首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report the first combined atom‐probe tomography (APT) and transmission electron microscopy (TEM) study of a kamacite–tetrataenite (K–T) interface region within an iron meteorite, Bristol (IVA). Ten APT nanotips were prepared from the K–T interface with focused ion beam scanning electron microscopy (FIB‐SEM) and then studied using TEM followed by APT. Near the K‐T interface, we found 3.8 ± 0.5 wt% Ni in kamacite and 53.4 ± 0.5 wt% Ni in tetrataenite. High‐Ni precipitate regions of the cloudy zone (CZ) have 50.4 ± 0.8 wt% Ni. A region near the CZ and martensite interface has <10 nm sized Ni‐rich precipitates with 38.4 ± 0.7 wt% Ni present within a low‐Ni matrix having 25.5 ± 0.6 wt% Ni. We found that Cu is predominantly concentrated in tetrataenite, whereas Co, P, and Cr are concentrated in kamacite. Phosphorus is preferentially concentrated along the K‐T interface. This study is the first precise measurement of the phase composition at high spatial resolution and in 3‐D of the K‐T interface region in a IVA iron meteorite and furthers our knowledge of the phase composition changes in a fast‐cooled iron meteorite below 400 °C. We demonstrate that APT in conjunction with TEM is a useful approach to study the major, minor, and trace elemental composition of nanoscale features within fast‐cooled iron meteorites.  相似文献   

2.
Group‐IIIE iron meteorites can be ordered into four categories reflecting increasing degrees of shock alteration. Weakly shocked samples (Armanty, Colonia Obrera, Coopertown, Porto Alegre, Rhine Villa, Staunton, and Tanokami Mountain) have haxonite within plessite, unrecrystallized kamacite grains containing Neumann lines or possessing the ? structure, and sulfide inclusions typically consisting of polycrystalline troilite with daubréelite exsolution lamellae. The only moderately shocked sample is NWA 4704, in which haxonite has been partially decomposed to graphite; the majority of the kamacite in NWA 4704 is recrystallized, and its sulfide inclusions were partly melted. Strongly shocked samples (Cachiyuyal, Kokstad, and Paloduro) contain graphite and no haxonite, suggesting that pre‐existing haxonite fully decomposed. Also present in these rocks are recrystallized kamacite and melted troilite. Residual heat from the impact caused annealing and recrystallization of kamacite as well as the decomposition of haxonite into graphite. Severely shocked samples (Aliskerovo and Willow Creek) have sulfide‐rich assemblages consisting of fragmental and subhedral daubréelite crystals, 1–4 vol% spidery troilite filaments, and 30–50 vol% low‐Ni kamacite grains, some of which contain up to 6.0 wt% Co; haxonite in these inclusions has fully decomposed to graphite. The wide range of impact effects in IIIE irons is attributed to one or more major collision(s) on the parent asteroid that affected different group members to different extents depending on their proximity to the impact point.  相似文献   

3.
We report the results of a study of the Fukang pallasite that includes measurements of bulk composition, mineral chemistry, mineral structure, and petrology. Fukang is a Main‐group pallasite that consists of semiangular olivine grains (Fo 86.3) embedded in an Fe‐Ni matrix with 9–10 wt% Ni and low‐Ir (45 ppb). Olivine grains sometimes occur in large clusters up to 11 cm across. The Fe‐Ni phase is primarily kamacite with accessory taenite and plessite. Minor phases include schreibersite, chromite, merrillite, troilite, and low‐Ca pyroxene. We describe a variety of silicate inclusions enclosed in olivine that contain phases rarely or not previously reported in Main‐group pallasites, including clinopyroxene (augite), tridymite, K‐rich felsic glass, and an unknown Ca‐Cr silicate. Pressure constraints determined from tridymite (<0.4 GPa), two‐pyroxene barometry (0.39 ± 0.07 GPa), and geophysical calculations that assume pallasite formation at the core–mantle boundary (CMB), provide an upper estimate on the size of the Main‐group parent body from which Fukang originated. We conclude that Fukang originated at the CMB of a large differentiated planetesimal 400–680 km in radius.  相似文献   

