordinary, and enstatite chondrites. Many of these samples are gas‐rich regolith breccias showing the typical light‐dark structure and consist of abundant fragments of various parent‐body lithologies embedded in a fine‐grained olivine‐rich matrix. Unequilibrated type‐3 lithologies among these fragments have frequently been mentioned in various publications. In this study, detailed mineralogical data on seven primitive fragments from the R‐chondrites Dar al Gani 013 and Hughes 030 are presented. The fragments range from ~300 μ in size up to several millimeters. Generally, the main characteristics can be summarized as follows: (1) Unequilibrated type‐3 fragments have a well‐preserved chondritic texture with a chondrule‐to‐matrix ratio of ~1:1. Chondrules and chondrule fragments are embedded in a fine‐grained olivine‐rich matrix. Thus, the texture is quite similar to that of type‐3 carbonaceous chondrites. (2) In all cases, matrix olivines in type‐3 fragments have a significantly higher Fa content (44–57 mol%) than olivines in other (equilibrated) lithologies (38–40 mol% Fa). (3) Olivines and pyroxenes occurring within chondrules or as fragments are highly variable in composition (Fa0–65 and Fs0–33, respectively) and, generally, more magnesian than those found in equilibrated R chondrites. Agglomerated material of the R‐chondrite parent body (or bodies) was highly unequilibrated. It is suggested that the material that accreted to form the parent body consisted of chondrules and chondrule fragments, mainly having Mg‐rich silicate constituents, and Fe‐rich highly oxidized fine‐grained materials. The dominating phase of this fine‐grained material may have been Fa‐rich olivine from the beginning. The brecciated whole rocks, the R‐chondrite regolith breccias, were not significantly reheated subsequent to brecciation or during lithification, as indicated by negligible degree of equilibration between matrix components and Mg‐rich olivines and pyroxenes in primitive type‐3 fragments.  相似文献   

11.
We determined the shock‐darkening pressure range in ordinary chondrites using the iSALE shock physics code. We simulated planar shock waves on a mesoscale in a sample layer at different nominal pressures. Iron and troilite grains were resolved in a porous olivine matrix in the sample layer. We used equations of state (Tillotson EoS and ANEOS) and basic strength and thermal properties to describe the material phases. We used Lagrangian tracers to record the peak shock pressures in each material unit. The post‐shock temperatures (and the fractions of the tracers experiencing temperatures above the melting point) for each material were estimated after the passage of the shock wave and after the reflections of the shock at grain boundaries in the heterogeneous materials. The results showed that shock‐darkening, associated with troilite melt and the onset of olivine melt, happened between 40 and 50 GPa with 52 GPa being the pressure at which all tracers in the troilite material reach the melting point. We demonstrate the difficulties of shock heating in iron and also the importance of porosity. Material impedances, grain shapes, and the porosity models available in the iSALE code are discussed. We also discuss possible not‐shock‐related triggers for iron melt.  相似文献   

12.
Carbonaceous chondrites are classified into several groups. However, some are ungrouped. We studied one such ungrouped chondrite, Y‐82094, previously classified as a CO. In this chondrite, chondrules occupy 78 vol%, and the matrix is distinctly poor in abundance (11 vol%), compared with CO and other C chondrites. The average chondrule size is 0.33 mm, different from that in C chondrites. Although these features are similar to those in ordinary chondrites, Y‐82094 contains 3 vol% Ca‐Al‐rich inclusions and 5% amoeboid olivine aggregates (AOAs). Also, the bulk composition resembles that of CO chondrites, except for the volatile elements, which are highly depleted. The oxygen isotopic composition of Y‐82094 is within the range of CO and CV chondrites. Therefore, Y‐82094 is an ungrouped C chondrite, not similar to any other C chondrite previously reported. Thin FeO‐rich rims on AOA olivine and the mode of occurrence of Ni‐rich metal in the chondrules indicate that Y‐82094 is petrologic type 3.2. The extremely low abundance of type II chondrules and high abundance of Fe‐Ni metal in the chondrules suggest reducing condition during chondrule formation. The depletion of volatile elements indicates that the components formed under high‐temperature conditions, and accreted to the parent body of Y‐82094. Our study suggests a wider range of formation conditions than currently recorded by the major C chondrite groups. Additionally, Y‐82094 may represent a new, previously unsampled, asteroidal body.  相似文献   

