首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
Abstract— A major revision of the current Saikumar and Goldstein (1988) cooling rate computer model for kamacite growth is presented. This revision incorporates a better fit to the α/α + γ phase boundary and to the γ/α + γ phase boundary particularly below the monotectoid temperature of 400 °C. A reevaluation of the latest diffusivities for the Fe‐Ni system as a function of Ni and P content and temperature is made, particularly for kamacite diffusivity below the paramagnetic to ferromagnetic transition. The revised simulation model is applied to several iron meteorites and several mesosiderites. For the mesosiderites we obtain a cooling rate of 0.2 °C/Ma, about 10x higher than the most recent measured cooling rates. The cooling rate curves from the current model do not accurately predict the central nickel content of taenite halfwidths smaller than ~10 μm. This result calls into question the use of conventional kamacite growth models to explain the microstructure of the mesosiderites. Kamacite regions in mesosiderites may have formed by the same process as decomposed duplex plessite in iron meteorites.  相似文献   

2.
Abstract– The microstructures of six reheated iron meteorites—two IVA irons, Maria Elena (1935), Fuzzy Creek; one IVB iron, Ternera; and three ungrouped irons, Hammond, Babb’s Mill (Blake’s Iron), and Babb’s Mill (Troost’s Iron)—were characterized using scanning and transmission electron microscopy, electron‐probe microanalysis, and electron backscatter diffraction techniques to determine their thermal and shock history and that of their parent asteroids. Maria Elena and Hammond were heated below approximately 700–750 °C, so that kamacite was recrystallized and taenite was exsolved in kamacite and was spheroidized in plessite. Both meteorites retained a record of the original Widmanstätten pattern. The other four, which show no trace of their original microstructure, were heated above 600–700 °C and recrystallized to form 10–20 μm wide homogeneous taenite grains. On cooling, kamacite formed on taenite grain boundaries with their close‐packed planes aligned. Formation of homogeneous 20 μm wide taenite grains with diverse orientations would have required as long as approximately 800 yr at 600 °C or approximately 1 h at 1300 °C. All six irons contain approximately 5–10 μm wide taenite grains with internal microprecipitates of kamacite and nanometer‐scale M‐shaped Ni profiles that reach approximately 40% Ni indicating cooling over 100–10,000 yr. Un‐decomposed high‐Ni martensite (α2) in taenite—the first occurrence in irons—appears to be a characteristic of strongly reheated irons. From our studies and published work, we identified four progressive stages of shock and reheating in IVA irons using these criteria: cloudy taenite, M‐shaped Ni profiles in taenite, Neumann twin lamellae, martensite, shock‐hatched kamacite, recrystallization, microprecipitates of taenite, and shock‐melted troilite. Maria Elena and Fuzzy Creek represent stages 3 and 4, respectively. Although not all reheated irons contain evidence for shock, it was probably the main cause of reheating. Cooling over years rather than hours precludes shock during the impacts that exposed the irons to cosmic rays. If the reheated irons that we studied are representative, the IVA irons may have been shocked soon after they cooled below 200 °C at 4.5 Gyr in an impact that created a rubblepile asteroid with fragments from diverse depths. The primary cooling rates of the IVA irons and the proposed early history are remarkably consistent with the Pb‐Pb ages of troilite inclusions in two IVA irons including the oldest known differentiated meteorite ( Blichert‐Toft et al. 2010 ).  相似文献   

3.
K.L. Rasmussen 《Icarus》1981,45(3):564-576
Measurements of Ni concentration profiles of a large number of neighboring kamacite and taenite lamellae in the iron meteorite Cape York (IIIA) have revealed that the kamacite plates have nucleated in a taenite of varying Ni concentration, equal to or above the bulk Ni concentration of the meteorite. This variation indicates that the kamacite plates nucleated stepwise (i.e., independently) during cooling through a certain temperature interval, rather than simultaneously after more or less undercooling of the meteorite. The latter is assumed in most previous cooling rate determinations (e.g., Moren and Goldstein, 1978). In this paper the measured local bulk Ni concentrations are used in the computer simulation of the evolution of the Widmannstaetten pattern in order to calculate the cooling rate of the meteorite. The cooling rate obtained for Cape York is 1.3°K/my. In most previous work, a correlation is seen between the resulting taenite width and the cooling rate in one and the same meteorite. No such correlation is seen using the present method.  相似文献   

