首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
Abstract— From April 24 to May 14, 2000, the Near Earth Asteroid Rendezvous (NEAR) Shoemaker mission's near infrared spectrometer (NIS) obtained its highest resolution data of 433 Eros. High signal‐to‐noise ratio NIS reflectance spectra cover a wavelength range of 800–2400 nm, with footprint sizes from 213 times 427 m to 394 times 788 m. This paper describes improvement in instrument calibration by remediation of internally scattered light; derivation of a “pseudo channel” for NIS at 754 nm using Multispectral Imager (MSI) Eros approach maps at 951 and 754 nm; synthesis of a 3127‐spectrum high‐resolution data set with the improved calibration and expanded wavelength coverage; and investigation of global and localized spectral variation with respect to mineralogy, composition, and space weathering of Eros, comparing the findings with previous analyses. Scattered light removal reduces the “red” slope of Eros spectra, though not to the level seen by telescopic observations. The pseudo channel completes sampling of Eros' 1 micron (Band I) absorption feature, enabling direct comparison of NIS data with other asteroid and meteorite spectra without additional scaling or correction. Following scattered light removal and wavelength range extension, the spectral parameters of average Eros plot well inside the S(IV) field of Gaffey et al. (1993) and are consistent with the L6 chondrite meteorite fields of Gaffey and Gilbert (1998). Although Eros shows no evidence of mineralogical heterogeneity, modest spectral variations correlate with morphologically and geographically distinct areas of the asteroid. Eros bright‐to‐dark spectral ratios are largely consistent with laboratory “space weathering” experiment results and modeling of space weathering effects. Eros brightness variation unaccompanied by significant spectral variation departs from “lunar‐type”—where band depths, slopes, and albedoes all correlate—and “Ida‐type”—where significant spectral variation is unaccompanied by corresponding brightness variation. The brightest areas on Eros—steep crater walls—have lesser spectral slope and deeper Band I, consistent with exposure of “fresher,” less space weathered materials. Bright crater slope materials have opx/(opx + olv) of 0.24–0.29 and may be more representative of the subsurface mineralogy than “average” Eros, which is probably affected by space weathering. The floors of the large craters Psyche and Himeros have lower albedo and contain the most degraded or altered looking materials. NIS spectra retain a “red” spectral slope at greater than 2 microns. The recalibrated and expanded NIS spectra show better agreements with mixing models based on space weathering of chondritic mixtures.  相似文献   

2.
From February 13 to May 13, 2000, the near-infrared spectrometer (NIS) instrument on the Near Earth Asteroid Rendezvous (NEAR) spacecraft obtained more than 200,000 spatially resolved 800- to 2500-nm reflectance spectra of the S-type asteroid 433 Eros. An important subset of the spectra was obtained during a unique opportunity on February 13 and 14, when the NEAR spacecraft flew directly through the 0° phase angle point between Eros and the Sun just prior to the orbital insertion maneuver. This low phase flyby (LPF) dataset consists of ∼2000 spectra of the northern hemisphere of Eros, obtained from 1° to 47° phase angle and at spatial resolutions of between 6×12 km to 1.25×2.50 km per spectrum. The spectra were calibrated to radiance factor (I/F, where I=observed radiance and πF=solar input radiance) and then photometrically corrected to normal albedo. The average northern hemisphere spectrum of Eros is similar to the asteroid's unresolved telescopic spectrum and exhibits absorption features near 1000 nm (Band I) and 2000 nm (Band II) consistent with an orthopyroxene to orthopyroxene+olivine (opx+ol) mixing ratio of approximately 0.38±0.08. The ensemble of NIS LPF spectra falls primarily within the S(IV) to upper S(III) fields of the Gaffey et al. (1993) S-asteroid classification scheme and exhibits Band I and Band II properties similar to those of ordinary chondrite meteorites. While some small spatially coherent spectral variations have been detected, neither the opx/opx+ol) mixing ratio nor other spectral parameters vary spatially by more than ∼1σ across the entire northern hemisphere of the asteroid, suggesting a remarkable homogeneity of the composition and mineralogy of the uppermost regolith. Spectral mixture modeling suggests that the presence of glass and/or a reddening agent like nanophase iron, likely formed from exposure of the regolith to the space environment, is a component of the surface of Eros. Reddening and darkening components could also explain the dissimilarity in overall spectral slope and albedo between Eros and other S(IV) asteroids and ordinary chondrite meteorites. The largest (but still weak) spectral variations across the surface are seen in the depths of Band I and Band II, which are greatest in and around the largest craters and at the 0° longitude “nose” of the asteroid, and in the Band II/Band I area ratio between the large impact craters Psyche and Himeros. These subtle NIS spectral variations are usually associated with albedo and surface slope variations seen in NEAR imaging and topographic data and appear to be related to downslope movement of regolith materials.  相似文献   

