首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Northwest Africa (NWA) 5232, an 18.5 kg polymict eucrite, comprises eucritic and exogenic CM carbonaceous chondrite clasts within a clastic matrix. Basaltic clasts are the most abundant eucritic clast type and show a range of textures and grain size, from subophitic to granoblastic. Other eucritic clast types present include cumulate (high‐En pyroxene), pyroxene‐lath, olivine rich with symplectite intergrowths as a break‐down product of a quickly cooled Fe‐rich metastable pyroxferroite, and breccia (fragments of a previously consolidated breccia) clasts. A variable cooling rate and degree of thermal metamorphism, followed by a complex brecciation history, can be inferred for the clasts based on clast rounding, crystallization (and recrystallization) textures, pyroxene major and minor element compositions, and pyroxene exsolution. The range in δ18O of clasts and matrix of NWA 5232 reflects its origin as a breccia of mixed clasts dominated by eucritic lithologies. The oxygen isotopic compositions of the carbonaceous chondrite clasts identify them as belonging to CM group and indicate that these clasts experienced a low degree of aqueous alteration while part of their parent body. The complex evolutionary history of NWA 5232 implies that large‐scale impact excavation and mixing was an active process on the surface of the HED parent body, likely 4 Vesta.  相似文献   

2.
Radiometric dating of secondary minerals can be used to constrain the timing of aqueous alteration on meteoritic parent bodies. Dolomite is a well‐documented secondary mineral in CM chondrites, and is thought to have formed by precipitation from an aqueous fluid on the CM parent body within several million years of accretion. The petrographic context of crosscutting dolomite veins indicates that aqueous alteration occurred in situ, rather than in the nebular setting. Here, we present 53Mn‐53Cr systematics for dolomite grains in Sutter's Mill section SM51‐1. The Mn‐Cr isotope data show well‐resolved excesses of 53Cr correlated with 55Mn/52Cr ratio, which we interpret as evidence for the in situ decay of radioactive 53Mn. After correcting for the relative sensitivities of Mn and Cr using a synthetic Mn‐ and Cr‐bearing calcite standard, the data yield an isochron with slope corresponding to an initial 53Mn/55Mn ratio of 3.42 ± 0.86 × 10?6. The reported error includes systematic uncertainty from the relative sensitivity factor. When calculated relative to the U‐corrected Pb‐Pb absolute age of the D'Orbigny angrite, Sutter's Mill dolomites give a formation age between 4564.8 and 4562.2 Ma (2.4–5.0 Myr after the birth of the solar system). This age is contemporaneous with previously reported ages for secondary carbonates in CM and CI chondrites. Consistent carbonate precipitation ages between the carbonaceous chondrite groups suggest that aqueous alteration was a common process during the early stages of parent body formation, probably occurring via heating from internal 26Al decay. The high‐precision isochron for Sutter's Mill dolomite indicates that late‐stage processing did not reach temperatures that were high enough to further disturb the Mn‐Cr isochron.  相似文献   

3.
The Sutter's Mill (SM) CM chondrite fell in California in 2012. The CM chondrite group is one of the most primitive, consisting of unequilibrated minerals, but some of them have experienced complex processes occurring on their parent body, such as aqueous alteration, thermal metamorphism, brecciation, and solar wind implantation. We have determined noble gas concentrations and isotopic compositions for SM samples using a stepped heating gas extraction method, in addition to mineralogical observation of the specimens. The primordial noble gas abundances, especially the P3 component trapped in presolar diamonds, confirm the classification of SM as a CM chondrite. The mineralogical features of SM indicate that it experienced mild thermal alteration after aqueous alteration. The heating temperature is estimated to be <350 °C based on the release profile of primordial 36Ar. The presence of a Ni‐rich Fe‐Ni metal suggests that a minor part of SM has experienced heating at >500 °C. The variation in the heating temperature of thermal alteration is consistent with the texture as a breccia. The heterogeneous distribution of solar wind noble gases is also consistent with it. The cosmic‐ray exposure (CRE) age for SM is calculated to be 0.059 ± 0.023 Myr based on cosmogenic 21Ne by considering trapped noble gases as solar wind, the terrestrial atmosphere, P1 (or Q), P3, A2, and G components. The CRE age lies at the shorter end of the CRE age distribution of the CM chondrite group.  相似文献   

