首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
The Alboran Domain, situated at the western end of the Mediterranean subduction system, is characterized by the Ronda Peridotites, one of the world's largest exposures of sub‐continental mantle. Using U–Pb (LA‐ICP‐MS) and Ar–Ar dating, we precisely dated two tectonic events associated with the Tertiary exhumation of the Ronda Peridotites. First, shearing along the Crust–Mantle Extensional Shear Zone caused, at ca. 22.5 Ma, mantle exhumation, local partial melting in the deep crust and coeval cooling in the upper crust. Second, the Ronda Peridotites Thrust triggered the final emplacement of the peridotites onto the continental crust at c. 21 Ma, as testified by granitic intrusions in the thrust hangingwall. The tectonic evolution of the western Alboran Domain is therefore characterized by a fast switch from continental lithospheric extension in a backarc setting, with sub‐continental mantle exhumation, to a rift inversion by thrusting driven by shortening of the upper plate.  相似文献   

2.
Zircon and apatite fission track ages were determined on granulites dredged along the Bay of Biscay margins. A sample from Ortegal Spur (Iberia margin) yielded 725 ± 67 Ma (zircon). A sample from Le Danois Bank (Iberia margin) yielded 284 ± 58 Ma (zircon), indicating post‐Variscan cooling. Apatite from this sample gave 52 ± 2 Ma, interpreted as final cooling after ‘Pyrenean’ thrust imbrication. Two other samples from Le Danois Bank have Early Cretaceous apatite ages (138 ± 7 and 120 ± 8 Ma), interpreted to result from exhumation during rifting. Finally, a granulite from Goban Spur (Armorican margin) gave 212 ± 10 Ma (apatite), coinciding with a precursory rifting phase. Together with published radiometric results, these data indicate a Precambrian high‐grade terrane at the site of the current margins. The distribution of the granulites on the seafloor reflects tectonic and erosional processes related to (a) Mesozoic rifting and (b) Early Tertiary incipient subduction of the Bay of Biscay beneath Iberia.  相似文献   

3.
The tectonotype of nonvolcanic passive margins is discussed on the basis of data on the conjugate margins of West Iberia and Newfoundland. Magmatic, structural, and historical aspects are considered. The Late Mesozoic structural elements related to rifting and transition to spreading are considered, as well as the Early Mesozoic sedimentary basins that begin the history of oceanic opening. The problem is set to determine the tectonic conditions of the early opening of the ocean in the framework of the chosen tectonoptype. These conditions are compared with the setting at the volcanic margins. The formation of the conjugate Iberia-Newfoundland margins is reconstructed as an asymmetric rift system developing in an almost amagmatic regime. All three segments of the margins on both sides of the ocean reveal similar features of transverse zoning with zones of the tectonized continental, transitional, and oceanic crust oriented nearly parallel to the margin. Special attention is called to the old age of the continental crust and subcontinental mantle and the absence of newly formed crystalline crust; the stadial tectonic and rheological evolution of the crust and lithospheric mantle; the specific features of the transitional zone; the serpentinization and exhumation of mantle peridotites and their role in the development of detachment at the crust-mantle interface, related listric faults and the Peridotite Ridge, attenuation of the medium, further localization of continental breakup, and the eventual development of asymmetric conjugate margins. Two papers characterizing the tectonotypes of volcanic and nonvolcanic passive margins ([2] and this paper) determine the line of further comparative analysis necessary for insights into the geodynamics of ocean opening.  相似文献   