3.
The spectral reflectance (0.33–1.07 μm) for the asteroid 433 Eros was determined as a function of rotational phase during January 28–30, and February 15, 1975. Interpretation of absorption features suggests Eros is composed of an undifferentiated assemblange of moderate to high temperature minerals (iron, pyroxene, and olivine, but no carbon). H-type ordinary chondrites are such assemblages, but it would be premature to conclude that Eros is like an H chondrite meteorite in composition until a better understanding is reached of possible physical differences between laboratory powders and asteroid regoliths for metal-bearing assemblages. There are no large-scale major compositional variations on the different sides of Eros.  相似文献   

4.
Data obtained by the near-infrared spectrometer carried by the NEAR-Shoemaker spacecraft show that the spectral properties of the asteroid Eros vary with temperature. The manner in which they vary demonstrates that the mineral olivine is a major constituent of the surface. The near-IR temperature-dependent spectral properties of Eros in the northern hemisphere, and for two individual regions on the surface, show clear evidence of the presence of the mineral olivine and are a close match to the temperature-spectral behavior of LL-type ordinary chondrite meteorites. While the presence of other olivine-rich meteorites cannot be excluded, H-type ordinary chondrites are clearly too pyroxene-rich to be permitted as a major surface component of Eros. The results of the thermal-spectral analysis are consistent with results from analysis of conventional reflectance spectra of the asteroid and contribute unambiguous detection of olivine to the understanding of the surface composition of Eros.  相似文献   

5.
E.A. Cloutis  P. Hudon  T. Hiroi 《Icarus》2011,216(1):309-346
We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe3+-Fe2+ charge transfers), and the 0.9-1.2 μm region (due to Fe2+ crystal field transitions), and generally dominate over mafic silicates. CM petrologic subtypes exhibit a positive correlation between degree of aqueous alteration and depth of the 0.7 μm absorption band. This is consistent with the decrease in fine-grained opaques that accompanies aqueous alteration. There is no consistent relationship between degree of aqueous alteration and evidence for a 0.65 μm region saponite-group phyllosilicate absorption band. Spectra of different subsamples of a single CM can show large variations in absolute reflectance and overall slope. This is probably due to petrologic variations that likely exist within a single CM chondrite, as duplicate spectra for a single subsample show much less spectral variability. When the full suite of available CM spectra is considered, few clear spectral-compositional trends emerge. This indicates that multiple compositional and physical factors affect absolute reflectance, absorption band depths, and absorption band wavelength positions. Asteroids with reflectance spectra that exhibit absorption features consistent with CM spectra (i.e., absorption bands near 0.7 and 0.9 μm) include members from multiple taxonomic groups. This suggests that on CM parent bodies, aqueous alteration resulted in the consistent production of serpentine-group phyllosilicates, however resulting absolute reflectances and spectral shapes seen in CM reflectance spectra are highly variable, accounting for the presence of phyllosilicate features in reflectance spectra of asteroids across diverse taxonomic groups.  相似文献   