4.
Abstract– The microstructures of six reheated iron meteorites—two IVA irons, Maria Elena (1935), Fuzzy Creek; one IVB iron, Ternera; and three ungrouped irons, Hammond, Babb’s Mill (Blake’s Iron), and Babb’s Mill (Troost’s Iron)—were characterized using scanning and transmission electron microscopy, electron‐probe microanalysis, and electron backscatter diffraction techniques to determine their thermal and shock history and that of their parent asteroids. Maria Elena and Hammond were heated below approximately 700–750 °C, so that kamacite was recrystallized and taenite was exsolved in kamacite and was spheroidized in plessite. Both meteorites retained a record of the original Widmanstätten pattern. The other four, which show no trace of their original microstructure, were heated above 600–700 °C and recrystallized to form 10–20 μm wide homogeneous taenite grains. On cooling, kamacite formed on taenite grain boundaries with their close‐packed planes aligned. Formation of homogeneous 20 μm wide taenite grains with diverse orientations would have required as long as approximately 800 yr at 600 °C or approximately 1 h at 1300 °C. All six irons contain approximately 5–10 μm wide taenite grains with internal microprecipitates of kamacite and nanometer‐scale M‐shaped Ni profiles that reach approximately 40% Ni indicating cooling over 100–10,000 yr. Un‐decomposed high‐Ni martensite (α2) in taenite—the first occurrence in irons—appears to be a characteristic of strongly reheated irons. From our studies and published work, we identified four progressive stages of shock and reheating in IVA irons using these criteria: cloudy taenite, M‐shaped Ni profiles in taenite, Neumann twin lamellae, martensite, shock‐hatched kamacite, recrystallization, microprecipitates of taenite, and shock‐melted troilite. Maria Elena and Fuzzy Creek represent stages 3 and 4, respectively. Although not all reheated irons contain evidence for shock, it was probably the main cause of reheating. Cooling over years rather than hours precludes shock during the impacts that exposed the irons to cosmic rays. If the reheated irons that we studied are representative, the IVA irons may have been shocked soon after they cooled below 200 °C at 4.5 Gyr in an impact that created a rubblepile asteroid with fragments from diverse depths. The primary cooling rates of the IVA irons and the proposed early history are remarkably consistent with the Pb‐Pb ages of troilite inclusions in two IVA irons including the oldest known differentiated meteorite ( Blichert‐Toft et al. 2010 ).  相似文献   

5.
A relic impact structure was recognized within the strewn field of the Agoudal iron meteorite. The heavily eroded structure has preserved shatter cones in a limestone basement, and remnants of autochthonous and allochthonous breccias. Fragments of iron incorporated into the allochthonous breccia have a chemical composition (Ni = 5.16 wt%, Ir = 0.019 ppm) similar to that of the Agoudal meteorite, supporting a syngenetic origin of the strewn field and the impact structure. The total recovered mass of Agoudal meteorite fragments is estimated at approximately 500 kg. The estimated size of the SE–NW‐oriented strewn field is 6 × 2 km. Model calculations with minimal preatmospheric size show that a similar meteorite strewn field plus one small crater with observed shock effects could be formed by fragmentation of a meteoroid approximately 1.4 m in diameter with an impact angle of approximately 60° from the horizontal. However, the most probable is an impact of a larger, 3–4 m diameter meteoroid, resulting a strewn field with approximately 10 craters, 10–30 m in diameter each, plus numerous meteorite fragments. The calculated scattering area of meteorite shrapnel ejected from these impact craters could completely cover the observed strewn field of the Agoudal meteorite.  相似文献   