4.
Abstract— Iron meteorites show resolvable Fe and Ni isotopic fractionation between taenite and kamacite. For Toluca (IAB), the isotopic fractionations between the two phases are around +0.1‰/amu for Fe and ?0.4‰/amu for Ni. These variations may be due to i) equilibrium fractionation, ii) differences in the diffusivities of the different isotopes, or iii) a combination of both processes. A computer algorithm was developed in order to follow the growth of kamacite out of taenite during the formation of the Widmanstätten pattern as well as calculate the fractionation of Fe and Ni isotopes for a set of cooling rates ranging from 25 to 500 °C/Myr. Using a relative difference in diffusion coefficients of adjacent isotopes of 4‰/amu for Fe and Ni (β = 0.25), the observations made in Toluca can be reproduced for a cooling rate of 50 °C/Myr. This value agrees with earlier cooling rate estimates based on Ni concentration profiles. This supports the idea that the fractionation measured for Fe and Ni in iron meteorites is driven by differences in diffusivities of isotopes. It also supports the validity of the value of 0.25 adopted for β for diffusion of Fe and Ni in Fe‐Ni alloy in the temperature range of 400–700 °C.  相似文献   

5.
We report in situ NanoSIMS siderophile minor and trace element abundances in individual Fe‐Ni metal grains in the unequilibrated chondrite Krymka (LL3.2). Associated kamacite and taenite of 10 metal grains in four chondrules and one matrix metal were analyzed for elemental concentrations of Fe, Ni, Co, Cu, Rh, Ir, and Pt. The results show large elemental variations among the metal grains. However, complementary and correlative variations exist between adjacent kamacite‐taenite. This is consistent with the unequilibrated character of the chondrite and corroborates an attainment of chemical equilibrium between the metal phases. The calculated equilibrium temperature is 446 ± 9 °C. This is concordant with the range given by Kimura et al. (2008) for the Krymka postaccretion thermal metamorphism. Based on Ni diffusivity in taenite, a slow cooling rate is estimated of the Krymka parent body that does not exceed ~1K Myr?1, which is consistent with cooling rates inferred by other workers for unequilibrated ordinary chondrites. Elemental ionic radii might have played a role in controlling elemental partitioning between kamacite and taenite. The bulk compositions of the Krymka metal grains have nonsolar (mostly subsolar) element/Ni ratios suggesting the Fe‐Ni grains could have formed from distinct precursors of nonsolar compositions or had their compositions modified subsequent to chondrule formation events.  相似文献   

6.
Abstract— We studied the metallography of Fe‐Ni metal particles in 17 relatively unshocked ordinary chondrites and interpreted their microstructures using the results of P‐free, Fe‐Ni alloy cooling experiments (described in Reisener and Goldstein 2003). Two types of Fe‐Ni metal particles were observed in the chondrites: zoned taenite + kamacite particles and zoneless plessite particles, which lack systematic Ni zoning and consist of tetrataenite in a kamacite matrix. Both types of metal particles formed during metamorphism in a parent body from homogeneous, P‐poor taenite grains. The phase transformations during cooling from peak metamorphic temperatures were controlled by the presence or absence of grain boundaries in the taenite particles. Polycrystalline taenite particles transformed to zoned taenite + kamacite particles by kamacite nucleation at taenite/taenite grain boundaries during cooling. Monocrystalline taenite particles transformed to zoneless plessite particles by martensite formation and subsequent martensite decomposition to tetrataenite and kamacite during the same cooling process. The varying proportions of zoned taenite + kamacite particles and zoneless plessite particles in types 4–6 ordinary chondrites can be attributed to the conversion of polycrystalline taenite to monocrystalline taenite during metamorphism. Type 4 chondrites have no zoneless plessite particles because metamorphism was not intense enough to form monocrystalline taenite particles. Type 6 chondrites have larger and more abundant zoneless plessite particles than type 5 chondrites because intense metamorphism in type 6 chondrites generated more monocrystalline taenite particles. The distribution of zoneless plessite particles in ordinary chondrites is entirely consistent with our understanding of Fe‐Ni alloy phase transformations during cooling. The distribution cannot be explained by hot accretion‐autometamorphism, post‐metamorphic brecciation, or shock processing.  相似文献   