4.
Strain patterns within mantle rocks and surrounding coarse‐grained felsic granulites from the Kutná Hora Crystalline Complex in the Variscan Bohemian Massif have been studied in order to assess their strain coupling. The studied rock association occurs within low‐strain domains surrounded by fine‐grained granulite and migmatite. The Doubrava peridotite contains closely spaced and steeply dipping layers of garnet clinopyroxenite, which are parallel to the NE–SW‐striking, high‐temperature foliation in nearby granulites, while the Úhrov peridotite lacks such layering. The Spa?ice eclogite is not associated with peridotite and shows upright folds of alternating coarse‐ and fine‐grained varieties bearing NE–SW‐striking axial planes. Electron back‐scattered diffraction measurements revealed full strain coupling between clinopyroxenites and coarse‐grained granulites in the S1 fabric that is superposed on the S0 fabric preserved in peridotites. The B‐type olivine lattice preferred orientation (LPO) characterizes the S0 fabric in peridotites and its reworking is strongly controlled by the presence of macroscopic clinopyroxenite layering. The S1 in clinopyroxenites and coarse‐grained granulites is associated with the LS‐type clinopyroxene LPO and prism <c> slip in quartz respectively. While the S1 fabric in these rock types is accompanied invariably by a sub‐vertical stretching lineation, the S1 fabric developed in reworked Úhrov peridotite is associated with strongly planar axial (010) type of olivine LPO. The peridotites with the S0 fabric are interpreted to be relicts of a fore‐arc mantle wedge hydrated to a various extent above the Saxothuringian subduction zone. The prograde metamorphism recorded in peridotites and eclogites occurred presumably during mantle wedge flow and was reaching UHP conditions. Strain coupling in the S1 fabric between clinopyroxenites and granulites at Doubrava and upright folding of eclogites at Spa?ice document a link between tectonic and magmatic processes during orogenic thickening, coeval with intrusions of the arc‐related calcalkaline suites of the Central Bohemian Plutonic Complex (c. 360–345 Ma). Juxtaposition of peridotites and granulites could be explained by a rheological heterogeneity connected to the development of clinopyroxenite layering in the upper mantle and a previously published model of a lithospheric‐scale transpressional arc system. It invokes vertical shearing along NE–SW trending, sub‐vertical foliations in the upper mantle that could have led to an emplacement of mantle bodies into the granulitized, orogenic root in the sub‐arc region. Clearly, such a transpressional arc system could represent an important pathway for an emplacement of deep‐seated rocks in the orogenic lower crust.  相似文献   

5.
In the Inner Western Alps, three different types of block-in-matrix structures (BIMs) formed sequentially through time at a convergent plate margin. These show the superposition of progressive deformation from (i) subduction to eclogite-facies depths, (ii) collision, accretion, and exhumation of oceanic crust, represented by the Monviso Meta-ophiolite Complex, to (iii) collision, accretion, and exhumation of the continental Dora Maira units. The Type 1 occurs in the metasedimentary cover of the Dora Maira Unit and consists of a map-scale broken formation with boudinaged ‘native’ blocks of marble (Early Jurassic) in a calcschist matrix. It results from the tectonic overprinting of exhumation-related folding (D2-stage) on an earlier subduction-related dismembered succession (D1-stage). Type 1 also includes ‘non-mappable’ BIMs with ‘exotic’ blocks, resulting from the gravitational collapse of the Triassic carbonate platform of European Continental Margin, triggered by the Early Jurassic rifting. In the Monviso Meta-ophiolite Complex, Types 2 and 3 represent tectonically induced broken and dismembered formations, respectively. They differ from each other in the degree of stratal disruption of primary interbedded horizons of mafic metabreccia (Type 3) and mafic metasandstone (Types 2 and 3) sourced by the Late Jurassic–Early Cretaceous denudation of an oceanic core complex. Dismembered interbeds (Type 2) and isolated blocks were mixed together (Type 3) by the overlap of D2 tectonics and late- to post-exhumation extensional shearing (D3-stage). Development of these types of BIMs may be common in many exhumed convergent plate margins, where severe tectonics and metamorphic recrystallization under high-pressure conditions normally prevent the reconstruction of BIMs or mélange-forming processes. Our findings show that documenting the mode and time of the processes forming BIMs is highly relevant in order to reconstruct the oceanic seafloor morphology and composition of associated stratigraphic successions, and their control in the evolution of those convergent plate margins.  相似文献   