6.
Abstract— The CH carbonaceous chondrites contain a population of ferrous (Fe/(Fe + Mg) ? 0.1‐0.4) silicate spherules (chondrules), about 15–30 μm in apparent diameter, composed of cryptocrystalline olivinepyroxene normative material, ±SiO2‐rich glass, and rounded‐to‐euhedral Fe, Ni metal grains. The silicate portions of the spherules are highly depleted in refractory lithophile elements (CaO, Al2O3, and TiO2 <0.04 wt%) and enriched in FeO, MnO, Cr2O3, and Na2O relative to the dominant, volatile‐poor, magnesian chondrules from CH chondrites. The Fe/(Fe + Mg) ratio in the silicate portions of the spherules is positively correlated with Fe concentration in metal grains, which suggests that this correlation is not due to oxidation, reduction, or both of iron (FeOsil ? Femet) during melting of metal‐silicate solid precursors. Rather, we suggest that this is a condensation signature of the precursors formed under oxidizing conditions. Each metal grain is compositionally uniform, but there are significant intergrain compositional variations: about 8–18 wt% Ni, <0.09 wt% Cr, and a sub‐solar Co/Ni ratio. The precursor materials of these spherules were thus characterized by extreme elemental fractionations, which have not been observed in chondritic materials before. Particularly striking is the fractionation of Ni and Co in the rounded‐to‐euhedral metal grains, which has resulted in a Co/Ni ratio significantly below solar. The liquidus temperatures of the euhedral Fe, Ni metal grains are lower than those of the coexisting ferrous silicates, and we infer that the former crystallized in supercooled silicate melts. The metal grains are compositionally metastable; they are not decomposed into taenite and kamacite, which suggests fast postcrystallization cooling at temperatures below 970 K and lack of subsequent prolonged thermal metamorphism at temperatures above 400–500 K.  相似文献   

7.
We report in situ NanoSIMS siderophile minor and trace element abundances in individual Fe‐Ni metal grains in the unequilibrated chondrite Krymka (LL3.2). Associated kamacite and taenite of 10 metal grains in four chondrules and one matrix metal were analyzed for elemental concentrations of Fe, Ni, Co, Cu, Rh, Ir, and Pt. The results show large elemental variations among the metal grains. However, complementary and correlative variations exist between adjacent kamacite‐taenite. This is consistent with the unequilibrated character of the chondrite and corroborates an attainment of chemical equilibrium between the metal phases. The calculated equilibrium temperature is 446 ± 9 °C. This is concordant with the range given by Kimura et al. (2008) for the Krymka postaccretion thermal metamorphism. Based on Ni diffusivity in taenite, a slow cooling rate is estimated of the Krymka parent body that does not exceed ~1K Myr?1, which is consistent with cooling rates inferred by other workers for unequilibrated ordinary chondrites. Elemental ionic radii might have played a role in controlling elemental partitioning between kamacite and taenite. The bulk compositions of the Krymka metal grains have nonsolar (mostly subsolar) element/Ni ratios suggesting the Fe‐Ni grains could have formed from distinct precursors of nonsolar compositions or had their compositions modified subsequent to chondrule formation events.  相似文献   

8.
Abstract— Cooling rate experiments were performed on P‐free Fe‐Ni alloys that are compositionally similar to ordinary chondrite metal to study the taenite ? taenite + kamacite reaction. The role of taenite grain boundaries and the effect of adding Co and S to Fe‐Ni alloys were investigated. In P‐free alloys, kamacite nucleates at taenite/taenite grain boundaries, taenite triple junctions, and taenite grain corners. Grain boundary diffusion enables growth of kamacite grain boundary precipitates into one of the parent taenite grains. Likely, grain boundary nucleation and grain boundary diffusion are the applicable mechanisms for the development of the microstructure of much of the metal in ordinary chondrites. No intragranular (matrix) kamacite precipitates are observed in P‐free Fe‐Ni alloys. The absence of intragranular kamacite indicates that P‐free, monocrystalline taenite particles will transform to martensite upon cooling. This transformation process could explain the metallography of zoneless plessite particles observed in H and L chondrites. In P‐bearing Fe‐Ni alloys and iron meteorites, kamacite precipitates can nucleate both on taenite grain boundaries and intragranularly as Widmanstätten kamacite plates. Therefore, P‐free chondritic metal and P‐bearing iron meteorite/pallasite metal are controlled by different chemical systems and different types of taenite transformation processes.  相似文献   