7.
Abstract— We have measured the size of the high‐Ni particles in the cloudy zone and the width of the outer taenite rim in eight low shocked and eight moderately to heavily shocked IVA irons using a transmission electron microscope (TEM). Thin sections for TEM analysis were produced by a focused ion beam instrument. Use of the TEM allowed us to avoid potential artifacts which may be introduced during specimen preparation for SEM analysis of high Ni particles <30 nm in size and to identify microchemical and microstructural changes due to the effects of shock induced reheating. No cloudy zone was observed in five of the eight moderately to highly shocked (>13 GPa) IVA irons that were examined in the TEM. Shock induced reheating has allowed for diffusion from 20 nm to 400 nm across kamacite/taenite boundaries, recrystallization of kamacite, and the formation, in Jamestown, of taenite grain boundaries. In the eleven IVA irons with cloudy zone microstructures, the size of the high‐Ni particles in the cloudy zone increases directly with increasing bulk Ni content. Our data and the inverse correlation between cooling rate and high‐Ni particle size for irons and stony‐irons show that IVA cooling rates at 350‐200 °C are inversely correlated with bulk Ni concentration and vary by a factor of about 15. This cooling rate variation is incompatible with cooling in a metallic core that was insulated with a silicate mantle, but is compatible with cooling in a metallic body of radius 150 ± 50 km. The widths of the tetrataenite regions next to the cloudy zone correlate directly with high‐Ni particle size providing another method to measure low temperature cooling rates.  相似文献   

8.
Abstract— The Ulasitai iron was recently found about 130 km southeast to the find site of the Armanty (Xinjiang, IIIE) meteorite. It is a coarse octahedrite with a kamacite bandwidth of 1.2 ± 0.2 (0.9–1.8) mm. Plessite is abundant, as is taenite, kamacite, cohenite, and schreibersite with various microstructures. Schreibersite is Ni‐rich (30.5–55.5 wt%) in plessite or coexisting with troilite and daubreelite, in comparison with the coarse laths (20.6–21.2 wt%) between the Widmanstätten pattern plates. The correlation between the center Ni content and the half bandwidth of taenite suggest a cooling rate of ?20 °C/Myr based on simulations. The petrography and mineral chemistry of Ulasitai are similar to Armanty. The bulk samples of Ulasitai were measured, together with Armanty, Nandan (IIICD), and Mundrabilla (IIICD), by inductively coupled plasma atomic emission spectrometry (ICP‐AES) and mass spectrometry (ICP‐MS). The results agree with literature data of the same meteorites, and our analyses of four samples of Armanty (L1, L12, L16, L17) confirm a homogeneous composition (Wasson et al. 1988). The bulk composition of Ulasitai is identical to that of Armanty, both plotting within the IIIE field. We classify Ulasitai as a new IIIE iron and suggest that it pairs with Armanty.  相似文献   

9.
Abstract— We measured nickel isotopes via multicollector inductively coupled plasma mass spectrometry (MC‐ICPMS) in the bulk metal from 36 meteorites, including chondrites, pallasites, and irons (magmatic and non‐magmatic). The Ni isotopes in these meteorites are mass fractionated; the fractionation spans an overall range of ~0.4‰ amu?1. The ranges of Ni isotopic compositions (relative to the SRM 986 Ni isotopic standard) in metal from iron meteorites (~0.0 to ~0.3‰ amu?1) and chondrites (~0.0 to ~0.2‰ amu?1) are similar, whereas the range in pallasite metal (~–0.1 to 0.0‰ amu?1) appears distinct. The fractionation of Ni isotopes within a suite of fourteen IIIAB irons (~0.0 to ~0.3‰ amu?1) spans the entire range measured in all magmatic irons. However, the degree of Ni isotopic fractionation in these samples does not correlate with their Ni content, suggesting that core crystallization did not fractionate Ni isotopes in a systematic way. We also measured the Ni and Fe isotopes in adjacent kamacite and taenite from the Toluca IAB iron meteorite. Nickel isotopes show clearly resolvable fractionation between these two phases; kamacite is heavier relative to taenite by ~0.4‰ amu?1. In contrast, the Fe isotopes do not show a resolvable fractionation between kamacite and taenite. The observed isotopic compositions of kamacite and taenite can be understood in terms of kinetic fractionation due to diffusion of Ni during cooling of the Fe‐Ni alloy and the development of the Widmanstätten pattern.  相似文献   