4.
CM chondrites are complex impact (mostly regolith) breccias, in which lithic clasts show various degrees of aqueous alteration. Here, we investigated the degree of alteration of individual clasts within 19 different CM chondrites and CM‐like clasts in three achondrites by chemical analysis of the tochilinite‐cronstedtite‐intergrowths (TCIs; formerly named “poorly characterized phases”). To identify TCIs in various chondritic lithologies, we used backscattered electron (BSE) overview images of polished thin sections, after which appropriate samples underwent electron microprobe measurements. Thus, 75 lithic clasts were classified. In general, the excellent work and specific criteria of Rubin et al. (2007) were used and considered to classify CM breccias in a similar way as ordinary chondrite breccias (e.g., CM2.2‐2.7). In BSE images, TCIs in strongly altered fragments in CM chondrites (CM2.0‐CM2.2) appear dark grayish and show a low contrast to the surrounding material (typically clastic matrix), and can be distinguished from TCIs in moderately (CM2.4‐CM2.6) or less altered fragments (CM2.7‐CM2.9); the latter are bright and have high contrast to the surroundings. We found that an accurate subclassification can be obtained by considering only the “FeO”/SiO2 ratio of the TCI chemistry. One could also consider the TCIs’ S/SiO2 ratio and the metal abundance, but these were not used for classification due to several disadvantages. Most of the CM chondrites are finds that have suffered terrestrial weathering in hot and cold deserts. Thus, the observed abundance of metal is susceptible to weathering and may not be a reliable indicator of subtype classification. This study proposes an extended classification scheme based on Rubin’s scale from subtypes CM2.0‐CM2.9 that takes the brecciation into account and includes the minimum to maximum degree of alteration of individual clasts. The range of aqueous alteration in CM chondrites and small spatial scale of mixing of clasts with different alteration histories will be important for interpreting returned samples from the OSIRIS‐REx and Hayabusa 2 missions in the future.  相似文献   

5.
Abstract– A metamorphosed lithic clast was discovered in the CM chondrite Grove Mountains 021536, which was collected in the Antarctica by the Chinese Antarctic Research Exploration team. The lithic clast is composed mainly of Fe‐rich olivine (Fo62) with minor diopside (Fs9.7–11.1Wo48.3–51.6), plagioclase (An43–46.5), nepheline, merrillite, Al‐rich chromite (21.8 wt% Al2O3; 4.43 wt% TiO2), and pentlandite. Δ17O values of olivine in the lithic clast vary from ?3.9‰ to ?0.8‰. Mineral compositions and oxygen isotopic compositions of olivine suggest that the lithic clast has an exotic source different from the CM chondrite parent body. The clast could be derived from strong thermal metamorphism of pre‐existing chondrule that has experienced low‐temperature anhydrous alteration. The lithic clast is similar in mineral assemblage and chemistry to a few clasts observed in oxidized CV3 chondrites (Mokoia and Yamato‐86009) and might have been derived from the interior of the primitive CV asteroid. The apparent lack of hydration in the lithic clast indicates that the clast accreted into the CM chondrite after hydration of the CM components.  相似文献   

6.
The Sutter's Mill (SM) carbonaceous chondrite is a regolith breccia, composed predominantly of CM2 clasts with varying degrees of aqueous alteration and thermal metamorphism. An investigation of presolar grains in four Sutter's Mill sections, SM43, SM51, SM2‐4, and SM18, was carried out using NanoSIMS ion mapping technique. A total of 37 C‐anomalous grains and one O‐anomalous grain have been identified, indicating an abundance of 63 ppm for presolar C‐anomalous grains and 2 ppm for presolar oxides. Thirty‐one silicon carbide (SiC), five carbonaceous grains, and one Al‐oxide (Al2O3) were confirmed based on their elemental compositions determined by C‐N‐Si and O‐Si‐Mg‐Al isotopic measurements. The overall abundance of SiC grains in Sutter's Mill (55 ppm) is consistent with those in other CM chondrites. The absence of presolar silicates in Sutter's Mill suggests that they were destroyed by aqueous alteration on the parent asteroid. Furthermore, SM2‐4 shows heterogeneous distributions of presolar SiC grains (12–54 ppm) in different matrix areas, indicating that the fine‐grained matrix clasts come from different sources, with various thermal histories, in the solar nebula.  相似文献   