9.
A 435 kg piece of the Mont Dieu iron meteorite (MD) contains cm‐sized silicate inclusions. Based on the concentration of Ni, Ga, Ge, and Ir (8.59 ± 0.32 wt%, 25.4 ± 0.9 ppm, 61 ± 2 ppm, 7.1 ± 0.4 ppm, respectively) in the metal host, this piece can be classified as a IIE nonmagmatic iron. The silicate inclusions possess a chondritic mineralogy and relict chondrules occur throughout the inclusions. Major element analysis, oxygen isotopic analysis (Δ17O = 0.71 ± 0.02‰), and mean Fa and Fs molar contents (Fa15.7 ± 0.4 and Fs14.4 ± 0.5) indicate that MD originated as an H chondrite. Because of strong similarities with Netschaëvo IIE, MD can be classified in the most primitive subgroup of the IIE sequence. 40Ar/39Ar ages of 4536 ± 59 Ma and 4494 ± 95 Ma obtained on pyroxene and plagioclase inclusions show that MD belongs to the old (~4.5 Ga) group of IIE iron meteorites and that it has not been perturbed by any subsequent heating event following its formation. The primitive character of MD sheds light on the nature of its formation process, its thermal history, and the evolution of its parent body.  相似文献   

10.
Abstract— The microstructure of an iron meteorite which fell near Akyumak, East Anatolia, Turkey on 2 August 1981 has been examined and its composition determined. The Ni content is 7.7% and kamacite bandwidth is 0.32 ± 0.06 mm. The kamacite contains Neumann bands and some daubreelite inclusions. Taenite and plessite account for about 45 to 50% of the metal; finger, cellular and net plessite are observed. Gallium (1.9 ppm), Ge (< 40 ppm) and Ir (1.81 ppm) were determined by neutron activation. The microstructural observations and chemical data show Akyumak to be a fine octahedrite and a member of group IVA.  相似文献   

11.
Abstract— This paper reports one of the first attempts to investigate by analytical transmission electron microscopy (ATEM) the microstructures and compositions of Fe‐Ni metal grains in ordinary chondrites. Three ordinary chondrites, Saint Séverin (LL6), Agen (H5), and Tsarev (L6) were selected because they display contrasting microstructures, which reflects different thermal histories. In Saint Séverin, the microstructure of the Ni‐rich metal grains is due to slow cooling. It consists of a two‐phase assemblage with a honeycomb structure resulting from spinodal decomposition similar to the cloudy zone of iron meteorites. Microanalyses show that the Ni‐rich phase is tetrataenite (Ni = 47 wt%) and the Ni‐poor phase, with a composition of ~25% Ni, is either martensite or taenite, these two occurring adjacent to each other. The observation that the Ni‐poor phase is partly fcc resolves the disagreement between previous transmission electron microscopy (TEM) and Mössbauer studies on iron meteorites and ordinary chondrite metal. The Ni content of the honeycomb phase is much higher than in mesosiderites, confirming that mesosiderites cooled much more slowly. The high‐Ni tetrataenite rim in contact with the cloudy zone displays high‐Ni compositional variability on a very fine scale, which suggests that the corresponding area was destabilized and partially decomposed at low temperature. Both Agen and Tsarev display evidence of reheating and subsequent fast cooling obviously related to shock events. Their metallic particles mostly consist of martensite, the microstructure of which depends on local Ni content. Microstructures are controlled by both the temperature at which martensite forms and that at which it possibly decomposes. In high‐Ni zones (>15 wt%), martensitic transformation started at low temperature (<300 °C). Because no further recovery occurred, these zones contain a high density of lattice defects. In low‐Ni zones (<15 wt%), martensite grains formed at higher temperature and their lattice defects recovered. These martensite grains present a lath texture with numerous tiny precipitates of Ni‐rich taenite (Ni = 50 wt%) at lath boundaries. Nickel composition profiles across precipitate‐matrix interfaces show that the growth of these precipitates was controlled by preferential diffusion of Ni along lattice defects. The cooling rates deduced from Ni concentration profiles and precipitate sizes are within the range 1–10 °C/year for Tsarev and 10–100 °C/year for Agen.  相似文献   

