首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We model the cratering of the Moon and terrestrial planets from the present knowledge of the orbital and size distribution of asteroids and comets in the inner Solar System, in order to refine the crater chronology method. Impact occurrences, locations, velocities and incidence angles are calculated semi-analytically, and scaling laws are used to convert impactor sizes into crater sizes. Our approach is generalizable to other moons or planets. The lunar cratering rate varies with both latitude and longitude: with respect to the global average, it is about 25% lower at (±65°N, 90°E) and larger by the same amount at the apex of motion (0°N, 90°W) for the present Earth-Moon separation. The measured size-frequency distributions of lunar craters are reconciled with the observed population of near-Earth objects under the assumption that craters smaller than a few kilometers in diameter form in a porous megaregolith. Varying depths of this megaregolith between the mare and highlands is a plausible partial explanation for differences in previously reported measured size-frequency distributions. We give a revised analytical relationship between the number of craters and the age of a lunar surface. For the inner planets, expected size-frequency crater distributions are calculated that account for differences in impact conditions, and the age of a few key geologic units is given. We estimate the Orientale and Caloris basins to be 3.73 Ga old, and the surface of Venus to be 240 Ma old. The terrestrial cratering record is consistent with the revised chronology and a constant impact rate over the last 400 Ma. Better knowledge of the orbital dynamics, crater scaling laws and megaregolith properties are needed to confidently assess the net uncertainty of the model ages that result from the combination of numerous steps, from the observation of asteroids to the formation of craters. Our model may be inaccurate for periods prior to 3.5 Ga because of a different impactor population, or for craters smaller than a few kilometers on Mars and Mercury, due to the presence of subsurface ice and to the abundance of large secondaries, respectively. Standard parameter values allow for the first time to naturally reproduce both the size distribution and absolute number of lunar craters up to 3.5 Ga ago, and give self-consistent estimates of the planetary cratering rates relative to the Moon.  相似文献   

2.
Clark R. Chapman 《Icarus》1974,22(3):272-291
Computerized cratering-obliteration models are developed for use in interpreting planetary surface histories in terms of the diameter-frequency relations for craters classified by morphology. An application is made to a portion of the lunar uplands, revealing several episodes of blanketing, presumably due to the formation of some of the major basins.Application to Martian craters leads to the following picture of Martian cratering and obliteration history. During a probable period of intense early bombardment, craters were degraded by two processes: a depositional-type process connected with the declining cratering rate, and a process tending to flatten the largest craters (e.g., isostatic adjustment). During late stages of the early bombardment, or subsequent to it, there occurred a major relative episode of obliteration (probably atmosphere related), but it ceased concurrently with the massive (presumably volcanic) resurfacing of the cratered plains. Subsequent resurfacing episodes have occurred in the smooth plain terrains, but obliteration processes have been virtually absent in the low-latitude cratered terrains.Recent global Martian cratering interpretations of Hartmann and Soderblom are compared. Absolute cratering chronologies are only so good as knowledge of the absolute cratering flux on Mars. The crater data of Arvidson, Mutch, and Jones do not confirm the basis, whereby Soderblom requires the dominant Martian crater obliteration process to be coincident in time with the early bombardment. If the asteroidal-cometary impact flux on Mars has averaged five times the lunar flux during post-lunar-mare epochs, then the obliterative episode lasted about half a billion years and occurred about 1.5 × 109 yr ago.  相似文献   