10.
Abstract— Electron microprobe studies of several H5 and H6 chondrites reveal that olivine crystals exhibit systematic Fe‐Mg zoning near olivine‐metal interfaces. Olivine Fa concentrations decrease by up to 2 mol% toward zoned taenite + kamacite particles (formed after relatively small amounts of taenite undercooling) and increase by up to 2 mol% toward zoneless plessite particles (formed after ?200 °C of taenite undercooling). The olivine zoning can be understood in terms of localized olivine‐orthopyroxene‐metal reactions during cooling from the peak metamorphic temperature. The silicate‐metal reactions were influenced by solid‐state metal phase transformations, and the two types of olivine zoning profiles resulted from variable amounts of taenite undercooling at temperatures <700 °C. The relevant silicate‐metal reactions are modeled using chemical thermodynamics. Systematic olivine Fe‐Mg zoning adjacent to metal is an expected consequence of retrograde silicate‐metal reactions, and the presence of such zoning provides strong evidence that the silicate and metallic minerals evolved in situ during cooling from the peak metamorphic temperature.  相似文献   

11.
Abstract— Cooling rate experiments were performed on P‐free Fe‐Ni alloys that are compositionally similar to ordinary chondrite metal to study the taenite ? taenite + kamacite reaction. The role of taenite grain boundaries and the effect of adding Co and S to Fe‐Ni alloys were investigated. In P‐free alloys, kamacite nucleates at taenite/taenite grain boundaries, taenite triple junctions, and taenite grain corners. Grain boundary diffusion enables growth of kamacite grain boundary precipitates into one of the parent taenite grains. Likely, grain boundary nucleation and grain boundary diffusion are the applicable mechanisms for the development of the microstructure of much of the metal in ordinary chondrites. No intragranular (matrix) kamacite precipitates are observed in P‐free Fe‐Ni alloys. The absence of intragranular kamacite indicates that P‐free, monocrystalline taenite particles will transform to martensite upon cooling. This transformation process could explain the metallography of zoneless plessite particles observed in H and L chondrites. In P‐bearing Fe‐Ni alloys and iron meteorites, kamacite precipitates can nucleate both on taenite grain boundaries and intragranularly as Widmanstätten kamacite plates. Therefore, P‐free chondritic metal and P‐bearing iron meteorite/pallasite metal are controlled by different chemical systems and different types of taenite transformation processes.  相似文献   

12.
Abstract— We studied the texture, mineralogy, and bulk chemical composition of Dhofar 007, a basaltic achondrite. Dhofar 007 is a polymict breccia that is mostly composed of coarse‐grained granular (CG) clasts with a minor amount of xenolithic components, such as a fragment of Mg‐rich pyroxene. The coarse‐grained, relict gabbroic texture, mineral chemistry, and bulk chemical data of the coarse‐grained clast indicate that the CG clasts were originally a cumulate rock crystallized in a crust of the parent body. However, in contrast to monomict eucrites, the siderophile elements are highly enriched and could have been introduced by impact events. Dhofar 007 appears to have experienced a two‐stage postcrystallization thermal history: rapid cooling at high temperatures and slow cooling at lower temperatures. The presence of pigeonite with closely spaced, fine augite lamellae suggests that this rock was cooled rapidly from higher temperatures (>0.5 °C/yr at ˜1000 °C) than typical cumulate eucrites. However, the presence of the cloudy zone in taenite and the Ni profile across the kamacite‐taenite boundaries indicates that the cooling rate was very slow at lower temperatures (˜1–10 °C/Myr at <600–700 °C). The slow cooling rate is comparable to those in mesosiderites and pallasites. The two‐stage thermal history and the relative abundance of siderophile elements similar to those for metallic portions in mesosiderites suggest that Dhofar 007 is a large inclusion of mesosiderite. However, we cannot rule out a possibility that Dhofar 007 is an anomalous eucrite.  相似文献   