12.
Aimed to clarify the shower of Campo del Cielo with respect to the presence of a large number of hexahedrites in the shower of Campo del Cielo, we have studied a piece that belongs to the Campo del Cielo meteorite Fall by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), chemical analysis, Mössbauer spectroscopy (MS), and optical metallography. The studies showed that it is an HIIA iron hexahedrite meteorite of 94.6 wt% Fe, 5.4 wt% Ni and 370 ppm of C, consisting of a kamacite matrix with small inclusions of iron-nickel phosphides. We have found Neumann bands differentiated from scarce taenite streaks and found that taenite is a path walk for corrosion. We also mention the approximate present localization of some of the principal pieces of the fall.  相似文献   

13.
Seymour is a coarse octahedrite weighing 24.5 kg. It contains two types of troilite-graphite nodules (massive graphite nodules with irregular troilite rims, and troilite nodules with irregular, partial or total, rims of graphite); four morphologically distinct types of phosphide (lamellar, swathing, grain boundary, and rhabdite); and three types of cohenite (lamellar, swathing, and inclusions in kamacite). It is believed that lamellar and swathing schreibersite crystallized from taenite at approximately 900°C. This was followed by the crystallization of kamacite, then the development of cohenite, and finally a second period of phosphide nucleation giving rise to grain boundary schreibersite and rhabdite. Compositional data indicates that grain boundary schreibersite and rhabdite grew simultaneously.  相似文献   

14.
Noble gases and nitrogen were measured in two adjacent samples each from the Raghunathpura (IIAB) and the Nyaung (IIIAB) iron meteorite falls. Light noble gases in both the meteorites were of pure cosmogenic origin. Using (3He/4He)c ratios and the production systematic of Ammon et al. ( 2009 ), we estimated the sample depth and meteoroid size for Nyaung (~8 cm depth in a ~15 cm radius object) and Raghunathpura (~12–14 cm depth in a ~25 cm object). We derived cosmic ray exposure ages of 1710 ± 256 Ma (for Nyaung, the highest reported so far for the IIIAB group) and 224 ± 34 Ma (for Raghunathpura). Variable amounts of trapped Kr and Xe were found in both meteorites. The phase Q‐like elemental ratio (84Kr/132Xe) suggests that the trapped component is of indigenous origin, and most likely hosted in the heterogeneously distributed micro‐inclusions of troilite/schreibersite. Trapped phase Q component is being reported for the first time, for a IIAB iron meteorite. Both meteorites showed light isotopic composition for nitrogen, and need at least two N components to explain the observed N isotopic systematic. Variable amounts of trapped noble gases and the presence of more than one N component suggest that the magmatic process that formed the parent body of these meteorites either could not completely homogenize or completely degas all the phases.  相似文献   