3.
An origin of the Moon by a Giant Impact is presently the most widely accepted theory of lunar origin. It is consistent with the major lunar observations: its exceptionally large size relative to the host planet, the high angular momentum of the Earth–Moon system, the extreme depletion of volatile elements, and the delayed accretion, quickly followed by the formation of a global crust and mantle.According to this theory, an impact on Earth of a Mars-sized body set the initial conditions for the formation and evolution of the Moon. The impact produced a protolunar cloud. Fast accretion of the Moon from the dense cloud ensured an effective transformation of gravitational energy into heat and widespread melting. A “Magma Ocean” of global dimensions formed, and upon cooling, an anorthositic crust and a mafic mantle were created by gravitational separation.Several 100 million years after lunar accretion, long-lived isotopes of K, U and Th had produced enough additional heat for inducing partial melting in the mantle; lava extruded into large basins and solidified as titanium-rich mare basalt. This delayed era of extrusive rock formation began about 3.9 Ga ago and may have lasted nearly 3 Ga.A relative crater count timescale was established and calibrated by radiometric dating (i.e., dating by use of radioactive decay) of rocks returned from six Apollo landing regions and three Luna landing spots. Fairly well calibrated are the periods ≈4 Ga to ≈3 Ga BP (before present) and ≈0.8 Ga BP to the present. Crater counting and orbital chemistry (derived from remote sensing in spectral domains ranging from γ- and x-rays to the infrared) have identified mare basalt surfaces in the Oceanus Procellarum that appear to be nearly as young as 1 Ga. Samples returned from this area are needed for narrowing the gap of 2 Ga in the calibrated timescale. The lunar timescale is not only used for reconstructing lunar evolution, but it serves also as a standard for chronologies of the terrestrial planets, including Mars and possibly early Earth.The Moon holds a historic record of Galactic cosmic-ray intensity, solar wind composition and fluxes and composition of solids of any size in the region of the terrestrial planets. Some of this record has been deciphered. Secular mixing of the Sun was constrained by determining 3He/4He of solar wind helium stored in lunar fines and ancient breccias. For checking the presumed constancy of the impact rate over the past ≈3.1 Ga, samples of the youngest mare basalts would be needed for determining their radiometric ages.Radiometric dating and stratigraphy has revealed that many of the large basins on the near side of the Moon were created by impacts about 4.1 to 3.8 Ga ago. The apparent clustering of ages called “Late Heavy Bombardment (LHB)” is thought to result from migration of planets several 100 million years after their accretion.The bombardment, unexpectedly late in solar system history, must have had a devastating effect on the atmosphere, hydrosphere and habitability on Earth during and following this epoch, but direct traces of this bombardment have been eradicated on our planet by plate tectonics. Indirect evidence about the course of bombardment during this epoch on Earth must therefore come from the lunar record, especially from additional data on the terminal phase of the LHB. For this purpose, documented samples are required for measuring precise radiometric ages of the Orientale Basin and the Nectaris and/or Fecunditatis Basins in order to compare these ages with the time of the earliest traces of life on Earth.A crater count chronology is presently being built up for planet Mars and its surface features. The chronology is based on the established lunar chronology whereby differences between the impact rates for Moon and Mars are derived from local fluxes and impact energies of projectiles. Direct calibration of the Martian chronology will have to come from radiometric ages and cosmic-ray exposure ages measured in samples returned from the planet.  相似文献   

4.
The bulk matrix domain of the Martian breccia NWA 7034 was examined petrographically and isotopically to better understand the provenance and age of the source material that make up the breccia. Both 147Sm‐143Nd and 146Sm‐142Nd age results for mineral separates from the bulk matrix portion of breccia NWA 7034 suggest that various lithological components in the breccia probably formed contemporaneously ~4.44 Ga ago. This old age is in excellent agreement with the upper intersection ages (4.35–4.45 Ga) for U‐Pb discordia and also concordia defined by zircon and baddeleyite grains in matrix and igneous‐textured clasts. Consequently, we confirm an ancient age for the igneous components that make up the NWA 7034 breccia. Substantial disturbance in the Rb‐Sr system was detected, and no age significance could be gleaned from our Rb‐Sr data. The disturbance to the Rb‐Sr system may be due to a thermal event recorded by bulk‐rock K‐Ar ages of 1.56 Ga and U‐Pb ages of phosphates at about 1.35–1.5 Ga, which suggest partial resetting from an unknown thermal event(s), possibly accompanying breccia formation. The NWA 7034 bulk rock is LREE enriched and similar to KREEP‐rich lunar rocks, which indicates that the earliest Martian crust was geochemically enriched. This enrichment supports the idea that the crust is one of the enriched geochemical reservoirs on Mars that have been detected in studies of other Martian meteorites.  相似文献   