6.
The Yonaguni Knoll IV hydrothermal vent field (24°51′N, 122°42′E) is located at water depths of 1370–1385 m near the western edge of the southern Okinawa Trough. During the YK03–05 and YK04–05 expeditions using the submersible Shinkai 6500, both hydrothermal precipitates (sulfide/sulfate/carbonate) and high temperature fluids (Tmax = 328°C) presently venting from chimney‐mound structures were extensively sampled. The collected venting fluids had a wide range of chemistry (Cl concentration 376–635 mmol kg?1), which is considered as evidence for sub‐seafloor phase separation. While the Cl‐enriched smoky black fluids were venting from two adjacent chimney‐mound structures in the hydrothermal center, the clear transparent fluids sometimes containing CO2 droplet were found in the peripheral area of the field. This distribution pattern could be explained by migration of the vapor‐rich hydrothermal fluid within a porous sediment layer after the sub‐seafloor phase separation. The collected hydrothermal precipitates demonstrated a diverse range of mineralization, which can be classified into five groups: (i) anhydrite‐rich chimneys, immature precipitates including sulfide disseminations in anhydrite; (ii) massive Zn‐Pb‐Cu sulfides, consisting of sphalerite, wurtzite, galena, chalcopyrite, pyrite, and marcasite; (iii) Ba‐As chimneys, composed of barite with sulfide disseminations, sometimes associated with realgar and orpiment overgrowth; (iv) Mn‐rich chimneys, consisting of carbonates (calcite and magnesite) and sulfides (sphalerite, galena, chalcopyrite, alabandite, and minor amount of tennantite and enargite); and (v) pavement, silicified sediment including abundant native sulfur or barite. Sulfide/sulfate mineralization (groups i–iii) was found in the chimney–mound structure associated with vapor‐loss (Cl‐enriched) fluid venting. In contrast, the sulfide/carbonate mineralization (group iv) was specifically found in the chimneys where vapor‐rich (Cl‐depleted) fluid venting is expected, and the pavement (group v) was associated with diffusive venting from the seafloor sediment. This correspondence strongly suggests that the subseafloor phase separation plays an important role in the diverse range of mineralization in the Yonaguni IV field. The observed sulfide mineral assemblage was consistent with the sulfur fugacity calculated from the FeS content in sphalerite/wurtzite and the fluid temperature for each site, which suggests that the shift of the sulfur fugacity due to participation of volatile species during phase separation is an important factor to induce diverse mineralization. In contrast, carbonate mineralization is attributed to the significant mixing of vapor‐rich hydrothermal fluid and seawater. A submarine hydrothermal system within a back‐arc basin in the continental margin may be considered as developed in a geologic setting favorable to a diverse range of mineralization, where relatively shallow water depth induces sub‐seafloor phase separation of hydrothermal fluid, and sediment accumulation could enhance migration of the vapor‐rich hydrothermal fluid.  相似文献   

7.
Compared to non-volcanic ones, volcanic passive margins mark continental break-up over a hotter mantle, probably subject to small-scale convection. They present distinctive genetic and structural features. High-rate extension of the lithosphere is associated with catastrophic mantle melting responsible for the accretion of a thick igneous crust. Distinctive structural features of volcanic margins are syn-magmatic and continentward-dipping crustal faults accommodating the seaward flexure of the igneous crust. Volcanic margins present along-axis a magmatic and tectonic segmentation with wavelength similar to adjacent slow-spreading ridges. Their 3D organisation suggests a connection between loci of mantle melting at depths and zones of strain concentration within the lithosphere. Break-up would start and propagate from localized thermally-softened lithospheric zones. These ‘soft points’ could be localized over small-scale convection cells found at the bottom of the lithosphere, where adiabatic mantle melting would specifically occur. The particular structure of the brittle crust at volcanic passive margins could be interpreted by active and sudden oceanward flow of both the unstable hot mantle and the ductile part of the lithosphere during the break-up stage. To cite this article: L. Geoffroy, C. R. Geoscience 337 (2005).  相似文献   

8.
Rifts and passive margins often develop along old suture zones where colliding continents merged during earlier phases of the Wilson cycle. For example, the North Atlantic formed after continental break-up along sutures formed during the Caledonian and Variscan orogenies. Even though such tectonic inheritance is generally appreciated, causative physical mechanisms that affect the localization and evolution of rifts and passive margins are not well understood.We use thermo-mechanical modeling to assess the role of orogenic structures during rifting and continental breakup. Such inherited structures include: 1) Thickened crust, 2) eclogitized oceanic crust emplaced in the mantle lithosphere, and 3) mantle wedge of hydrated peridotite (serpentinite).Our models indicate that the presence of inherited structures not only defines the location of rifting upon extension, but also imposes a control on their structural and magmatic evolution. For example, rifts developing in thin initial crust can preserve large amounts of orogenic serpentinite. This facilitates rapid continental breakup, exhumation of hydrated mantle prior to the onset of magmatism. On the contrary, rifts in thicker crust develop more focused thinning in the mantle lithosphere rather than in the crust, and continental breakup is therefore preceded by magmatism. This implies that whether passive margins become magma-poor or magma-rich, respectively, is a function of pre-rift orogenic properties.The models show that structures of orogenic eclogite and hydrated mantle are partially preserved during rifting and are emplaced either at the base of the thinned crust or within the lithospheric mantle as dipping structures. The former provides an alternative interpretation of numerous observations of ‘lower crustal bodies’ which are often regarded as igneous bodies. The latter is consistent with dipping sub-Moho reflectors often observed in passive margins.  相似文献   