15.
The bulk composition of metal (kamacite plus perryite) was determined in eleven E-chondrites and eight aubrites. The data are compatible with the subdivision of the E-chondrites into two groups (Yavnel, 1963; Anders, 1964), St Mark's and St Sauveur belonging to type I (Easton, 1985). The Ni content of kamacite plus perryite in Kota Kota (5.49%) is within the range covered by the remaining E-chondrites. Normative perryite, (Fe, Ni)x(Si,P)y constitutes 2.1% of Kota Kota and 2.7% of South Oman. The Ni content in the bulk metal of Aubres, Bishopville, Norton County and Peña Blanca Spring is about half the average Ni content in the metal of E-chondrites or the remaining aubrites (Bustee, Khor Temiki, Mayo Belwa and Shallowater). High Ga/Ni and Ge/Ni ratios distinguish the metal in E-chondrites and aubrites from that in ordinary chondrites. In a large metal grain from Aubres perryite formed on reheating, whereas in one from Khor Temiki there is evidence of shock and displacement of fragmented schreibersite (rhabdite). Thirty-eight metal grains (< 1.5 mm diameter) from Khor Temiki have a wide compositional range like that in Mayo Belwa (Graham, 1978). In Shallowater the distribution of Ni in the metal is bimodal (5.2 and 11.6%) and there is evidence of rapid cooling. The composition of both bulk metal and individual grains in aubrites makes it unlikely that they represent residual metal trapped during magmatic differentiation and/or fractional crystallization of E6 material. Compositional differences between metal grains strongly indicate that the aubrites are polymict breccias.  相似文献   

16.
Abstract— We studied the metallography of Fe‐Ni metal particles in 17 relatively unshocked ordinary chondrites and interpreted their microstructures using the results of P‐free, Fe‐Ni alloy cooling experiments (described in Reisener and Goldstein 2003). Two types of Fe‐Ni metal particles were observed in the chondrites: zoned taenite + kamacite particles and zoneless plessite particles, which lack systematic Ni zoning and consist of tetrataenite in a kamacite matrix. Both types of metal particles formed during metamorphism in a parent body from homogeneous, P‐poor taenite grains. The phase transformations during cooling from peak metamorphic temperatures were controlled by the presence or absence of grain boundaries in the taenite particles. Polycrystalline taenite particles transformed to zoned taenite + kamacite particles by kamacite nucleation at taenite/taenite grain boundaries during cooling. Monocrystalline taenite particles transformed to zoneless plessite particles by martensite formation and subsequent martensite decomposition to tetrataenite and kamacite during the same cooling process. The varying proportions of zoned taenite + kamacite particles and zoneless plessite particles in types 4–6 ordinary chondrites can be attributed to the conversion of polycrystalline taenite to monocrystalline taenite during metamorphism. Type 4 chondrites have no zoneless plessite particles because metamorphism was not intense enough to form monocrystalline taenite particles. Type 6 chondrites have larger and more abundant zoneless plessite particles than type 5 chondrites because intense metamorphism in type 6 chondrites generated more monocrystalline taenite particles. The distribution of zoneless plessite particles in ordinary chondrites is entirely consistent with our understanding of Fe‐Ni alloy phase transformations during cooling. The distribution cannot be explained by hot accretion‐autometamorphism, post‐metamorphic brecciation, or shock processing.  相似文献   

17.
Fossil iron meteorites are extremely rare in the geological sedimentary record. The paleometeorite described here is the first such finding at the Cretaceous‐Paleogene (K‐Pg) boundary. In the boundary clay from the outcrop at the Lechówka quarry (Poland), fragments of the paleometeorite were found in the bottom part of the host layer. The fragments of meteorite (2–6 mm in size) and meteoritic dust are metallic‐gray in color and have a total weight of 1.8181 g. Geochemical and petrographic analyses of the meteorite from Lechówka reveal the presence of Ni‐rich minerals with a total Ni amount of 2–3 wt%. The identified minerals are taenite, kamacite, schreibersite, Ni‐rich magnetite, and Ni‐rich goethite. No relicts of silicates or chromites were found. The investigated paleometeorite apparently represents an independent fall and does not seem to be derived from the K‐Pg impactor. The high degree of weathering did not permit the chemical classification of the meteorite fragments. However, the recognized mineral inventory, lack of silicates, and their pseudomorphs and texture may indicate that the meteorite remains were an iron meteorite.  相似文献   