6.
Abstract— We present combined multi‐spectral imager (MSI) (0.95 μm) and near‐infrared spectrometer (NIS) (0.8–2.4 μm) observations of Psyche crater on S‐type asteroid 433 Eros obtained by the Near‐Earth Asteroid Rendezvous (NEAR)—Shoemaker spacecraft. At 5.3 km in diameter, Psyche is one of the largest craters on Eros which exhibit distinctive brightness patterns consistent with downslope motion of dark regolith material overlying a substrate of brighter material. At spatial scales of 620 m/ spectrum, Psyche crater wall materials exhibit albedo contrasts of 32–40% at 0.946 μm. Associated spectral variations occur at a much lower level of 4–8% (±2–4%). We report results of scattering model and lunar analogy investigations into several possible causes for these albedo and spectral trends: grain size differences, olivine, pyroxene, and troilite variations, and optical surface maturation. We find that the albedo contrasts in Psyche crater are not consistent with a cause due solely to variations in grain size, olivine, pyroxene or lunar‐like optical maturation. A grain size change sufficient to explain the observed albedo contrasts would result in strong color variations that are not observed. Olivine and pyroxene variations would produce strong band‐correlated variations that are not observed. A simple lunar‐like optical maturation effect would produce strong reddening that is not observed. The contrasts and associated spectral variation trends are most consistent with a combination of enhanced troilite (a dark spectrally neutral component simulating optical effects of shock) and lunar‐like optical maturation. These results suggest that space weathering processes may affect the spectral properties of Eros materials, causing surface exposures to differ optically from subsurface bedrock. However, there are significant spectral differences between Eros' proposed analog meteorites (ordinary chondrites and/or primitive achondrites), and Eros' freshest exposures of subsurface bright materials. After accounting for all differences in the measurement units of our reflectance comparisons, we have found that the bright materials on Eros have reflectance values at 0.946 μm consistent with meteorites, but spectral continua that are much redder than meteorites from 1.5 to 2.4 μm. Most importantly, we calculate that average Eros surface materials are 30–40% darker than meteorites.  相似文献   

7.
Abstract— The near‐Earth asteroid rendezvous (NEAR) mission carried x‐ray/gamma‐ray spectrometers and multi‐spectral imager/near‐infrared spectrometer instrument packages which gave complementary information on the chemistry and mineralogy, respectively, of the target asteroid 433 Eros. Synthesis of these two data sets provides information not available from either alone, including the abundance of non‐mafic silicates, metal and sulfide minerals. We have utilized four techniques to synthesize these data sets. Venn diagrams, which examine overlapping features in two data sets, suggest that the best match for 433 Eros is an ordinary chondrite, altered at the surface of the asteroid, or perhaps a primitive achondrite derived from material mineralogically similar to these chondrites. Normalized element distributions preclude FeO‐rich pyroxenes and suggest that the x‐ray and gamma‐ray data can be reconciled with a common silicate mineralogy by inclusion of varying amounts of metal. Normative mineralogy cannot be applied to these data sets owing to uncertainties in oxygen abundance and lack of any constraints on the abundance of sodium. Matrix inversion for simultaneous solution of mineral abundances yields reasonable results for the x‐ray‐derived bulk composition, but seems to confirm the inconsistency between mineral compositions and orthopyroxene/clinopyroxene ratios. A unique solution does not seem possible in synthesizing these multiple data sets. Future missions including a lander to fully characterize regolith distribution and sample return would resolve the types of problems faced in synthesizing the NEAR data.  相似文献   