7.
Abstract– CM chondrites are primitive solar‐system materials that have undergone high degrees of aqueous alteration, resulting in the formation of secondary minerals including carbonates. Two different carbonate minerals (calcite/aragonite and dolomite) together constitute 1.4–2.8 vol% of CM chondrites. In contrast, CI chondrites contain four different carbonate minerals: calcite/aragonite, dolomite, breunnerite, and siderite. CI chondrites have abundant dolomite, a mineral that seems to be absent in the most aqueously altered CM chondrites. In this study, carbonates in seven CM chondrites (Y‐791198, LaPaz Icefield 04796, Cold Bokkeveld, Nogoya, Queen Alexandra Range 93005, Allan Hills 83100, and Meteorite Hills 01070) were studied petrographically and by electron microprobe. The results indicate that carbonate formation in CM chondrites differs from that in CI chondrites and is more complex than previously recognized. Our studies of CM chondrites indicate that (1) carbonates formed on the parent asteroid in an aqueous environment that gradually changed in composition, (2) at some stage, Ca and Mg activities in the environment were high enough to form metastable dolomite, and (3) dolomites disappeared in the most aqueously altered CM chondrites.  相似文献   

8.
We report on the investigation of presolar grain inventories of hydrated lithic clasts in three metal-rich carbonaceous chondrites from the CR clan, Acfer 182 (CH3), Isheyevo (CH3/CBb3), and Lewis Cliff (LEW) 85332 (C3-un), as well as the carbon- and nitrogen-isotopic compositions of the fine-grained clast material. Eleven presolar silicate grains as well as nine presolar silicon carbide (SiC) grains were identified in the clasts. Presolar silicate abundances range from 4 to 22 parts per million (ppm), significantly lower than in pristine meteorites and interplanetary dust particles (IDP), and comparable to recent findings for CM2s and CR2 interchondrule matrix. SiC concentrations lie between 9 and 23 ppm, and are comparable to the values for CI, CM, and CR chondrites. The results of our investigation suggest similar alteration pathways for the clast material, the interchondrule matrix of the CR2 chondrites, and the fine-grained fraction of CM2 chondrites. Fine-grained matter of all three meteorites contains moderate to high 15N-enrichments (~50‰ ≤ δ15N ≤ ~1600‰) compared to the terrestrial value, indicating the presence of primitive organic material. We observed no correlation between 15N-enrichments and presolar dust concentrations in the clasts. This is in contrast to the findings from a suite of primitive IDPs, which display in several cases enhanced bulk 15N/14N ratios and high presolar grain abundances of several hundred or even thousand ppm. The bulk 15N/14N ratios of the clasts are comparable to the range for primitive IDPs, suggesting a nitrogen carrier less susceptible to destruction by aqueous alteration than silicate stardust.  相似文献   

9.
Abstract– We report the 53Mn‐53Cr systematics of three dolomite grains from two different CI1 clasts contained within the Kaidun meteorite breccia. Three internal isochrones result in initial 53Mn/55Mn ratios of (4.2 ± 0.4) × 10?6, (4.6 ± 1.3) × 10?6, and (5.2 ± 1.1) × 10?6. These initial values are consistent with those measured for dolomite in the Orgueil CI1 chondrite ( Hoppe et al. 2007 ; Petitat et al. 2009 ) but significantly lower than the initial ratio determined by Hutcheon et al. (1999) from a combination of different carbonate types within various lithologies of the Kaidun meteorite. We construct an accretion scenario for the Kaidun breccia by comparing the mineralogy and formation time scales of carbonates in the Kaidun CI1 lithologies to the analogous ones of the CI1 chondrite Orgueil. In Orgueil, dolomite precipitation precedes the formation of the first bruennerite grains by a few million years ( Hoppe et al. 2007 ; Petitat et al. 2009 ). As the CI1 clasts in Kaidun lack breunnerite grains, and considering that aqueous alteration occurred prior to reaccretion of the various clasts onto the Kaidun parent body (e.g., MacPherson et al. 2009 ), we hypothesize that after rapid accretion and early aqueous alteration occurring within the first approximately 4 Myr after solar system formation, impact disruption of several asteroids and their reassembly into the Kaidun parent asteroid was complete within an additional approximately 2 Myr. This confirms that aqueous alteration, impact, and reaccretion of material in the asteroid belt were early processes that began contemporaneously with chondrule formation.  相似文献   