9.
At sub‐arc depths, the release of carbon from subducting slab lithologies is mostly controlled by fluid released by devolatilization reactions such as dehydration of antigorite (Atg‐) serpentinite to prograde peridotite. Here we investigate carbonate–silicate rocks hosted in Atg‐serpentinite and prograde chlorite (Chl‐) harzburgite in the Milagrosa and Almirez ultramafic massifs of the palaeo‐subducted Nevado‐Filábride Complex (NFC, Betic Cordillera, S. Spain). These massifs provide a unique opportunity to study the stability of carbonate during subduction metamorphism at PT conditions before and after the dehydration of Atg‐serpentinite in a warm subduction setting. In the Milagrosa massif, carbonate–silicate rocks occur as lenses of Ti‐clinohumite–diopside–calcite marbles, diopside–dolomite marbles and antigorite–diopside–dolomite rocks hosted in clinopyroxene‐bearing Atg‐serpentinite. In Almirez, carbonate–silicate rocks are hosted in Chl‐harzburgite and show a high‐grade assemblage composed of olivine, Ti‐clinohumite, diopside, chlorite, dolomite, calcite, Cr‐bearing magnetite, pentlandite and rare aragonite inclusions. These NFC carbonate–silicate rocks have variable CaO and CO2 contents at nearly constant Mg/Si ratio and high Ni and Cr contents, indicating that their protoliths were variable mixtures of serpentine and Ca‐carbonate (i.e., ophicarbonates). Thermodynamic modelling shows that the carbonate–silicate rocks attained peak metamorphic conditions similar to those of their host serpentinite (Milagrosa massif; 550–600°C and 1.0–1.4 GPa) and Chl‐harzburgite (Almirez massif; 1.7–1.9 GPa and 680°C). Microstructures, mineral chemistry and phase relations indicate that the hybrid carbonate–silicate bulk rock compositions formed before prograde metamorphism, likely during seawater hydrothermal alteration, and subsequently underwent subduction metamorphism. In the CaO–MgO–SiO2 ternary, these processes resulted in a compositional variability of NFC serpentinite‐hosted carbonate–silicate rocks along the serpentine‐calcite mixing trend, similar to that observed in serpentinite‐hosted carbonate‐rocks in other palaeo‐subducted metamorphic terranes. Thermodynamic modelling using classical models of binary H2O–CO2 fluids shows that the compositional variability along this binary determines the temperature of the main devolatilization reactions, the fluid composition and the mineral assemblages of reaction products during prograde subduction metamorphism. Thermodynamic modelling considering electrolytic fluids reveals that H2O and molecular CO2 are the main fluid species and charged carbon‐bearing species occur only in minor amounts in equilibrium with carbonate–silicate rocks in warm subduction settings. Consequently, accounting for electrolytic fluids at these conditions slightly increases the solubility of carbon in the fluids compared with predictions by classical binary H2O–CO2 fluids, but does not affect the topology of phase relations in serpentinite‐hosted carbonate‐rocks. Phase relations, mineral composition and assemblages of Milagrosa and Almirez (meta)‐serpentinite‐hosted carbonate–silicate rocks are consistent with local equilibrium between an infiltrating fluid and the bulk rock composition and indicate a limited role of infiltration‐driven decarbonation. Our study shows natural evidence for the preservation of carbonates in serpentinite‐hosted carbonate–silicate rocks beyond the Atg‐serpentinite breakdown at sub‐arc depths, demonstrating that carbon can be recycled into the deep mantle.  相似文献   