8.
Abstract– The 0.35–2.5 μm reflectance spectra of iron meteorite powders and slabs have been studied as a function of composition, surface texture (for slabs), grain size (for powders), and viewing geometry (for powders). Powder spectra are invariably red‐sloped over this wavelength interval and have a narrow range of visible albedos (approximately 10–15% at 0.56 μm). Metal (Fe:Ni) compositional variations have no systematic effect on the powder spectra, increasing grain size results in more red‐sloped spectra, and changes in viewing geometry have variable effects on overall reflectance and spectral slope. Roughened metal slab spectra have a wider, and higher, range of visible albedos than powders (22–74% at 0.56 μm), and are also red‐sloped. Smoother slabs exhibit greater differences from iron meteorite powder spectra, exhibiting wider variations in overall reflectance, spectral slopes, and spectral shapes. No unique spectral parameters exist that allow for powder and slab spectra to be fully separated in all cases. Spectral differences between slabs and powders can be used to constrain possible surface properties, and causes of rotational spectral variations, of M‐asteroids. The magnitude of spectral variations between M‐asteroids and rotational and spectral variability does not necessarily imply a dramatic change in surface properties, as the differences in albedo and/or spectral slope can be accommodated by modest changes in grain size (for powders), small changes in surface roughness (for slabs), or variations in viewing geometry. Since metal powders exhibit much less spectral variability than slabs, M‐asteroid spectral variability requires larger changes in either powder properties or viewing geometry than for slabs for a given degree of spectral variation.  相似文献   

9.
A reanalysis of NEAR X‐ray/gamma‐ray spectrometer (XGRS) data provides robust evidence that the elemental composition of the near‐Earth asteroid 433 Eros is consistent with the L and LL ordinary chondrites. These results facilitated the use of the gamma‐ray measurements to produce the first in situ measurement of hydrogen concentrations on an asteroid. The measured value,  ppm, is consistent with hydrogen concentrations measured in L and LL chondrite meteorite falls. Gamma‐ray derived abundances of hydrogen and potassium show no evidence for depletion of volatiles relative to ordinary chondrites, suggesting that the sulfur depletion observed in X‐ray data is a surficial effect, consistent with a space‐weathering origin. The newfound agreement between the X‐ray, gamma‐ray, and spectral data suggests that the NEAR landing site, a ponded regolith deposit, has an elemental composition that is indistinguishable from the mean surface. This observation argues against a pond formation process that segregates metals from silicates, and instead suggests that the differences observed in reflectance spectra between the ponds and bulk Eros are due to grain size differences resulting from granular sorting of ponded material.  相似文献   

10.
Abstract— We have studied the petrography, reflectance spectra, and Ar‐Ar systematics of the Orivinio meteorite. Orvinio is an H chondrite not an L chondrite as sometimes reported. The material in the meteorite was involved in several impact events. One impact event produced large swaths of impact melt from H chondrite material surrounding relict clasts of chondrule‐bearing material. Not only were portions of a bulk H chondrite planestesimal melted during the impact event, but shock redistribution of metal and sulfide phases in the meteorite dramatically altered its reflectance spectra. Both the melt and relict clasts are darker than unshocked H chondrite material, bearing spectral similarities to some C‐class asteroids. Such shock metamorphism, which lowers the albedo of an object without increasing its spectral slope, may partially explain some of the variation among S‐class asteroids and some of the trends seen on asteroid 433 Eros. Noble gases record the evidence of at least two, and perhaps three, impact events in the meteorite and its predecessor rocks. The most significant evidence is for an event that occurred 600 Ma ago or less, perhaps ?325 Ma ago or less. There is also a signature of 4.2 Ga in the Ar‐Ar systematics, which could either reflect complete degassing of the rock at that time or partial degassing of even the most retentive sites in the more recent event.  相似文献   