10.
The Northwest Africa (NWA) 7475 meteorite is one of the several stones of paired regolith breccias from Mars based on petrography, oxygen isotope, mineral compositions, and bulk rock compositions. Its inventory of lithic clasts is dominated by vitrophyre impact melts that were emplaced while they were still molten. Other clast types include crystallized impact melt rocks, evolved plutonic rocks, possible basalts, contact metamorphosed rocks, and siltstones. Impact spherules and vitrophyre shards record airborne transport, and accreted dust rims were sintered on most clasts, presumably during residence in an ejecta plume. The clast assemblage records at least three impact events, one that formed an impact melt sheet on Mars ≤4.4 Ga ago, a second that assembled NWA 7475 from impactites associated with the impact melt sheet at 1.7–1.4 Ga, and a third that launched NWA 7475 from Mars ~5 Ma ago. Mildly shocked pyroxene and plagioclase constrain shock metamorphic conditions during launch to >5 and <15 GPa. The mild postshock‐heating that resulted from these shock pressures would have been insufficient to sterilize this water‐bearing lithology during launch. Magnetite, maghemite, and pyrite are likely products of secondary alteration on Mars. Textural relationships suggest that calcium‐carbonate and goethite are probably of terrestrial origin, yet trace element chemistry indicates relatively low terrestrial alteration. Comparison of Mars Odyssey gamma‐ray spectrometer data with the Fe and Th abundances of NWA 7475 points to a provenance in the ancient southern highlands of Mars. Gratteri crater, with an age of ~5 Ma and an apparent diameter of 6.9 km, marks one possible launch site of NWA 7475.  相似文献   

11.
Hydrous carbonaceous microclasts are by far the most abundant foreign fragments in stony meteorites and mostly resemble CI1‐, CM2‐, or CR2‐like material. Their occurrence is of great importance for understanding the distribution and migration of water‐bearing volatile‐rich matter in the solar system. This paper reports the first finding of a strongly hydrated microclast in a Rumuruti chondrite. The R3‐6 chondrite Northwest Africa 6828 contains a 420 × 325 μm sized angular foreign fragment exhibiting sharp boundaries to the surrounding R‐type matrix. The clast is dominantly composed of magnetite, pyrrhotite, rare Ca‐carbonate, and very rare Mg‐rich olivine set in an abundant fine‐grained phyllosilicate‐rich matrix. Phyllosilicates are serpentine and saponite. One region of the clast is dominated by forsteritic olivine (Fa<2) supported by a network of interstitial Ca‐carbonate. The clast is crosscut by Ca‐carbonate‐filled veins and lacks any chondrules, calcium‐aluminum‐rich inclusions, or their respective pseudomorphs. The hydrous clast contains also a single grain of the very rare phosphide andreyivanovite. Comparison with CI1, CM2, and CR2 chondrites as well as with the ungrouped C2 chondrite Tagish Lake shows no positive match with any of these types of meteorites. The clast may, thus, either represent a fragment of an unsampled lithology of the hydrous carbonaceous chondrite parent asteroids or constitute a sample from an as yet unknown parent body, maybe even a comet. Rumuruti chondrites are a unique group of highly oxidized meteorites that probably accreted at a heliocentric distance >1 AU between the formation regions of ordinary and carbonaceous chondrites. The occurrence of a hydrous microclast in an R chondrite attests to the presence of such material also in this region at least at some point in time and documents the wide distribution of water‐bearing (possibly zodiacal cloud) material in the solar system.  相似文献   

12.
We report the mineralogy and texture of magnetite grains, a magnetite‐dolomite assemblage, and the adjacent mineral phases in five hydrated fine‐grained Antarctic micrometeorites (H‐FgMMs). Additionally, we measured the oxygen isotopic composition of magnetite grains and a magnetite‐dolomite assemblage in these samples. Our mineralogical study shows that the secondary phases identified in H‐FgMMs have similar textures and chemical compositions to those described previously in other primitive solar system materials, such as carbonaceous chondrites. However, the oxygen isotopic compositions of magnetite in H‐FgMMs span a range of ?17O values from +1.3‰ to +4.2‰, which is intermediate between magnetites measured in carbonaceous and ordinary chondrites (CCs and OCs). The δ18O values of magnetites in one H‐FgMM have a ~27‰ mass‐dependent spread in a single 100 × 200 μm particle, indicating that there was a localized control of the fluid composition, probably due to a low water‐to‐rock mass ratio. The ?17O values of magnetite indicate that H‐FgMMs sampled a different aqueous fluid than ordinary and carbonaceous chondrites, implying that the source of H‐FgMMs is probably distinct from the asteroidal source of CCs and OCs. Additionally, we analyzed the oxygen isotopic composition of a magnetite‐dolomite assemblage in one of the H‐FgMMs (sample 03‐36‐46) to investigate the temperature at which these minerals coprecipitated. We have used the oxygen isotope fractionation between the coexisting magnetite and dolomite to infer a precipitation temperature between 160 and 280 °C for this sample. This alteration temperature is ~100–200 °C warmer than that determined from a calcite‐magnetite assemblage from the CR2 chondrite Al Rais, but similar to the estimated temperature of aqueous alteration for unequilibrated OCs, CIs, and CMs. This suggests that the sample 03‐36‐46 could come from a parent body that was large enough to attain temperatures as high as the OCs, CIs, and CMs, which implies an asteroidal origin for this particular H‐FgMM.  相似文献   