13.
14.
Phosphorus zoning is observed in olivines in high‐FeO (type IIA) chondrules in H chondrites over the entire range of petrologic grades: H3.1–H6. Features in P concentrations such as oscillatory and sector zoning, and high P cores are present in olivines that are otherwise unzoned in the divalent cations. Aluminum concentrations are low and not significantly associated with P zoning in chondrule olivines. In highly unequilibrated H chondrites, phosphorus zoning is generally positively correlated with Cr. Atomic Cr:P in olivine is roughly 1:1 (3:1 for one zone in one olivine in RC 075), consistent with Cr3+ charge‐balancing P5+ substituting for Si4+. Normal igneous zonation involving the dominant chrome species Cr2+ was observed only in the LL3.0 chondrite Semarkona. In more equilibrated chondrites (H3.5–H3.8), Cr spatially correlated with P is occasionally observed but it is diffuse relative to the P zones. In H4–H6 chondrites, P‐correlated Cr is absent. One signature of higher metamorphic grades (≥H3.8) is the presence of near matrix olivines that are devoid of P oscillatory zoning. The restriction to relatively high metamorphic grade and to grains near the chondrule–matrix interface suggests that this is a response to metasomatic processes. We also observed P‐enriched halos near the chondrule–matrix interface in H3.3–H3.8 chondrites, likely reflecting the loss of P and Ca from mesostasis and precipitation of Ca phosphate near the chondrule surface. These halos are absent in equilibrated chondrites due to coarsening of the phosphate and in unequilibrated chondrites due to low degrees of metasomatism. Olivines in type IA chondrules show none of the P‐zoning ubiquitous in type IIA chondrules or terrestrial igneous olivines, likely reflecting sequestration of P in reduced form within metallic alloys and sulfides during melting of type IA chondrules.  相似文献   

15.
We report in situ O isotope and chemical compositions of magnetite and olivine in chondrules of the carbonaceous chondrites Watson‐002 (anomalous CK3) and Asuka (A)‐881595 (ungrouped C3). Magnetite in Watson‐002 occurs as inclusion‐free subhedral grains and rounded inclusion‐bearing porous grains replacing Fe,Ni‐metal. In A‐881595, magnetite is almost entirely inclusion‐free and coexists with Ni‐rich sulfide and less abundant Ni‐poor metal. Oxygen isotope compositions of chondrule olivine in both meteorites plot along carbonaceous chondrite anhydrous mineral (CCAM) line with a slope of approximately 1 and show a range of Δ17O values (from approximately ?3 to ?6‰). One chondrule from each sample was found to contain O isotopically heterogeneous olivine, probably relict grains. Oxygen isotope compositions of magnetite in A‐881595 plot along a mass‐dependent fractionation line with a slope of 0.5 and show a range of Δ17O values from ?2.4‰ to ?1.1‰. Oxygen isotope compositions of magnetite in Watson‐002 cluster near the CCAM line and a Δ17O value of ?4.0‰ to ?2.9‰. These observations indicate that magnetite and chondrule olivine are in O isotope disequilibrium, and, therefore, not cogenetic. We infer that magnetite in CK chondrites formed by the oxidation of pre‐existing metal grains by an aqueous fluid during parent body alteration, in agreement with previous studies. The differences in Δ17O values of magnetite between Watson‐002 and A‐881595 can be attributed to their different thermal histories: the former experienced a higher degree of thermal metamorphism that led to the O isotope exchange between magnetite and adjacent silicates.  相似文献   