11.
Abstract– We have obtained near‐infrared spectra for near‐Earth asteroids (NEA) and Main Belt asteroids by using NASA’s Infrared Telescope Facility. Most of the S complex classes of the Tholen‐Bus‐DeMeo scheme and the S(I)–S(VII) classes are represented. To help interpret the results, we examined visible/near‐IR spectra for ordinary chondrites. The unequilibrated ordinary chondrites (UOC) spectra contain a 2.3 μm feature which is absent in the spectra of the equilibrated ordinary chondrites (EOC). On the basis of literature data and new spectra low‐Ca clinopyroxenes, we suggest that the 2.3 μm in UOC is due to the presence of low‐Ca clinopyroxene in the UOC which is absent in EOC. While this difference can be seen in the raw spectra, we confirmed this observation using a modified Gaussian model (MGM) for spectral analysis. Both the UOC and the EOC plot in the S(IV) field of the band area ratio plot for asteroids. We suggest that many or most S(IV) asteroids have material resembling UOC on their surfaces. An internally heated ordinary chondrite parent object would have EOC material at depth and UOC material on the surface. Cosmic ray exposure ages, and K‐Ar ages for L chondrites, indicate that most EOC came from relatively few objects; however, the age distributions for UOC are unlike those of EOC. We suggest that while EOC come from the interiors of a limited number of S(IV) asteroids, the UOC come from the surfaces of a large number of S(IV) asteroids.  相似文献   

12.
Abstract— Near‐Earth asteroid (25143) 1998 SF36 is a planned target for the Japanese MUSES‐C sample return mission. High signal‐to‐noise and relatively high‐resolution (50 Å) visible and near‐infrared spectroscopic measurements obtained during this asteroid's favorable 2001 apparition reveal it to have a red‐sloped S(IV)‐type spectrum with strong 1 and 2 μm absorption bands analogous to those measured for ordinary chondrite meteorites. This red slope, which is the primary spectral difference between (25143) 1998 SF36 and ordinary chondrite meteorites, is well modeled by the spectrum of 0.05% nanophase iron (npFe0) proposed as a weathering mechanism by Pieters et al. (2000). Asteroid 1998 SF36 appears to have a surface composition corresponding to that of ordinary chondrite meteorites and is most similar in spectral characteristics and modeled olivine/pyroxene content to the LL chondrite class.  相似文献   

13.
We present near-infrared spectrometer (NIS) observations (0.8 to 2.4 μm) of the S-type asteroid 433 Eros obtained by the NEAR Shoemaker spacecraft and report results of our Hapke photometric model analysis of data obtained at phase angles ranging from 1.2° to 111.0° and at spatial resolutions of 1.25×2.5 to 2.75×5.5 km/spectrum. Our Hapke model fits successfully to the NEAR spectroscopic data for systematic color variations that accompany changing viewing and illumination geometry. Model parameters imply a geometric albedo at 0.946 μm of 0.27±0.04, which corresponds to a geometric albedo at 0.550 μm of 0.25±0.05. We find that Eros exhibits phase reddening of up to 10% across the phase angle range of 0-100°. We observe a 10% increase in the 1-μm band depth at high phase angles. In contrast, we observe only a 5% increase in continuum slope from 1.486 to 2.363 μm and essentially no difference in the 2-μm band depth at higher phase angles. These contrasting phase effects imply that there are phase-dependent differences in the parametric measurements of 1- and 2-μm band areas, and in their ratio. The Hapke model fits suggest that Eros exhibits a weaker opposition surge than either 951 Gaspra or 243 Ida (the only other S-type asteroids for which we possess disk-resolved photometric observations). On average, we find that Eros at 0.946 μm has a higher geometric albedo and a higher single-scatter albedo than Gaspra or Ida at 0.56 μm; however, Eros's single-particle phase function asymmetry and average surface macroscopic roughness parameters are intermediate between Gaspra and Ida. Only two of the five Hapke model parameters exhibit a notable wavelength dependence: (1) The single-scatter albedo mimics the spectrum of Eros, and (2) there is a decrease in angular width of the opposition surge with increasing wavelength from 0.8 to 1.7 μm. Such opposition surge behavior is not adequately modeled with our shadow-hiding Hapke model, consistent with coherent backscattering phenomena near zero phase.  相似文献   