13.
We have investigated the carbonates in the impact melts and in a monolithic clast of highly shocked Coconino sandstone of Meteor Crater, AZ to evaluate whether melting or devolatilization is the dominant response of carbonates during high‐speed meteorite impact. Both melt‐ and clast‐carbonates are calcites that have identical crystal habits and that contain anomalously high SiO2 and Al2O3. Also, both calcite occurrences lack any meteoritic contamination, such as Fe or Ni, which is otherwise abundantly observed in all other impact melts and their crystallization products at Meteor Crater. The carbon and oxygen isotope systematics for both calcite deposits suggest a low temperature environment (<100 °C) for their precipitation from an aqueous solution, consistent with caliche. We furthermore subjected bulk melt beads to thermogravimetric analysis and monitored the evolving volatiles with a quadrupole mass spectrometer. CO2 yields were <5 wt%, with typical values in the 2 wt% range; also total CO2 loss is positively correlated with H2O loss, an indication that most of these volatiles derive from the secondary calcite. Also, transparent glasses, considered the most pristine impact melts, yield 100 wt% element totals by EMPA, suggesting complete loss of CO2. The target dolomite decomposed into MgO, CaO, and CO2; the CO2 escaped and the CaO and MgO combined with SiO2 from coexisting quartz and FeO from the impactor to produce the dominant impact melt at Meteor Crater. Although confined to Meteor Crater, these findings are in stark contrast to Osinski et al. (2008) who proposed that melting of carbonates, rather than devolatilization, is the dominant process during hypervelocity impact into carbonate‐bearing targets, including Meteor Crater.  相似文献   

14.
Abstract— In this paper we describe the recovery, handling and preliminary mineralogical investigation of the Tagish Lake meteorite. Tagish Lake is a type 2 carbonaceous chondrite which bears similarities to CI1 and CM chondrite groups, but is distinct from both. Abundant phyllosilicates as well as chondrules (however sparse) and common olivine grains in the matrix preclude any other classification. The bulk density of Tagish Lake (1.67 g/cc) is far lower than CI or CM chondrites (2.2‐2.3 and 2.6‐2.9 g/cc, respectively), or any other meteorite for that matter. We have identified two lithologies: a dominant carbonate‐poor lithology and a less‐abundant carbonate‐rich lithology. The meteorite is a breccia at all scales. We have noted similarities between Tagish Lake and some clasts within the enigmatic meteorite Kaidun; possibly there are genetic relationships here worth exploring. In the paper we describe a clast of CM1 material within Tagish Lake which is very similar to a major lithology in Kaidun.  相似文献   

15.
Four samples (TL5b, TL11h, TL11i, and TL11v) from the pristine collection of the Tagish Lake meteorite, an ungrouped C2 chondrite, were studied to characterize and understand its alteration history using EPMA, XRD, and TEM. We determined that samples TL11h and TL11i have a relatively smaller proportion of amorphous silicate material than sample TL5b, which experienced low‐temperature hydrous parent‐body alteration conditions to preserve this indigenous material. The data suggest that lithic fragments of TL11i experienced higher degrees of aqueous alteration than the rest of the matrix, based on its low porosity and high abundance of coarse‐ and fine‐grained sheet silicates, suggesting that TL11i was present in an area of the parent body where alteration and brecciation were more extensive. We identified a coronal, “flower”‐like, microstructure consisting of a fine‐grained serpentine core and coarse‐grained saponite‐serpentine radial arrays, suggesting varied fluid chemistry and crystallization time scales. We also observed pentlandite with different morphologies: an exsolved morphology formed under nebular conditions; a nonexsolved pentlandite along grain boundaries; a “bulls‐eye” sulfide morphology and rims around highly altered chondrules that probably formed by multiple precipitation episodes during low‐temperature aqueous alteration (≥100 °C) on the parent body. On the basis of petrologic and mineralogic observations, we conclude that the Tagish Lake parent body initially contained a heterogeneous mixture of anhydrous precursor minerals of nebular and presolar origin. These materials were subjected to secondary, nonpervasive parent‐body alteration, and the samples studied herein represent different stages of that hydrous alteration, i.e., TL5b (the least altered) < TL11h < TL11i (the most altered). Sample TL11v encompasses the petrologic characteristics of the other three specimens.  相似文献   