5.
Abstract— This paper develops a methodology to establish absolute Martian ages by deriving isochrons on a plot of Martian impact crater density vs. crater diameter, calibrated by lunar crater/age data. The isochrons illustrated here are based on a Mars/Moon cratering ratio of 1.6 at constant size, but there is a factor of 2 to 4 uncertainty in this ratio and the consequent model ages. Martian crater diameter distributions are determined in several areas down to diameter D = 16–45 m; the shapes of the curves in young areas are found to be close to that of the predicted isochrons and close to the standard production function found by Neukum. The youngest areas studied here display the lunar-like production function down to D ~30 m, where saturation equilibrium sets in. Model crater retention ages of several volcanic units are found to be a few hundred million years or less, with estimated uncertainties ranging from a factor of 2 lower to a factor of 4 higher. The results are consistent with Martian meteorite ages. Volcanism on Mars has probably persisted into the last 10 to 15% of the planet's history and is likely ongoing. Because surfaces as young as a few hundred million years have reached crater saturation equilibrium at D < ~60 to 100 m, Mars is likely to have widespread impact-produced regoliths at least a few meters deep, and this may contribute to the widespread mobile dust and boulder fields of Mars.  相似文献   

6.
The isotopic composition and abundance of sulfur in extraterrestrial materials are of interest for constraining models of both planetary and solar system evolution. A previous study that included phase‐specific extraction of sulfur from 27 shergottites found the sulfur isotopic composition of the Martian mantle to be similar to that of terrestrial mid‐ocean ridge basalts, the Moon, and nonmagmatic iron meteorites. However, the presence of positive Δ33S anomalies in igneous sulfides from several shergottites, indicating incorporation of atmospherically processed sulfur into the subsurface, complicated this interpretation. The current study expands upon the previous work through analyses of 20 additional shergottites, enabling tighter constraints on the isotopic composition of juvenile Martian sulfur. The updated composition (δ34S = ?0.24 ± 0.05‰, Δ33S = 0.0015 ± 0.0016‰, and Δ36S = 0.039 ± 0.054‰, 2 s.e.m.), representing the weighted mean for all shergottites within the combined population of 47 without significant Δ33S anomalies, strengthens our earlier result. The presence of sulfur isotopic anomalies in igneous sulfides of some meteorites suggests that their parent magmas may have assimilated crustal material. We observed small negative Δ33S anomalies in sulfides from two meteorites, NWA 7635 and NWA 11300. Although negative Δ33S anomalies have been observed in nakhlites and ALH 84001, previous anomalies in shergottites have all shown positive values of Δ33S. Because NWA 7635 has formation age of 2.4 Ga and is much more ancient than shergottites analyzed previously, this finding expands our perspective on the continuity of Martian atmospheric sulfur photochemistry over geologic time.  相似文献   

7.
Clark R. Chapman 《Icarus》1976,29(4):523-524
It is premature to establish a chronology for Mars and Mercury, relative to the known lunar chronology, to better than an order of magnitude. Lunar evidence neither requires nor excludes a “cataclysmic” episode of bombardment about 4.0 b.y. ago. Such a cataclysm might have resulted naturally from tidal disruption by a planet or collisional fragmentation in the asteroid belt of either a Uranus/Neptune-scattered planetesimal or a large asteroid, in which case any lunar cataclysm would have occurred as well on other planets. There is no independent evidence in Mariner 10 imagery for (or against) an early episodic bombardment on Mercury. Crater densities on plains units of the Moon, Mars, and Mercury have not been shown to be “strikingly similar” and do not imply, in the absence of definitive dynamical calculations of planetary impact rates of plausible populations of planetesimals, any similarity in the geological chronologies for those planets. Photogeological studies alone cannot determine absolute chronologies for planets. In combination with dynamical analyses, they can help us date to no better than a factor of 3 to 10 the formation of the Caloris Basin or the epoch when the Martian rivers ran.  相似文献   