18.
Some of the defining characteristics of the IIG iron meteorite group are their high bulk P contents and massive, coarse schreibersite, which have been calculated to make up roughly 11–14 wt% of each specimen. In this study, we produced two data sets to investigate the formation of schreibersites in IIG irons: measurements of trace elements in the IIG iron meteorite Twannberg and experimental determinations of trace element partitioning into schreibersite. The schreibersite‐bearing experiments were conducted with schreibersite in equilibrium with a P‐rich melt and with bulk Ni contents ranging from 0 to 40 wt%. The partitioning behavior for the 20 elements measured in this study did not vary with Ni content. Comparison of the Twannberg measurements with the experimental results required a correction factor to account for the fact that the experiments were conducted in a simplified system that did not contain a solid metal phase. Previously determined solid metal/P‐rich melt partition coefficients were applied to infer schreibersite/solid metal partitioning behavior from the experiments, and once this correction was applied, the two data sets showed broad similarities between the schreibersite/solid metal distribution of elements. However, there were also differences noted, in particular between the Ni and P contents of the solid metal relative to the schreibersite inferred from the experiments compared to that measured in the Twannberg sample. These differences support previous interpretations that subsolidus schreibersite evolution has strongly influenced the Ni and P content now present in the solid metal phase of IIG irons. Quantitative attempts to match the IIG solid metal composition to that of late‐stage IIAB irons through subsolidus schreibersite growth were not successful, but qualitatively, this study corroborates the striking similarities between the IIAB and IIG groups, which are highly suggestive of a possible genetic link between the groups as has been previously proposed.  相似文献   

19.
Abstract— The original mass (15915 g) of the Twannberg IIG (low Ni‐, high P) iron was found in 1984. Five additional masses (12 to 2488 g) were recovered between 2000 and 2007 in the area. The different masses show identical mineralogy consisting of kamacite single crystals with inclusions of three types of schreibersite crystals: cm‐sized skeletal (10.5% Ni), lamellar (17.2% Ni), and 1–3 × 10 μm‐sized microprismatic (23.9% Ni). Masses I and II were compared in detail and have virtually identical microstructure, hardness, chemical composition, cosmic‐ray exposure (CRE) ages, and 10Be and 26Al activities. Bulk concentrations of 5.2% Ni and 2.0% P were calculated. The preatmospheric mass is estimated to have been at least 11,000 kg. The average CRE age for the different Twannberg samples is 230 ± 50 Ma. Detrital terrestrial mineral grains in the oxide rinds of the three larger masses indicate that they oxidized while they were incorporated in a glacial till deposited by the Rhône glacier during the last glaciation (Würm). The find location of mass I is located at the limit of glaciation where the meteorite may have deposited after transport by the glacier over considerable distance. All evidence indicates pairing of the six masses, which may be part of a larger shower as is indicated by the large inferred pre‐atmospheric mass.  相似文献   

20.
Abstract— The Ulasitai iron was recently found about 130 km southeast to the find site of the Armanty (Xinjiang, IIIE) meteorite. It is a coarse octahedrite with a kamacite bandwidth of 1.2 ± 0.2 (0.9–1.8) mm. Plessite is abundant, as is taenite, kamacite, cohenite, and schreibersite with various microstructures. Schreibersite is Ni‐rich (30.5–55.5 wt%) in plessite or coexisting with troilite and daubreelite, in comparison with the coarse laths (20.6–21.2 wt%) between the Widmanstätten pattern plates. The correlation between the center Ni content and the half bandwidth of taenite suggest a cooling rate of ?20 °C/Myr based on simulations. The petrography and mineral chemistry of Ulasitai are similar to Armanty. The bulk samples of Ulasitai were measured, together with Armanty, Nandan (IIICD), and Mundrabilla (IIICD), by inductively coupled plasma atomic emission spectrometry (ICP‐AES) and mass spectrometry (ICP‐MS). The results agree with literature data of the same meteorites, and our analyses of four samples of Armanty (L1, L12, L16, L17) confirm a homogeneous composition (Wasson et al. 1988). The bulk composition of Ulasitai is identical to that of Armanty, both plotting within the IIIE field. We classify Ulasitai as a new IIIE iron and suggest that it pairs with Armanty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号