10.
Ultramafic portions of ophiolitic fragments in the Arabian–Nubian Shield (ANS) show pervasive carbonate alteration forming various degrees of carbonated serpentinites and listvenitic rocks. Notwithstanding the extent of the alteration, little is known about the processes that caused it, the source of the CO2 or the conditions of alteration. This study investigates the mineralogy, stable (O, C) and radiogenic (Sr) isotope composition, and geochemistry of suites of variably carbonate altered ultramafics from the Meatiq area of the Central Eastern Desert (CED) of Egypt. The samples investigated include least-altered lizardite (Lz) serpentinites, antigorite (Atg) serpentinites and listvenitic rocks with associated carbonate and quartz veins. The C, O and Sr isotopes of the vein samples cluster between ?8.1‰ and ?6.8‰ for δ13C, +6.4‰ and +10.5‰ for δ18O, and 87Sr/86Sr of 0.7028–0.70344, and plot within the depleted mantle compositional field. The serpentinites isotopic compositions plot on a mixing trend between the depleted-mantle and sedimentary carbonate fields. The carbonate veins contain abundant carbonic (CO2±CH4±N2) and aqueous-carbonic (H2O-NaCl-CO2±CH4±N2) low salinity fluid, with trapping conditions of 270–300°C and 0.7–1.1 kbar. The serpentinites are enriched in Au, As, S and other fluid-mobile elements relative to primitive and depleted mantle. The extensively carbonated Atg-serpentinites contain significantly lower concentrations of these elements than the Lz-serpentinites suggesting that they were depleted during carbonate alteration. Fluid inclusion and stable isotope compositions of Au deposits in the CED are similar to those from the carbonate veins investigated in the study and we suggest that carbonation of ANS ophiolitic rocks due to influx of mantle-derived CO2-bearing fluids caused break down of Au-bearing minerals such as pentlandite, releasing Au and S to the hydrothermal fluids that later formed the Au-deposits. This is the first time that gold has been observed to be remobilized from rocks during the lizardite–antigorite transition.  相似文献   

11.
Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean–ocean, ocean–continent, and continent–continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M > 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent–continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent–ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean–ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high convergence rate. (4) Local isostasy is not satisfied at the convergent margins as evidenced by strong free air gravity anomalies of positive and negative signs. However, near-isostatic equilibrium may exist in broad zones of distributed deformation such as Tibet. (5) No systematic patterns are recognized in heat flow data due to strong heterogeneity of measured values which are strongly affected by hydrothermal circulation, magmatic activity, crustal faulting, horizontal heat transfer, and also due to low number of heat flow measurements across many margins. (6) Low upper mantle Vs seismic velocities beneath the convergent margins are restricted to the upper 150 km and may be related to mantle wedge melting which is confined to shallow mantle levels.  相似文献   

12.
Contourite drift systems form a significant component of the marine clastic sedimentary record. Although contourites form in all tectonic settings, few studies have described their development along convergent margins; such characterization is needed to underpin oceanographic and palaeoenvironmental studies in active settings. This study is the first to document contourite drift development along the Hikurangi subduction margin of New Zealand. Integration of bathymetric, seismic and well data enables five classes of drift to be recognized around the subduction wedge, occurring in three principal associations: (i) an upper slope drift association of giant elongate mounded (ca 150 km long, 50 km wide and up to 1100 m thick) and plastered drifts (ca 300 km long, 8 km wide and <600 m thick), which occurs upon and inboard of a major intrabasinal thrust‐cored high, whose long axis parallels the coast; shallow bottom currents disperse sub‐parallel to this axis; (ii) a spatiotemporally discontinuous association of confined and mounded hybrid drifts (ca 500 m long, <2 km wide and up to 500 m thick) that occurs along the mid‐to‐outer slope domain of the wedge, recording the interaction of along‐slope and downslope currents within trench‐slope basins; and (iii) a trench fill assemblage that implies the passage of abyssal bottom currents across a 40 km reach of the trench‐axial Hikurangi Channel‐levée, with associated modification of the channel form and of overbank sediment waves. The fundamental presence of contourites along this margin appears to depend on the orientation and strength of oceanographic bottom currents. However, drift type and evolution vary depending on the slope gradient and the presence of irregular seafloor topography created by tectonic structures. The documented drifts are generally smaller, less continuous, and develop more intermittently than similar styles of drifts documented on passive margins; this mode of occurrence may be characteristic of contourite development on convergent margins.  相似文献   