16.
To better understand the formation conditions of ferromagnesian chondrules from the Renazzo‐like carbonaceous (CR) chondrites, a systematic study of 210 chondrules from 15 CR chondrites was conducted. The texture and composition of silicate and opaque minerals from each observed FeO‐rich (type II) chondrule, and a representative number of FeO‐poor (type I) chondrules, were studied to build a substantial and self‐consistent data set. The average abundances and standard deviations of Cr2O3 in FeO‐rich olivine phenocrysts are consistent with previous work that the CR chondrites are among the least thermally altered samples from the early solar system. Type II chondrules from the CR chondrites formed under highly variable conditions (e.g., precursor composition, redox conditions, cooling rate), with each chondrule recording a distinct igneous history. The opaque minerals within type II chondrules are consistent with formation during chondrule melting and cooling, starting as S‐ and Ni‐rich liquids at 988–1350 °C, then cooling to form monosulfide solid solution (mss) that crystallized around olivine/pyroxene phenocrysts. During cooling, Fe,Ni‐metal crystallized from the S‐ and Ni‐rich liquid, and upon further cooling mss decomposed into pentlandite and pyrrhotite, with pentlandite exsolving from mss at 400–600 °C. The composition, texture, and inferred formation temperature of pentlandite within chondrules studied here is inconsistent with formation via aqueous alteration. However, some opaque minerals (Fe,Ni‐metal versus magnetite and panethite) present in type II chondrules are a proxy for the degree of whole‐rock aqueous alteration. The texture and composition of sulfide‐bearing opaque minerals in Graves Nunataks 06100 and Grosvenor Mountains 03116 suggest that they are the most thermally altered CR chondrites.  相似文献   

17.
Abstract— Two unusual dark clasts found in the Vigarano CV3 chondrite were examined using an optical microscope and a scanning electron microscope (SEM). Both clasts lack chondrules, Ca-Al-rich inclusions, and coarse-grained mineral fragments; they, instead, contain abundant inclusions that consist of fine grains (<1 μm) of homogeneous Fe-rich olivine, thus resembling the fine-grained variety of dark inclusions in CV3 chondrites. The external shapes of inclusions in the clasts bear a close resemblance to those of chondrules and chondrule fragments; some of the inclusions are surrounded by dark rims similar to chondrule rims. Our SEM observations reveal the following unusual characteristics: 1) the inclusions are not mere random aggregates of olivine grains but have peculiar internal textures, that is, assemblages of round or oval shaped outlines, which are suggestive of pseudomorphs after porphyritic olivine chondrules; 2) one of thick inclusion rims contains a network of vein-like strings of elongated olivine grains; 3) an Fe-Ni metal aggregate in one of the clasts has an Fe-, Ni-, S-rich halo suggesting a reaction between its precursor and the surrounding matrix; and 4) olivine in the clasts commonly shows a swirly, fibrous texture similar to that of phyllosilicate. These characteristics suggest that the dark clasts in Vigarano are not primary aggregates of dust in the solar nebula but were affected by aqueous alteration and subsequent dehydration by heating after accretion to the meteorite parent body. The fine olivine grains in these clasts were presumably produced by thermal transformation of phyllosilicate, as is the case with those in the two thermally metamorphosed Antarctic CM chondrites, Belgica-7904 and Yamato-86720. From textural and mineralogical similarities, some of the dark inclusions and clasts previously reported from CV3 chondrites and other types of meteorites may have origins common with these clasts in Vigarano.  相似文献   

18.
Abstract— The maximum diameter of chromite (FeCr2O4) grains within L chondrites reflects the petrographic type of the sample. On the basis of our measurements of nine recent L chondrites, L3 chromite Dmax = 34–50 μm, L4 = 87–150 μm, L5 = 76–158 μm, and L6 = 253–638 μm. This variation reflects the crystallization of the chromite grains during parent body thermal metamorphism. We use this calibration to classify six fossil meteorites from the Middle Ordovician in Sweden as type 3 (or 4) to 6. The high flux of L chondrites at 470 Ma contained a range of petrographic types and may have had a higher proportion of lower petrographic type meteorites than are found in recent L chondrite falls. The fossil meteorites have in places preserved recognizable chondrule textures, including porphyritic olivine, barred olivine, and radiating pyroxene. A large relict clast and fusion crust have also been tentatively identified in one fossil meteorite. Apart from chromite, all of the original meteorite minerals have been replaced by carbonate (and sheet silicate and sulfate) during diagenesis within the limestone host. The preservation of chondrule definition has allowed us to measure the mean diameters of relict chondrules. The range (0.4–0.6 mm) is consistent with measurements made in the same way on recent L chondrites.  相似文献   