8.
The absolute chronology of Mars is poorly known and, as a consequence, a key science aim is to perform accurate radiometric dating of martian geological materials. The scientific benefits of in situ radiometric dating are significant and arguably of most importance is the calibration of the martian cratering rate, similar to what has been achieved for the Moon, to reduce the large uncertainties on absolute boundary ages of martian epochs. The Beagle 2 Mars lander was capable of performing radiometric date measurements of rocks using the analyses from two instruments in its payload: (i) the X-ray Spectrometer (XRS) and (ii) the Gas Analysis Package (GAP). We have investigated the feasibility of in situ radiometric dating using the K-Ar technique employing flight-like versions of Beagle 2 instrumentation. The K-Ar ages of six terrestrial basalts were measured and compared to the ‘control’ Ar-Ar radiometric ages in the range 171-1141 Ma. The K content of each basalt was measured by the flight spare XRS and the 40Ar content using a laboratory analogue of the GAP. The K-Ar ages of five basalts broadly agreed with their corresponding Ar-Ar ages. For one final basalt, the 40Ar content was below the detection limit and so an age could not be derived. The precision of the K-Ar ages was ∼30% on average. The conclusions from this study are that careful attention must be paid to improving the analytical performance of the instruments, in particular the accuracy and detection limits. The accuracy of the K and Ar measurements are the biggest source of uncertainty in the derived K-Ar age. Having investigated the technique using flight-type planetary instrumentation, we conclude that come of the principle challenges of conducting accurate in situ radiometric dating on Mars using instruments of these types include determining the sample mass, ensuring all the argon is liberated from the sample given the maximum achievable temperature of the mass spectrometer ovens, and argon loss and non-radiogenic argon in the analysed samples.  相似文献   

9.
Michael Gurnis 《Icarus》1981,48(1):62-75
Improved crater statistics from varied Martian terrains are compared to lunar crater populations. The distribution functions for the average Martian cratered terrain and the average lunar highlands over the diameter range 8–2000 km are quite similar. The Martian population is less dense by approximately 0.70 from 8 to 256 km diameter and diverges to proportionally lower densities at greater diameters. Crater densities on Martian “pure” terra give a lower limit to the Mars/Moon integrated crater flux of 0.75 since the last stabilization of the respective planetary crusts. The crater population >8 km diameter postdating the Martian northern plains is statistically indistinguishable from that population postdating the lunar maria. Monte Carlo simulations were performed to constrain plausible mechanisms of crater obliteration. The models demonstrate that if the crater density difference between the lunar and Martian terra has been due to resurfacing processes, random intercrater plains formation cannot be the sole process. If plains preferentially form in and obliterate larger craters, then the observed Martian distribution retains its “shape” as the crater density decreases. This result is consistent with the morphology of Martian intercrater plains.  相似文献   

10.
The geologic history of planetary surfaces is most effectively determined by joining geologic mapping and crater counting which provides an iterative, qualitative and quantitative method for defining relative ages and absolute model ages. Based on this approach, we present spatial and temporal details regarding the evolution of the Martian northern plains and surrounding regions.The highland–lowland boundary (HLB) formed during the pre-Noachian and was subsequently modified through various processes. The Nepenthes Mensae unit along the northern margins of the cratered highlands, was formed by HLB scarp-erosion, deposition of sedimentary and volcanic materials, and dissection by surface runoff between 3.81 and 3.65 Ga. Ages for giant polygons in Utopia and Acidalia Planitiae are 3.75 Ga and likely reflect the age of buried basement rocks. These buried lowland surfaces are comparable in age to those located closer to the HLB, where a much thinner, post-HLB deposit is mapped. The emplacement of the most extensive lowland surfaces ended between 3.75 and 3.4 Ga, based on densities of craters generally >3km in diameter. Results from the polygonal terrain support the existence of a major lowland depocenter shortly after the pre-Noachian formation of the northern lowlands. In general, northern plains surfaces show gradually younger ages at lower elevations, consistent local to regional unit emplacement and resurfacing between 3.6 and 2.6 Ga. Elevation levels and morphology are not necessarily related, and variations in ages within the mapped units are found, especially in units formed and modified by multiple geological processes. Regardless, most of the youngest units in the northern lowlands are considered to be lavas, polar ice, or thick mantle deposits, arguing against the ocean theory during the Amazonian Period (younger than about 3.15 Ga).All ages measured in the closest vicinity of the steep dichotomy escarpment are also 3.7 Ga or older. The formation ages of volcanic flanks at the HLB (e.g., Alba Mons (3.6–3.4 Ga) and the last fan at Apollinaris Mons, 3.71 Ga) may give additional temporal constraint for the possible existence of any kind of Martian ocean before about 3.7 Ga. It seems to reflect the termination of a large-scale, precipitation-based hydrological cycle and major geologic processes related to such cycling.  相似文献   