13.
Carbonation and decarbonation of eclogites: the role of garnet   总被引:3,自引:0,他引:3  
Carbonates are potentially significant hosts for primordial and subducted carbon in the Earth's mantle. In addition, the coexistence of carbonate with silicates and reduced carbon (diamond or graphite), allows constraints to be placed on the oxidation state of the mantle. Carbonate-silicate-vapor reactions control how carbonate + silicate assemblages may form from carbon-bearing vapor + silicate assemblages with increasing pressure. In olivine-bearing rocks such as peridotite, considered the dominant rock type in the upper mantle, the lowest-pressure carbonate-forming reactions involve olivine (±clinopyroxene) reacting with CO2 (e.g., Wyllie et al. 1983). In eclogitic rocks, the essential mineral assemblage is omphacitic clinopyroxene + garnet, without olivine. Therefore, alternative carbonate-forming reactions must be sought. The carbonation of clinopyroxene via the reaction dolomite + 2 coesite = diopside + 2 CO2 was studied experimentally by Luth (1995). The alternative possibility that garnet reacts with CO2 is explored here by determining the location of the reaction 3 magnesite + kyanite + 2 coesite = pyrope + 3 CO2 between 5 and 11 GPa in multi-anvil apparatus. At the temperatures ≥1200 °C, carbonation of eclogitic rocks with increasing pressure will proceed initially by reaction with clinopyroxene, because the pyrope-carbonation reaction lies at higher pressures for a given temperature than does the diopside-carbonation reaction. Diluting the pyrope component of garnet and the diopside component of clinopyroxene to levels appropriate for mantle eclogites does not change this conclusion. At lower temperatures, appropriate for “cold” slabs, it is possible that the converse situation will hold, with initial carbonation proceeding via reaction with garnet, but this possibility awaits experimental confirmation. Decarbonation of an eclogite under “normal mantle” geothermal conditions by a decrease in pressure, as in an ascending limb of a mantle convection cell, would be governed by the formation of clinopyroxene + CO2. At higher pressure than this reaction, any CO2 produced by the breakdown of magnesite reacting with kyanite and coesite would react with clinopyroxene to produce dolomite + coesite. Release of CO2 from eclogite into mantle peridotite would form carbonate at sub-solidus conditions and produce a dolomitic carbonate melt if temperatures are above the peridotite-CO2 solidus. Received: 4 May 1998 / Accepted: 23 December 1998  相似文献   

14.
追溯和重塑超高压变质岩由100多千米地幔深度折返至上地壳及地表的过程,对理解会聚板块边缘及大陆碰撞带的运动学和动力学是极为重要的.主要依据构造学、岩石学、地球化学和可利用的地质年代学资料,结合区域多期变形分析,大别-苏鲁区超高压变质岩的折返过程至少可分解出4个大的阶段.块状榴辉岩记录了三叠纪(约250~230 Ma)大陆壳岩石的深俯冲/碰撞作用.超高压变质岩早期迅速折返发生于超高压峰期变质作用(P>3.1~4.0 GPa,T≈800±50 ℃)之后,处于地幔深度和柯石英稳定域,相当于区域D2变形期阶段.分别与区域变形期D3、D4和D5对应的折返过程,以及后成合晶、冠状体等卸载不平衡结构发育和减压部分熔融作用2个中间性构造热事件,均发生在地壳层次. 网络状剪切带在折返过程的不同阶段和不同层次均有发育,标志着在超高压变质带内的变质和变形分解作用曾重复进行.着重指出,超高压变质岩的折返,主要是由大陆壳的深俯冲/碰撞和伸展作用控制的构造过程,且受到俯冲带内、带外诸多因素的约束,其中水流体就起关键作用.   相似文献   

