首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We report light noble gas (He, Ne, and Ar) concentrations and isotopic ratios in 11 achondrites, Tafassasset (unclassified primitive achondrite), Northwest Africa (NWA) 12934 (angrite), NWA 12573 (brachinite), Jiddat al Harasis (JaH) 809 (ureilite), NWA 11562 (ungrouped achondrite), four lodranites (NWA 11901, NWA 7474, NWA 6685, and NWA 6484), NWA 2871 (acapulcoite), and Sahara 02029 (winonaite), most of which have not been previously studied for noble gases. We discuss their noble gas isotopic composition, determine their cosmogenic nuclide content, and systematically calculate their cosmic ray exposure (CRE) and gas retention ages. In addition, we estimate their preatmospheric radii and preatmospheric masses based on the shielding parameter (22Ne/21Ne)cos. None of the studied meteorites shows evidence of contribution from solar cosmic rays (SCRs). JaH 809 and NWA 12934 show evidence of 3He diffusive losses of >90% and 40%, respectively. The winonaite Sahara 02029 has lost most of its noble gases, either during or before analysis. The average CRE age of Tafassasset of ~49 Ma is lower than that reported by Patzer et al. (2003), but is consistent with it within the uncertainties; this confirms that Tafassasset and CR chondrites are not source paired, CR chondrites having CRE ages from 1 to 25 Ma (Herzog & Caffee, 2014). The ureilite JaH 809 has a CRE age of ~5.4 Ma, which falls into the typical range of exposure ages for ureilites; the angrite NWA 12934 has a CRE age of ~49 Ma, which is within the main range of exposure ages reported for angrites (0.2–56 Ma). We calculate a CRE age of ~2.4 Ma for the brachinite NWA 12573, which falls into a possible “cluster” in the brachinite CRE age histogram around ~3 Ma. Three lodranites (NWA 11901, NWA 7474, and NWA 6685) have CRE ages higher than the average CRE ages of lodranites measured so far, NWA 11901 and NWA 6685 having CRE ages far higher than the CRE age already reported by Li et al. (2019) on NWA 8118. The measured 40K-40Ar gas retention ages fit well into established systematics. The gas retention age of Tafassasset is consistent, within respective uncertainties, with that previously calculated by Patzer et al. (2003). Our study indicates that Tafassasset originates from a meteoroid with a preatmospheric radius of ~20 cm, however discordant with the radius of ~85 cm inferred in a previous study (Patzer et al., 2003).  相似文献   

2.
Abstract— Noble gases in two ureilites, Kenna and Allan Hills (ALH) 78019, were measured with two extraction methods: mechanical crushing in a vacuum and heating. Large amounts of noble gases were released by crushing, up to 26.5% of 132Xe from ALH 78019 relative to the bulk concentration. Isotopic ratios of the crush‐released Ne of ALH 78019 resemble those of the trapped Ne components determined for some ureilites or terrestrial atmosphere, while the crush‐released He and Ne from Kenna are mostly cosmogenic. The crush‐released Xe of ALH 78019 and Kenna is similar in isotopic composition to Q gas, which indicates that the crush‐released noble gases are indigenous and not caused by contamination from terrestrial atmosphere. In contrast to the similarities in isotopic composition with the bulk samples, light elements in the crush‐released noble gases are depleted relative to Xe and distinct from those of each bulk sample. This depletion is prominent especially in the 20Ne/132Xe ratio of ALH 78019 and the 36Ar/132Xe ratio of Kenna. The values of measured 3He/21Ne for the gases released by crushing are significantly higher than those for heating‐released gases. This suggests that host phases of the crush‐released gases might be carbonaceous because cosmogenic Ne is produced mainly from elements with a mass number larger than Ne. Based on our optical microscopic observation, tabular‐foliated graphite is the major carbon mineral in ALH 78019, while Kenna contains abundant polycrystalline graphite aggregates and diamonds along with minor foliated graphite. There are many inclusions at the edge and within the interior of olivine grains that are reduced by carbonaceous material. Gaps can be seen at the boundary between carbonaceous material and silicates. Considering these petrologic and noble gas features, we infer that possible host phases of crush‐released noble gases are graphite, inclusions in reduction rims, and gaps between carbonaceous materials and silicates. The elemental ratios of noble gases released by crushing can be explained by fractionation, assuming that the starting noble gas composition is the same as that of amorphous carbon in ALH 78019. The crush‐released noble gases are the minor part of trapped noble gases in ureilites but could be an important clue to the thermal history of the ureilite parent body. Further investigation is needed to identify the host phases of the crush‐released noble gases.  相似文献   