19.
For fayalite formation times of several thousand years, and systems enriched in water by a factor of ten relative to solar composition, 1 μm radius olivine grains could reach 2 mole% fayalite and 0.1 μm grains 5 mole% by nebular condensation, well short of the values appropriate for precursors of most chondrules and the values found in the matrices of unequilibrated ordinary chondrites. Even 10 μm olivine crystals could reach 30 mole% fayalite above 1100 K in solar gas if condensation of metallic nickel‐iron were delayed sufficiently by supersaturation. Consideration of the surface tensions of several phases with equilibrium condensation temperatures above that of metallic iron shows that, even if they were supersaturated, they would still nucleate homogeneously above the equilibrium condensation temperature of metallic iron. This phenomenon would have provided nuclei for heterogeneous nucleation of metallic nickel‐iron, thus preventing the latter from supersaturating significantly and preventing olivine from becoming fayalitic. Unless a way is found to make nebular regions far more oxidizing than in existing models, it is unlikely that chondrule precursors or the matrix olivine grains of unequilibrated ordinary chondrites obtained their fayalite contents by condensation processes. Perhaps stabilization of FeO occurred after condensation of water ice and accretion of icy planetesimals, during heating of the planetesimals and/or in hot, dense, water‐rich vapor plumes generated by impacts on them. This would imply that FeO is a relatively young feature of nebular materials.  相似文献   

20.
Abstract— In a search for evidence of evaporation during chondrule formation, the mesostases of 11 Bishunpur chondrules and melt inclusions in olivine phenocrysts in 7 of them have been analyzed for their alkali element abundances and K‐isotopic compositions. Except for six points, all areas of the chondrules that were analyzed had δ41K compositions that were normal within error (typically ±3%, 2s?). The six “anomalous” points are probably all artifacts. Experiments have shown that free evaporation of K leads to large 41K enrichments in the evaporation residues, consistent with Rayleigh fractionation. Under Rayleigh conditions, a 3% enrichment in δ41K is produced by ~12% loss of K. The range of L‐chondrite‐normalized K/Al ratios (a measure of the K‐elemental fractionation) in the areas analyzed vary by almost three orders of magnitude. If all chondrules started out with L‐chondrite‐like K abundances and the K loss occurred via Rayleigh fractionation, the most K‐depleted chondrules would have had compositions of up to δ41K ? 200%. Clearly, K fractionation did not occur by evaporation under Rayleigh conditions. Yet experiments and modeling indicate that K should have been lost during chondrule formation under currently accepted formation conditions (peak temperature, cooling rate, etc.). Invoking precursors with variable alkali abundances to produce the range of K/Al fractionation in chondrules does not explain the K‐isotopic data because any K that was present should still have experienced sufficient loss during melting for there to have been a measurable isotopic fractionation. If K loss and isotopic fractionation was inevitable during chondrule formation, the absence of K‐isotopic fractionation in Bishunpur chondrules requires that they exchanged K with an isotopically normal reservoir during or after formation. There is evidence for alkali exchange between chondrules and rim‐matrix in all unequilibrated ordinary chondrites. However, melt inclusions can have alkali abundances that are much lower than the mesostases of the host chondrules, which suggests that they at least remained closed since formation. If it is correct that some or all melt inclusions remained closed since formation, the absence of K‐isotopic fractionation in them requires that the K‐isotopic exchange took place during chondrule formation, which would probably require gas‐chondrule exchange. Potassium evaporated from fine‐grained dust and chondrules during chondrule formation may have produced sufficient K‐vapor pressure for gas‐chondrule isotopic exchange to be complete on the timescales of chondrule formation. Alternatively, our understanding of chondrule formation conditions based on synthesis experiments needs some reevaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号