13.
The Agoudal IIAB iron meteorite exhibits only kamacite grains (~6 mm across) without any taenite. The kamacite is homogeneously enriched with numerous rhabdite inclusions of different size, shape, and composition. In some kamacite domains, this appears frosty due to micron‐scale rhabdite inclusions (~5 to 100 μm) of moderate to high Ni content (~26 to 40 wt%). In addition, all the kamacite grains in matrix are marked with a prominent linear crack formed during an atmospheric break‐up event and subsequently oxidized. This feature, also defined by trails of lowest Ni‐bearing (mean Ni: 23 wt%) mm‐scale rhabdite plates (fractured and oxidized) could be a trace of a pre‐existing γ–α interface. Agoudal experienced a very slow rate of primary cooling ~4 °C Ma?1 estimated from the binary plots of true rhabdite width against corresponding Ni wt% and the computed cooling rate curves after Randich and Goldstein (1978). Chemically, Agoudal iron (Ga: 54 ppm; Ge: 140 ppm; Ir: 0.03 ppm) resembles the Ainsworth iron, the coarsest octahedrite of the IIAB group. Agoudal contains multiple sets of Neumann bands that are formed in space and time at different scales and densities due to multiple impacts with shock magnitude up to 130 kb. Signatures of recrystallization due to postshock low temperature mild reheating at about 400 °C are also locally present.  相似文献   

14.
Abstract— This paper reports one of the first attempts to investigate by analytical transmission electron microscopy (ATEM) the microstructures and compositions of Fe‐Ni metal grains in ordinary chondrites. Three ordinary chondrites, Saint Séverin (LL6), Agen (H5), and Tsarev (L6) were selected because they display contrasting microstructures, which reflects different thermal histories. In Saint Séverin, the microstructure of the Ni‐rich metal grains is due to slow cooling. It consists of a two‐phase assemblage with a honeycomb structure resulting from spinodal decomposition similar to the cloudy zone of iron meteorites. Microanalyses show that the Ni‐rich phase is tetrataenite (Ni = 47 wt%) and the Ni‐poor phase, with a composition of ~25% Ni, is either martensite or taenite, these two occurring adjacent to each other. The observation that the Ni‐poor phase is partly fcc resolves the disagreement between previous transmission electron microscopy (TEM) and Mössbauer studies on iron meteorites and ordinary chondrite metal. The Ni content of the honeycomb phase is much higher than in mesosiderites, confirming that mesosiderites cooled much more slowly. The high‐Ni tetrataenite rim in contact with the cloudy zone displays high‐Ni compositional variability on a very fine scale, which suggests that the corresponding area was destabilized and partially decomposed at low temperature. Both Agen and Tsarev display evidence of reheating and subsequent fast cooling obviously related to shock events. Their metallic particles mostly consist of martensite, the microstructure of which depends on local Ni content. Microstructures are controlled by both the temperature at which martensite forms and that at which it possibly decomposes. In high‐Ni zones (>15 wt%), martensitic transformation started at low temperature (<300 °C). Because no further recovery occurred, these zones contain a high density of lattice defects. In low‐Ni zones (<15 wt%), martensite grains formed at higher temperature and their lattice defects recovered. These martensite grains present a lath texture with numerous tiny precipitates of Ni‐rich taenite (Ni = 50 wt%) at lath boundaries. Nickel composition profiles across precipitate‐matrix interfaces show that the growth of these precipitates was controlled by preferential diffusion of Ni along lattice defects. The cooling rates deduced from Ni concentration profiles and precipitate sizes are within the range 1–10 °C/year for Tsarev and 10–100 °C/year for Agen.  相似文献   