15.
To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth, we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 °C and 500 bars. During the experiments, the total carbonic acid concentration (ΣCO2) in the fluid decreased from approximately 65 to 9 mmol/kg. Carbonate minerals, magnesite, and subordinate amount of dolomite were formed via the water-rock interaction. The H2 concentration in the fluid reached approximately 39 mmol/kg within 2736 h, which is relatively lower than the concentration generated by the reaction between olivine and a CO2-free NaCl solution at the same temperature. As seen in previous hydrothermal experiments using komatiite, ferrous iron incorporation into Mg-bearing carbonate minerals likely limited iron oxidation in the fluids and the resulting H2 generation during the olivine alteration. Considering carbonate mineralogy over the temperature range of natural hydrothermal fields, H2 generation is likely suppressed at temperatures below approximately 300 °C due to the formation of the Mg-bearing carbonates. Nevertheless, H2 concentration in fluid at 300 °C could be still high due to the temperature dependency of magnetite stability in ultramafic systems. Moreover, the Mg-bearing carbonates may play a key role in the ocean-atmosphere system on the early Earth. Recent studies suggest that the subduction of carbonated ultramafic rocks may transport surface CO2 species into the deep mantle. This process may have reduced the huge initial amount of CO2 on the surface of the early Earth. Our approximate calculations demonstrate that the subduction of the Mg-bearing carbonates formed in komatiite likely played a crucial role as one of the CO2 carriers from the surface to the deep mantle, even in hot subduction zones.  相似文献   

16.
Slow–ultraslow spreading oceans are mostly floored by mantle peridotites and are typified by rifted continental margins, where subcontinental lithospheric mantle is preserved. Structural and petrologic investigations of the high-pressure (HP) Alpine Voltri Massif ophiolites, which were derived from the Late Jurassic Ligurian Tethys fossil slow–ultraslow spreading ocean, reveal the fate of the oceanic peridotites/serpentinites during subduction to depths involving eclogite-facies conditions, followed by exhumation.

The Ligurian Tethys was formed by continental extension within the Europe–Adria lithosphere and consisted of sea-floor exposed mantle peridotites with an uppermost layer of oceanic serpentinites and of subcontinental lithospheric mantle at the rifted continental margins. Plate convergence caused eastward subduction of the oceanic lithosphere of the Europe plate and the uppermost serpentinite layer of the subducting slab formed an antigorite serpentinite-subduction channel. Sectors of the rather unaltered mantle lithosphere of the Adria extended margin underwent ablative subduction and were detached, embedded, and buried to eclogite-facies conditions within the serpentinite-subduction channel. At such P–T conditions, antigorite serpentinites from the oceanic slab underwent partial HP dehydration (antigorite dewatering and growth of new olivine). Water fluxing from partial dehydration of host serpentinites caused partial HP hydration (growth of Ti-clinohumite and antigorite) of the subducted Adria margin peridotites. The serpentinite-subduction channel (future Beigua serpentinites), acting as a low-viscosity carrier for high-density subducted rocks, allowed rapid exhumation of the almost unaltered Adria peridotites (future Erro–Tobbio peridotites) and their emplacement into the Voltri Massif orogenic edifice. Over in the past 35 years, this unique geologic architecture has allowed us to investigate the pristine structural and compositional mantle features of the subcontinental Erro–Tobbio peridotites and to clarify the main steps of the pre-oceanic extensional, tectonic–magmatic history of the Europe–Adria asthenosphere–lithosphere system, which led to the formation of the Ligurian Tethys.

Our present knowledge of the Voltri Massif provides fundamental information for enhanced understanding, from a mantle perspective, of formation, subduction, and exhumation of oceanic and marginal lithosphere of slow–ultraslow spreading oceans.  相似文献   

17.
Seep‐carbonates (13C‐depleted) are present at different levels within the Miocene terrigenous succession of Deruta (Marnoso‐arenacea Formation, central Italy); they are associated with pebbly sandstones and conglomerates in a tectonically active fan‐delta slope depositional system. Most of these seep‐carbonates are included in slide/slump horizons as scattered blocks. The occurrence of seep‐carbonates is clear evidence of the flow of methane‐rich fluids pervading the sediments. Fluids, probably of biogenic origin, may have reached the sea‐bottom through thrust faults and selectively infiltrated the more permeable coarse‐grained horizons deposited along the slope. Different stages of fluid emissions are documented: slow flux stage, corresponding to the development of large carbonate bodies and dense chemosynthetic communities; and fast fluid flow associated with intense carbonate brecciation, pipes and veins. Large amounts of authigenic carbonates are reworked by slope failures triggered by tectonics and fluids reducing sediment strength; in situ cementation of slide blocks may also have occurred due to remobilization of methane‐rich fluids by mass‐wasting processes.  相似文献   