11.
The lunar cratering rate is known reasonably well from comparison of observed crater frequencies with radiometric ages. Attempts to obtain a cratering rate for Mars have usually been based on calculation of the relative flux of asteroidal and cometary bodies on Mars and the Moon.The asteroidal flux on Mars cannot be obtained in a simple way from the observed number of Mars-crossing asteroids, i.e. those asteroids with perihelia within the orbit of Mars. Calculations of the secular perturbations of these asteroids by several authors, particularly williams, has shown that most of these bodies rarely come near even to Mars' aphelion when they are in the vicinity of the ecliptic plane, and their contribution to the Martian meteoroid flux is much smaller than has been commonly stated. Ring asteroids in the vicinity of the secular resonances discovered by Williams, high velocity fragments of asteroids on the inner edge of the asteroid belt, and possibly objects obtained from the 2:1 Kirkwood gap by a process described by Zimmerman and Wetherill are probably of greater importance in the 103-106 g meteoroid size range but are much less important in the production of large craters. Calculations of the Martian asteroidal and cometary impact rate are made, but the present unavoidable uncertainties in the results of these calculations result in their being of little value in establishing a Martian chronology. Suggestions for improving this situation are discussed.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

12.
Crystalline impact‐melt samples were created in high‐temperature environments by relatively large craters and, as such, give additional constraints on the nature of the impacts that created them. This article provides new 40Ar‐39Ar ages of impact‐melt clasts in howardites and shows that these clasts formed on the HED parent body, 4 Vesta, within the time period 3.3–3.8 Ga. Rather than resulting from an increased number of impacts, however, impact‐melted material in howardites may result from unusually high‐velocity impacts occurring in the asteroid belt during this period. This scenario is similar to the late heavy bombardment of the Moon, pointing to an unusual dynamical event at this time across the inner solar system. Therefore, impact‐melt rocks in howardites uniquely record a Vestan cataclysm.  相似文献   

13.
The interpretation of planetary anomalies in the gravity fields of Mars and the Moon in relationship to their inhomogeneous internal structure is considered. The Martian and lunar gravity field models up to order and degree 20, three-layer (crust, mantle, core) model parameters, and planetary parameters have been used as input data. Models of the three-dimensional density distribution have been constructed for Mars and the Moon. The maps of horizontal density inhomogeneities at depths of 50, 100, and 1700 km for Mars and 60, 100, and 1400 km for the Moon are interpreted.  相似文献   

14.
Abstract— Impact cratering is an important geological process on Mars and the nature of Martian impact craters may provide important information as to the volatile content of the Martian crust. Terrestrial impact structures currently provide the only ground‐truth data as to the role of volatiles and an atmosphere on the impact‐cratering process. Recent advancements, based on studies of several well‐preserved terrestrial craters, have been made regarding the role and effect of volatiles on the impact‐cratering process. Combined field and laboratory studies reveal that impact melting is much more common in volatile‐rich targets than previously thought, so impact‐melt rocks, melt‐bearing breccias, and glasses should be common on Mars. Consideration of the terrestrial impact‐cratering record suggests that it is the presence or absence of subsurface volatiles and not the presence of an atmosphere that largely controls ejecta emplacement on Mars. Furthermore, recent studies at the Haughton and Ries impact structures reveal that there are two discrete episodes of ejecta deposition during the formation of complex impact craters that provide a mechanism for generating multiple layers of ejecta. It is apparent that the relative abundance of volatiles in the near‐surface region outside a transient cavity and in the target rocks within the transient cavity play a key role in controlling the amount of fluidization of Martian ejecta deposits. This study shows the value of using terrestrial analogues, in addition to observational data from robotic orbiters and landers, laboratory experiments, and numerical modeling to explore the Martian impact‐cratering record.  相似文献   