14.
Except for asteroid sample return missions, measurements of the spectral properties of both meteorites and asteroids offer the best possibility of linking meteorite groups with their parent asteroid(s). Visible plus near‐infrared spectra reveal distinguishing absorption features controlled mainly by the Fe2+ contents and modal abundances of olivine and pyroxene. Meteorite samples provide relationships between spectra and mineralogy. These relationships are useful for estimating the olivine and pyroxene mineralogy of stony (S‐type) asteroid surfaces. Using a suite of 10 samples of the acapulcoite–lodranite clan (ALC), we have developed new correlations between spectral parameters and mafic mineral compositions for partially melted asteroids. A well‐defined relationship exists between Band II center and ferrosilite (Fs) content of orthopyroxene. Furthermore, because Fs in orthopyroxene and fayalite (Fa) content in olivine are well correlated in these meteorites, the derived Fs content can be used to estimate Fa of the coexisting olivine. We derive new equations for determining the mafic silicate compositions of partially melted S‐type asteroid parent bodies. Stony meteorite spectra have previously been used to delineate meteorite analog spectral zones in Band I versus band area ratio (BAR) parameter space for the establishment of asteroid–meteorite connections with S‐type asteroids. However, the spectral parameters of the partially melted ALC overlap with those of ordinary (H) chondrites in this parameter space. We find that Band I versus Band II center parameter space reveals a clear distinction between the ALC and the H chondrites. This work allows the distinction of S‐type asteroids as nebular (ordinary chondrites) or geologically processed (primitive achondrites).  相似文献   

15.
Earth-based spectral measurements and NEAR Shoemaker magnetometer, X-ray, and near-infrared spectrometer data are all consistent with Eros having a bulk composition and mineralogy similar to ordinary chondrite meteorites (OC). By comparing the bulk density of 433 Eros (2.67±0.03 g/cm3) with that of OCs (3.40 g/cm3), we estimate the total porosity of the asteroid to be 21-33%. Macro (or structural) porosity, best estimated to be ∼20%, is constrained to be between 6 and 33%. We conclude that Eros is a heavily fractured body, but we find no evidence that it was ever catastrophically disrupted and reaccumulated into a rubble pile.  相似文献   

16.
Abstract— I review the dynamical and compositional evidence for possibly linking CM chondrites and asteroids having G-class taxonomic designations. Three G asteroids have been identified through previous theoretical studies as being likely meteorite source bodies due to their locations near resonances. Two of these objects, 19 Fortuna and 13 Egeria, have spectral properties that are consistent with such a linkage with CM chondrites. Fortuna has a similar strength 0.7 μm absorption feature and near-infrared spectral slope to CM chondrites but a weaker ultraviolet feature. Egeria also has the characteristic 0.7 μm feature of CM chondrite spectra but does not match as well in the near-infrared. However, since the 0.7 μm feature is apparent in the spectra of approximately one-half of measured C-type asteroids, no definitive statement about any linkages can be made. Ceres is spectrally different from known meteorites in the 3 μm wavelength region and cannot be convincingly linked with any meteorite group.  相似文献   

17.
The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS‐REx) mission is to return to Earth a pristine sample of carbonaceous material from the primitive asteroid (101955) Bennu. To support compositional mapping of Bennu as part of sample site selection and characterization, we tested 95 spectral indices on visible to near infrared laboratory reflectance data from minerals and carbonaceous meteorites. Our aim was to determine which indices reliably identify spectral features of interest. Most spectral indices had high positive detection rates when applied to spectra of pure, single‐component materials. The meteorite spectra have fewer and weaker absorption features and, as a result, fewer detections with the spectral indices. Indices targeting absorptions at 0.7 and 2.7–3 μm, which are attributable to hydrated minerals, were most successful for the meteorites. Based on these results, we identified a set of 17 indices that are most likely to be useful at Bennu. These indices detect olivines, pyroxenes, carbonates, water/OH‐bearing minerals, serpentines, ferric minerals, and organics. Particle size and albedo are known to affect band depth but had a negligible impact on interpretive success with spectral indices. Preliminary analysis of the disk‐integrated Bennu spectrum with these indices is consistent with expectations given the observed absorption near 3 μm. Our study prioritizes spectral indices to be used for OSIRIS‐REx spectral analysis and mapping and informs the reliability of all index‐derived data products, including a science value map for sample site selection.  相似文献   