16.
Abstract— Twenty-two carbonaceous chondrite clasts from the two howardites Bholghati and EET87513 were analyzed. Clast N from EET87513 is a fragment classified as CM2 material on the basis of texture, bulk composition, mineralogy, and bulk O isotopic composition. Carbonaceous chondrite clasts from Bholghati, for which less data are available because of their small size, can be divided into two petrologic types: C1 and C2. C1 clasts are composed of opaque matrix with rare coarse-grained silicates as individual mineral fragments; textures resemble CI meteorites and some dark inclusions from CR meteorites. Opaque matrix is predominantly composed of flaky saponite; unlike typical CI and CR meteorites, serpentine is absent in the samples we analyzed. C2 clasts contain chondrules, aggregates, and individual fragments of coarse-grained silicates in an opaque matrix principally composed of saponite and anhydrous ferromagnesian silicates with flaky textures similar to phyllosilicates. These anhydrous ferromagnesian silicates are interpreted as the product of heating of pre-existing serpentine. The carbonaceous chondrite clasts we have studied from these two howardites are, with one notable exception (clast N from EET87513), mineralogically distinct from typical carbonaceous chondrites. However, these clasts have very close affinities to carbonaceous chondrites and have also experienced thermal metamorphism and aqueous alteration, but to different degrees.  相似文献   

17.
Abstract Kaidun is a breccia of disparate enstatite and carbonaceous chondrite clasts that continues to provide real surprises. Many Kaidun clasts have been intensely altered by aqueous fluids, as evidenced by the widespread occurrence of ferromagnesian phyllosilicates and by the presence of carbonate- and phyllo-silicate-filled veins. In this report, we describe an unusual CM lithology containing many mineralogical features not previously reported from any meteorite, including pyrrhotite, with exclusive needlelike morphologies and thick mantles of phyllosilicate, and complex aggregates of phyllosilicate, melanite garnet, crosscut by pentlandite veins. The latter features appear to be due in large part to extensive hydrothermal alteration at temperatures on the order of 450 °C, which is significantly higher than that attained during secondary processing from other known CM material.  相似文献   

18.
The petrologic and oxygen isotopic characteristics of calcium‐aluminum‐rich inclusions (CAIs) in CO chondrites were further constrained by studying CAIs from six primitive CO3.0‐3.1 chondrites, including two Antarctic meteorites (DOM 08006 and MIL 090010), three hot desert meteorites (NWA 10493, NWA 10498, and NWA 7892), and the Colony meteorite. The CAIs can be divided into hibonite‐bearing inclusions (spinel‐hibonite spherules, monomineralic grains, hibonite‐pyroxene microspherules, and irregular/nodular objects), grossite‐bearing inclusions (monomineralic grains, grossite‐melilite microspherules, and irregular/nodular objects), melilite‐rich inclusions (fluffy Type A, compact type A, monomineralic grains, and igneous fragments), spinel‐pyroxene inclusions (fluffy objects resembling fine‐grained spinel‐rich inclusions in CV chondrites and nodular/banded objects resembling those in CM chondrites), and pyroxene‐anorthite inclusions. They are typically small (98.4 ± 54.4 µm, 1SD) and comprise 1.54 ± 0.43 (1SD) area% of the host chondrites. Melilite in the hot desert and Colony meteorites was extensively replaced by a hydrated Ca‐Al‐silicate during terrestrial weathering and converted melilite‐rich inclusions into spinel‐pyroxene inclusions. The CAI populations of the weathered COs are very similar to those in CM chondrites, suggesting that complete replacement of melilite by terrestrial weathering, and possibly parent body aqueous alteration, would make the CO CAIs CM‐like, supporting the hypothesis that CO and CM chondrites derive from similar nebular materials. Within the CO3.0‐3.1 chondrites, asteroidal alteration significantly resets oxygen isotopic compositions of CAIs in CO3.1 chondrites (?17O: ?25 to ?2‰) but left those in CO3.0‐3.05 chondrites mostly unchanged (?17O: ?25 to ?20‰), further supporting the model whereby thermal metamorphism became evident in CO chondrites of petrologic type ≥3.1. The resistance of CAI minerals to oxygen isotope exchange during thermal metamorphism follows in the order: melilite + grossite < hibonite + anorthite < spinel + diopside + forsterite. Meanwhile, terrestrial weathering destroys melilite without changing the chemical and isotopic compositions of melilite and other CAI minerals.  相似文献   