15.
Abstract— A fragment of a weathered iron meteorite was collected from the Libyan Desert glass area of southwestern Egypt in 1991 May. The specimen is of irregular shape, measuring 5 × 3.5 × 2 cm and weighing 110 g. It is covered by a shiny black layer of magnetite ~1 mm thick. The interior is brownish-black in color owing to terrestrial oxidation. An unetched polished surface shows some areas still having remnants of kamacite and taenite. Remnants of the lamellar octahedral structure have been detected. The kamacite bandwidth ranges from 0.2 mm to 0.8 mm. Chemical analysis shows that the meteorite contains 3.4% Ni, 0.24% Co, 85 ppm Cu, 4 ppm As, 132 ppm Au and 2530 ppm Ir. The meteorite was discovered after the discovery of two different chondritic meteorites in the same area; so, it will be named Great Sand Sea 003.  相似文献   

16.
Abstract— The Carcote meteorite, detected in 1888 in the northern Chilean Andes, is a brecciated, weakly shocked H5 chondrite. It contains a few barred olivine chondrules and, even more rarely, fan-shaped or granular orthopyroxene chondrules. The chondrules are situated in a fine-grained matrix that consists predominantly of olivine and orthopyroxene with accessory clinopyroxene, troilite, chromite, merrillite, and plagioclase. The metal phase is mainly kamacite with subordinate taenite and traces of native Cu. In its bulk rock composition, Carcote compares well with other H5 chondrites so far analysed, except for a distinctly higher C content. Microprobe analyses revealed the following mineral compositions: olivine (Fa16.5–20), orthopyroxene (Fs14–17.5), diopsidic clinopyroxene (FS6–7), plagioclase (An15–20). Troilite is stoichimetric FeS with traces of Ni and Cr; chromite has Cr/(Cr + Al) of 0.86, Fe2+/(Fe2+ + Mg) of 0.80-0.88 and contains considerable amounts of Ti, Mn, and Zn. Merrillite is close to the theoretical formula Ca18(Mg, Fe)2Na2(PO4)14, although with a Na deficiency not compensated for by excess Ca; the Mg/(Mg + Fe2+) ratio of the Carcote merrilite is 0.93-0.95. Kamacite and taenite have Ni contents of 5.6–7.2 and 17.1–23.4 wt%, respectively. Native Cu contains about 3.1–3.3 wt% Fe and 1.6 wt% Ni. Application of different geothermometers to the Carcote H5 chondrite yielded apparently inconsistent results. The highest temperature range of 850–950 °C (at 1 bar) is derived from the Ca-in-opx thermometer. From the cpx-opx solvus geothermometers and the two-pyroxene Fe-Mg exchange geothermometer, a lower temperature range of 750–840 °C is estimated, whereas lower and more variable temperatures of 630–770 °C are obtained from the Ca-in-olivine geothermometer. Recent calibrations of the olivine-spinel geothermometer yielded a still lower temperature range of 570–670 °C, which fits well to the temperature information derived from the Ni distribution between kamacite and taenite. Judging from crystal chemical considerations, we assume that these different temperatures reflect the closure of different exchange equilibria during cooling of the meteorite parent body.  相似文献   