18.
Abstract— Visible and near‐infrared reflectance spectra of a sample of silicate‐bearing meteorites have been used to evaluate the spectral parameters space defined in the pioneering work of Gaffey et al. (1993). The studied sample consisted of 91 ordinary chondrites, 47 basaltic achondrites, and 21 different laboratory mixtures obtained from the RELAB database. Our results indicate that the spectral parameter space, in particular the BAR versus band I center, is not suitable enough to identify the mineralogy of meteorites and asteroids. The grain size of the sample also appears as a very sensitive parameter and can play an important role in locating an object in the spectral parameter space. Finally, the application of our study to the question of a genetic link between V‐type asteroids and HED meteorites shows that these bodies plot in distinct regions in the BAR versus band I center space. This result further confirms that those spectral parameters cannot uniquely define the mineralogy of a sample.  相似文献   

19.
Abstract— Radar data enable us to estimate an asteroid's near‐surface bulk density, thus providing a joint constraint on near‐surface porosity and solid density. We investigate two different approaches to simplifying this joint constraint: estimating solid densities by assuming uniform porosities for all asteroids; and estimating porosities by assuming uniform mineralogy within each taxonomic class. Methods used to estimate asteroids' near‐surface solid densities from radar data have not previously been calibrated via independent estimates. Recent spacecraft results on the chondritic nature of 433 Eros now permit such a check, and also support porosity estimation for S‐class objects. We use radar albedos and polarization ratios estimated for 36 main‐belt asteroids and nine near‐Earth asteroids to estimate near‐surface solid densities using two methods, one of which is similar to the uncalibrated algorithms used in previous studies, the other of which treats Eros as a calibrator. We also derive porosities for the same sample by assigning solid densities for each taxonomic class in advance. Density‐estimation results obtained for Eros itself are consistent with the uncalibrated method being valid in the mean; those derived for the full sample imply that uncalibrated solid densities are, at most, a few tens of percent too large on average. However, some derived densities are extremely low, whereas most porosity estimates are physically plausible. We discuss the relative merits of these two approaches.  相似文献   

20.
Abstract— The magnetometer experiment (MAG) onboard the Near‐Earth Asteroid Rendezvous (NEAR)‐Shoemaker spacecraft detected no global scale magnetization and established a maximum magnetization of 2.1 times 10?6 Am2 kg?1 for asteroid 433 Eros. This is in sharp contrast with the estimated magnetization of other S‐class asteroids (Gaspra, ?2.4 times 10?2 Am2 kg?1; Braille, ?2.8 times 10?2 Am2 kg?1) and is below published values for all types of ordinary chondrites. This includes the L/LL types considered to most closely match 433 Eros based on preliminary interpretations of NEAR remote geochemical experiments. The ordinary chondrite meteorite magnetization intensity data was reviewed in order to assess the reasonableness of an asteroid‐meteorite match based on magnetic property measurements. Natural remanent magnetization (NRM) intensities for the ordinary chondrite meteorites show at least a 2 order of magnitude range within each of the H, L, and LL groups, all well above the 2.1 times 10?6 Am2 kg?1 level for 433 Eros. The REM values (ratio of the NRM to the SIRM (saturation remanent magnetization)) range over 3 orders of magnitude for all chondrite groups indicating no clear relationship between NRM and the amount of magnetic material. Levels of magnetic noise in chondrite meteorites can be as much as 70% or more of the NRM. Consequently, published values of the NRM should be considered suspect unless careful evaluation of the noise sources is done. NASA Goddard SFC studies of per unit mass intensities in large (>10 000 g) and small (down to <1 g) samples from the same meteorite demonstrate magnetic intensity decreases as size increases. This would appear to be explained by demagnetization due to magnetic vector randomness at unknown scale sizes in the larger samples. This would then argue for some level of demagnetization of large objects such as an asteroid. The possibility that 433 Eros is an LL chondrite cannot be discounted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号