15.
We estimate the impact flux and cratering rate as a function of latitude on the terrestrial planets using a model distribution of planet crossing asteroids and comets [Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433]. After determining the planetary impact probabilities as a function of the relative encounter velocity and encounter inclination, the impact positions are calculated analytically, assuming the projectiles follow hyperbolic paths during the encounter phase. As the source of projectiles is not isotropic, latitudinal variations of the impact flux are predicted: the calculated ratio between the pole and equator is 1.05 for Mercury, 1.00 for Venus, 0.96 for the Earth, 0.90 for the Moon, and 1.14 for Mars over its long-term obliquity variation history. By taking into account the latitudinal dependence of the impact velocity and impact angle, and by using a crater scaling law that depends on the vertical component of the impact velocity, the latitudinal variations of the cratering rate (the number of craters with a given size formed per unit time and unit area) is in general enhanced. With respect to the equator, the polar cratering rate is about 30% larger on Mars and 10% on Mercury, whereas it is 10% less on the Earth and 20% less on the Moon. The cratering rate is found to be uniform on Venus. The relative global impact fluxes on Mercury, Venus, the Earth and Mars are calculated with respect to the Moon, and we find values of 1.9, 1.8, 1.6, and 2.8, respectively. Our results show that the relative shape of the crater size-frequency distribution does not noticeably depend upon latitude for any of the terrestrial bodies in this study. Nevertheless, by neglecting the expected latitudinal variations of the cratering rate, systematic errors of 20-30% in the age of planetary surfaces could exist between equatorial and polar regions when using the crater chronology method.  相似文献   

16.
The lunar cratering rate studied over the past 1.1 Gyr, which is a foundation of the lunar cratering chronology, is a decreasing function of the angular distance from the apex of the orbital motion due to the synchronous rotation of the Moon. We here evaluate an influence of the asymmetrical rate upon the age determination.  相似文献   

17.
The fossilized size distribution of the main asteroid belt   总被引:1,自引:0,他引:1  
Planet formation models suggest the primordial main belt experienced a short but intense period of collisional evolution shortly after the formation of planetary embryos. This period is believed to have lasted until Jupiter reached its full size, when dynamical processes (e.g., sweeping resonances, excitation via planetary embryos) ejected most planetesimals from the main belt zone. The few planetesimals left behind continued to undergo comminution at a reduced rate until the present day. We investigated how this scenario affects the main belt size distribution over Solar System history using a collisional evolution model (CoEM) that accounts for these events. CoEM does not explicitly include results from dynamical models, but instead treats the unknown size of the primordial main belt and the nature/timing of its dynamical depletion using innovative but approximate methods. Model constraints were provided by the observed size frequency distribution of the asteroid belt, the observed population of asteroid families, the cratered surface of differentiated Asteroid (4) Vesta, and the relatively constant crater production rate of the Earth and Moon over the last 3 Gyr. Using CoEM, we solved for both the shape of the initial main belt size distribution after accretion and the asteroid disruption scaling law . In contrast to previous efforts, we find our derived function is very similar to results produced by numerical hydrocode simulations of asteroid impacts. Our best fit results suggest the asteroid belt experienced as much comminution over its early history as it has since it reached its low-mass state approximately 3.9-4.5 Ga. These results suggest the main belt's wavy-shaped size-frequency distribution is a “fossil” from this violent early epoch. We find that most diameter D?120 km asteroids are primordial, with their physical properties likely determined during the accretion epoch. Conversely, most smaller asteroids are byproducts of fragmentation events. The observed changes in the asteroid spin rate and lightcurve distributions near D∼100-120 km are likely to be a byproduct of this difference. Estimates based on our results imply the primordial main belt population (in the form of D<1000 km bodies) was 150-250 times larger than it is today, in agreement with recent dynamical simulations.  相似文献   