17.
Abstract— Carbon and nitrogen distributions in iron meteorites, their concentrations in various phases, and their isotopic compositions in certain phases were measured by secondary ion mass spectrometry (SIMS). Taenite (and its decomposition products) is the main carrier of C, except for IAB iron meteorites, where graphite and/or carbide (cohenite) may be the main carrier. Taenite is also the main carrier of N in most iron meteorites unless nitrides (carlsbergite CrN or roaldite (Fe, Ni)4N) are present. Carbon and N distributions in taenite are well correlated unless carbides and/or nitrides are exsolved. There seem to be three types of C and N distributions within taenite. (1) These elements are enriched at the center of taenite (convex type). (2) They are enriched at the edge of taenite (concave type). (3) They are enriched near but some distance away from the edge of taenite (complex type). The first case (1) is explained as equilibrium distribution of C and N in Fe-Ni alloy with M-shape Ni concentration profile. The second case (2) seems to be best explained as diffusion controlled C and N distributions. In the third case (3), the interior of taenite has been transformed to the α phase (kamacite or martensite). Carbon and N were expelled from the α phase and enriched near the inner border of the remaining γ phase. Such differences in the C and N distributions in taenite may reflect different cooling rates of iron meteorites. Nitrogen concentrations in taenite are quite high approaching 1 wt% in some iron meteorites. Nitride (carlsbergite and roaldite) is present in meteorites with high N concentrations in taenite, which suggests that the nitride was formed due to supersaturation of the metallic phases with N. The same tendency is generally observed for C (i.e., high C concentrations in taenite correlate with the presence of carbide and/or graphite). Concentrations of C and N in kamacite are generally below detection limits. Isotopic compositions of C and N in taenite can be measured with a precision of several permil. Isotopic analysis in kamacite in most iron meteorites is not possible because of the low concentrations. The C isotopic compositions seem to be somewhat fractionated among various phases, reflecting closure of C transport at low temperatures. A remarkable isotopic anomaly was observed for the Mundrabilla (IIICD anomalous) meteorite. Nitrogen isotopic compositions of taenite measured by SIMS agree very well with those of the bulk samples measured by conventional mass spectrometry.  相似文献   

18.
Magnetic properties are sensitive proxies to characterize FeNi metal phases in meteorites. We present a data set of magnetic hysteresis properties of 91 ordinary chondrite falls. We show that hysteresis properties are distinctive of individual meteorites while homogeneous among meteorite subsamples. Except for the most primitive chondrites, these properties can be explained by a mixture of multidomain kamacite that dominates the induced magnetism and tetrataenite (both in the cloudy zone as single‐domain grains, and as larger multidomain grains in plessite and in the rim of zoned taenite) dominates the remanent magnetism, in agreement with previous microscopic magnetic observations. The bulk metal contents derived from magnetic measurements are in agreement with those estimated previously from chemical analyses. We evidence a decreasing metal content with increasing petrologic type in ordinary chondrites, compatible with oxidation of metal during thermal metamorphism. Types 5 and 6 ordinary chondrites have higher tetrataenite content than type 4 chondrites. This is compatible with lower cooling rates in the 650–450 °C interval for higher petrographic types (consistent with an onion‐shell model), but is more likely the result of the oxidation of ordinary chondrites with increasing metamorphism. In equilibrated chondrites, shock‐related transient heating events above approximately 500 °C result in the disordering of tetrataenite and associated drastic change in magnetic properties. As a good indicator of the amount of tetrataenite, hysteresis properties are a very sensitive proxy of the thermal history of ordinary chondrites, revealing low cooling rates during thermal metamorphism and high cooling rates (e.g., following shock reheating or excavation after thermal metamorphism). Our data strengthen the view that the poor magnetic recording properties of multidomain kamacite and the secondary origin of tetrataenite make equilibrated ordinary chondrites challenging targets for paleomagnetic study.  相似文献   

19.
Abstract— Melting and degassing of interplanetary dust particle L2005B22 at ~1200 °C was due to flash heating during atmospheric entry. Preservation of the porous particle texture supports rapid quenching from the peak heating temperature whereby olivine and pyroxene nanocrystals (3 nm-26 nm) show partial devitrification of the quenched melt at T ? 450 °C–740 °C. The implied ultrahigh cooling rates are calculated at ~105 °C/h–106 °C/h, which is consistent with quench rates inferred from the temperature-time profiles based on atmospheric entry heating models. A vesicular rim on a nonstoichiometric relic forsterite grain in this particle represents either evaporative magnesium loss during flash heating or thermally annealed ion implantation texture.  相似文献   

20.
The Goldstein-Short graph for the determination of ironmeteorite cooling rates from kamacite bandwidths and Ni concentrations has been approximated by the equation: log CR = ?2.040 log BW — 8.940 log Ni + 8.700 where the cooling rate, CR, is in units of°K/m.y., the bandwidth, BW, in units of mm, and Ni concentration is in weight percent. The equation reproduces the Goldstein-Short values to within ±7% within the Ni concentration range 7 to 14%, which includes most octahedrites. The discrepancy between the graphical or analytical cooling-rate estimations and those estimated from microprobe data is a factor of 2.1 at 1σ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号