19.
NWA 10214 is an LL3‐6 breccia containing ~8 vol% clasts including LL5, LL6, and shocked‐darkened LL fragments as well as matrix‐rich Clast 6 (a new kind of chondrite). This clast is a dark‐colored, subrounded, 6.1 × 7.0 mm inclusion, consisting of 60 vol% fine‐grained matrix, 32 vol% coarse silicate grains, and 8 vol% coarse opaque grains. The large chondrules and chondrule fragments are mainly Type IB; one small chondrule is Type IIA. Also present are one 450 × 600 μm spinel‐pyroxene‐olivine CAI and one 85 × 110 μm AOI. Clast 6 possesses a unique set of properties. (1) It resembles carbonaceous chondrites in having relatively abundant matrix, CAIs, and AOIs; the clast's matrix composition is close to that in CV3 Vigarano. (2) It resembles type‐3 OC in its olivine and low‐Ca pyroxene compositional distributions, and in the Fe/Mn ratio of ferroan olivine grains. Its mean chondrule size is within 1σ of that of H chondrites. The O‐isotopic compositions of the chondrules are in the ordinary‐ and R‐chondrite ranges. (3) It resembles type‐3 enstatite chondrites in the minor element concentrations in low‐Ca pyroxene grains and in having a high low‐Ca pyroxene/olivine ratio in chondrules. Clast 6 is a new variety of type‐3 OC, somewhat more reduced than H chondrites or chondritic clasts in the Netschaevo IIE iron; the clast formed in a nebular region where aerodynamic radial drift processes deposited a high abundance of matrix material and CAIs. A chunk of this chondrite was ejected from its parent asteroid and later impacted the LL body at low relative velocity.  相似文献   

20.
We observed metamorphosed clasts in the CV3 chondrite breccias Graves Nunataks 06101, Vigarano, Roberts Massif 04143, and Yamato‐86009. These clasts are coarse‐grained polymineralic rocks composed of Ca‐bearing ferroan olivine (Fa24–40, up to 0.6 wt% CaO), diopside (Fs7–12Wo44–50), plagioclase (An52–75), Cr‐spinel (Cr/[Cr + Al] = 0.4, Fe/[Fe + Mg] = 0.7), sulfide and rare grains of Fe‐Ni metal, phosphate, and Ca‐poor pyroxene (Fs24Wo4). Most clasts have triple junctions between silicate grains. The rare earth element (REE) abundances are high in diopside (REE ~3.80–13.83 × CI) and plagioclase (Eu ~12.31–14.67 × CI) but are low in olivine (REE ~0.01–1.44 × CI) and spinel (REE ~0.25–0.49 × CI). These REE abundances are different from those of metamorphosed chondrites, primitive achondrites, and achondrites, suggesting that the clasts are not fragments of these meteorites. Similar mineralogical characteristics of the clasts with those in the Mokoia and Yamato‐86009 breccias (Jogo et al. 2012 ) suggest that the clasts observed in this study would also form inside the CV3 chondrite parent body. Thermal modeling suggests that in order to reach the metamorphosed temperatures of the clasts of >800 °C, the clast parent body should have accreted by ~2.5–2.6 Ma after CAIs formation. The consistency of the accretion age of the clast parent body and the CV3 chondrule formation age suggests that the clasts and CV3 chondrites could be originated from the same parent body with a peak temperature of 800–1100 °C. If the body has a peak temperature of >1100 °C, the accretion age of the body becomes older than the CV3 chondrule formation age and multiple CV3 parent bodies are likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号