18.
Abstract— We performed high‐resolution 40Ar‐39Ar dating of mineral separates and whole‐rock samples from the desert meteorites Dhofar 300, Dhofar 007, and Northwest Africa (NWA) 011. The chronological information of all samples is dominated by plagioclase of varying grain size. The last total reset age of the eucrites Dhofar 300 and Dhofar 007 is 3.9 ± 0.1 Ga, coeval with the intense cratering period on the Moon. Some large plagioclase grains of Dhofar 007 possibly inherited Ar from a 4.5 Ga event characteristic for other cumulate eucrites. Due to disturbances of the age spectrum of NWA 011, only an estimate of 3.2–3.9 Ga can be given for its last total reset age. Secondary events causing partial 40Ar loss ≤3.4 Ga ago are indicated by all age spectra. Furthermore, Ar extractions from distinct low temperature phases define apparent isochrons for all samples. These isochron ages are chronologically irrelevant and most probably caused by desert alterations, in which radiogenic 40Ar and K from the meteorite and occasionally K induced by weathering are mixed, accompanied by incorporation of atmospheric Ar. Additional uptake of atmospheric Ar by the alteration phase(s) was observed during mineral separation (i.e., crushing and cleaning in ultrasonic baths). Consistent cosmic‐ray exposure ages were obtained from plagioclase and pyroxene exposure age spectra of Dhofar 300 (25 ± 1 Ma) and Dhofar 007 (13 ± 1 Ma) using the mineral's specific target element chemistry and corresponding 38Ar production rates.  相似文献   

19.
Determining absolute surface ages for bodies in the Solar System is, at present, only possible for Earth and Moon with radiometric dating for both bodies and biologic proxies such as fossils for Earth. Relative ages through cratering statistics are recognized as one of the most reliable proxies for relative ages, calibrated by lunar geologic mapping and Apollo program sample returns. In this work, we have utilized the Mars Reconnaissance Orbiter’s ConTeXt Camera’s images which provide the highest resolution wide-scale coverage of Mars to systematically crater-age-date the calderas of 20 of Mars’ largest volcanoes in order to constrain the length of time over which these volcanoes - and major volcanic activity on the planet, by extension - were active. This constitutes the largest uniform and comprehensive research on these features to date, eliminating unknown uncertainties by multiple researchers analyzing different volcanoes with varied data and methods. We confirm previous results that Mars has had active volcanism throughout most of its history although it varied spatially and temporally, with the latest large-scale caldera activity ending approximately 150 ma in the Tharsis region. We find a transition from explosive to effusive eruption style occurring in the Hesperian, at approximately 3.5 Ga ago, though different regions of the planet transitioned at different times. Since we were statistically complete in our crater counts to sizes as small as ∼60 m in most cases, we also used our results to study the importance of secondary cratering and its effects on crater size-frequency distributions within the small regions of volcanic calderas. We found that there is no “golden rule” for the diameters secondaries become important in crater counts of martian surfaces, with one volcano showing a classic field of secondaries ∼2 crater diameters from the center of its primary but not affecting the size-frequency distribution, and another clearly showing an influence but from no obvious primary.  相似文献   

20.
Two constraints placed upon the cratering flux at Mars by the SNC meteorites are examined: crystallization ages as a constraint on surface ages and cosmic ray exposure ages and number of impacts as a constraint on absolute rates. The crystallization ages of the SNC meteorites appear to constrain the Martian cratering rate to be 4xLunar or more if the parent lavas are in the north of Mars and the number of SNC ejecting impacts are small. If the SNCs result from a single impact that formed the Lyot basin then the cratering rate must be at least 7xLunar or higher to produce a basin age less than the SNC crystallization age because the basin ages are themselves determined by crater counting. Assuming multiple uncorrelated impacts for SNC ejection from Mars over 10 million years a cratering rate of approximately 4xLunar is also found for ejecting impacts that form craters over 12km in diameter. Therefore, both crystallization ages and ejection ages and number of impacts appear consistent with a 4xLunar cratering rate at Mars. The effect on Martian chronologies of such a high cratering rate is to place the SNC crystallization ages partly within the epoch of channel formation on Mars and to extend this liquid water epoch over much of Mars history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号