18.
Asymmetry or symmetry of magma‐poor rifted margins refers commonly to the crustal architecture and the occurrence or absence of large‐scale extensional detachment faults. While distal parts of magma‐poor rifted margins are often considered to be asymmetric, the observation of downlapping sedimentary sequences over exhumed mantle domains at conjugate margins suggests a symmetric evolution during mantle exhumation. On the basis of seismic observations along the Iberia–Newfoundland and Australia–Antarctica margins, we propose that their most distal parts show evidence for the development of multiple, out‐of‐sequence asymmetric detachment faults. We present evidence for cyclic delocalization and re‐localization of deformation, resulting in an apparent symmetry of the exhumed mantle domain. The interaction between out‐of‐sequence detachment systems and the successive rise of the asthenosphere may explain the observed transition from fault‐controlled to magma‐controlled strain accommodation and the transition to more symmetric and localized accretion associated with the formation of a stable spreading center.  相似文献   

19.
The Anita Peridotite is a ~20 km long by 1 km wide exhumed fragment of spinel facies sub‐arc lithospheric mantle that is enclosed entirely within the ≤4 km wide ductile Anita Shear Zone, and bounded by quartzofeldspathic lower crustal gneisses in Fiordland, south‐western New Zealand. Deformation textures, grain growth calculations and thermodynamic modelling results indicate the mylonitic peridotite fabric formed during rapid cooling, and therefore likely during extrusion. However, insights into the exhumation process are gained through examination of aluminous garnet‐bearing meta‐sedimentary gneisses also enclosed within the shear zone. P–T calculations indicate that prior to mylonitization the gneisses enclosing the peridotite equilibrated at 675–746 °C in the sillimanite stability field (stage I), before being buried to near the base of thickened arc crust (stage II; ~686 ± 26 °C and 10.7 ± 0.8 kbar). From this point on, the peridotite unit and the quartzofeldspathic rocks share a deformation history involving extensive recrystallization (stage III) within the Anita Shear Zone. Coupled exhumation of these portions of lower crust and upper mantle occurred during regional thinning of over‐thickened lithosphere at c. 104 Ma (U–Pb zircon). Our favoured model for the exhumation process involves heterogeneous transpressive deformation within the translithospheric Anita Shear Zone, which provided a conduit for ductile extrusion through the crust.  相似文献   

20.
We attempt here to correlate the melting phase of major snowball Earth events in the planet with the processes associated with extreme crustal metamorphism and formation of ultrahigh-temperature (UHT) granulite facies rocks. While the dry mineral assemblages that characterize UHT granulites can result from different mechanisms, the direct evidence for the involvement of CO2-rich fluids in generating diagnostic UHT assemblages has been recorded from the common occurrence of pure CO2 fluid inclusions in several terranes. Here we evaluate the tectonic settings under which UHT rocks are generated using modern analogues and show that divergent tectonics—both post-collisional extension and rifting—play a crucial role. In an attempt to speculate the link among CO2 liberation from the carbonated tectosphere, UHT metamorphism and major earth processes, we address some of the important issues such as: (a) how the subcontinental mantle i.e., the tectosphere, had become carbonated; (b) how and when the tectosphere degassed; and (c) what is the difference between Proterozoic orogens and those of the present day. The fate of the Earth as a habitable planet was possibly dictated by a reversal of the fundamental process of formation of oceans through the selective removal of CO2 into mantle in the Hadean times, carbonation of the Archean mantle wedge, and subsequent decarbonation of the carbonated mantle through divergent metamorphism and water infiltration since the Late Proterozoic.The abundant CO2 liberated by subsolidus decarbonation along consuming plate boundaries was probably one of the factors that contributed to the greenhouse effect thereby triggering the deglaciation of snowball Earth. Based on an evaluation of the distribution of carbonated subcontinental mantle in global reconstructions of the Proterozoic supercontinent assembly, and their link with crustal domains that have undergone CO2-aided dry metamorphism at extreme conditions, we speculate that the UHT rocks might represent windows for the transfer of CO2 from the mantle into the mid crust and ultimately to the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号