3.
Abstract– We present the results of a noble gas (He, Ne, Ar) and cosmogenic radionuclide (10Be, 26Al, 36Cl) analysis of two chondritic fragments (#A100, L4 and #25, H5) found in the Almahata Sitta strewn field in Sudan. We confirm their earlier attribution to the same fall as the ureilites dominating the strewn field, based on the following findings: (1) both chondrite samples indicate a preatmospheric radius of approximately 300 g cm?2, consistent with the preatmospheric size of asteroid 2008 TC3 that produced the Almahata Sitta strewn field; (2) both have, within error, a 21Ne/26Al‐based cosmic ray exposure age of approximately 20 Ma, identical to the reported ages of Almahata Sitta ureilites; (3) both exhibit hints of ureilitic Ar in the trapped component. We discuss a possible earlier irradiation phase for the two fragments of approximately 10–20 Ma, visible only in cosmogenic 38Ar. We also discuss the approximately 3.8 Ga (4He) and approximately 4.6 Ga (40Ar) gas retention ages, measured in both chondritic fragments. These imply that the two chondrite fragments were incorporated into the ureilite host early in solar system evolution, and that the parent asteroid from which 2008 TC3 is derived has not experienced a large break‐up event in the last 3.8 Ga.  相似文献   

4.
Neon produced by solar cosmic rays in ordinary chondrites   总被引:1,自引:0,他引:1       下载免费PDF全文
Solar‐cosmic‐ray‐produced Ne (SCR‐Ne), in the form of low cosmogenic 21Ne/22Ne ratios (21Ne/22Necos <0.8), is more likely to be found in rare meteorite classes, like Martian meteorites, than in ordinary chondrites. This may be the result of a sampling bias: SCR‐Ne is better preserved in meteorites with small preatmospheric radii and these specimens are often only studied if they belong to unusual or rare classes. We measured He and Ne isotopic concentrations and nuclear tracks in 25 small unpaired ordinary chondrites from Oman. Most chondrites have been intensively heated during atmospheric entry as evidenced by the disturbed track records, the low 3He/21Ne ratios, the low 4He concentrations, and the high peak release temperatures. Concentration depth profiles indicate significant degassing; however, the Ne isotopes are mainly undisturbed. Remarkably, six chondrites have low 21Ne/22Necos in the range 0.711–0.805. Using a new physical model for the calculation of SCR production rates, we show that four of the chondrites contain up to ~20% of SCR‐Ne; they are analyzed in terms of preatmospheric sizes, cosmic ray exposure ages, mass ablation losses, and orbits. We conclude that SCR‐Ne is preserved, regardless of the meteorite class, in specimens with small preatmospheric radii. Sampling bias explains the predominance of SCR‐Ne in rare meteorites, although we cannot exclude that SCR‐Ne is more common in Martian meteorites than it is in small ordinary chondrites.  相似文献   

5.
The lightly-shocked ureilite RC027 was found in Roosevelt County, New Mexico in 1984. In terms of petrography, texture, mineral compositions, bulk chemical composition, and oxygen isotopic composition it is a typical ureilite. It contains ~75% olivine (Fo 79.4) and 25% pigeonite (mg 81.3, Wo 8.0), with intergranular graphite and (Fe, Ni) metal. It also contains less than 1% of fine-grained, interstitial silicate material, which had not previously been recognized in any ureilite. This material is an assemblage of low-Ca pyroxene (Wo 3.5–9, mg 87–93), augite (Wo 24–36, mg 90–98), glass (typically ~95% SiO2, 4% Al2O3, 0.5% Na2O), and crystalline SiO2. This material has an igneous texture, indicating that it crystallized from an interstitial liquid. Low-Ca pyroxene compositions indicate that the interstitial liquid was not in equilibrium with core pigeonite and olivine and cannot have been either an evolved intercumulus liquid or a low-degree partial melt. It may contain a component of shock-melted olivine and pigeonite, although petrographic evidence indicates that it could not have been an in situ shock melt. One sample of RC027 has a V-shaped rare earth element pattern, typical of ureilites. Another is depleted in light rare earth elements (LREE), similar to acid-treated samples of ureilites, which suggests that LREE in ureilites are contained in an inhomogeneously-distributed phase. RC027 shows the strongest olivine preferred-orientation yet observed in a ureilite. Its fabric is characteristic of fabrics formed by tabular minerals in a fluid laminar flow regime and is unlike those formed by syntectonic recrystallization and plastic flow. The elemental and isotopic compositions of noble gases in RC027 are typical of previously analyzed ureilites. This result indicates that there is no correlation of noble gas content with degree of shock in ureilites, and thus suggests that the gases were present in the ureilite material before shock. Cosmogenic He and Ne contents indicate cosmic ray exposure ages of 1.7 and 1.9 Myr, respectively. Thus, RC027 is not paired with Kenna (a ureilite also found in Roosevelt County), which has an exposure age of ~33 Myr.  相似文献   

6.
The Jiddat al Harasis (JaH) 422 ureilite was found in the Sultanate of Oman; it is classified as a ureilitic impact melt breccia. The meteorite consists of rounded polycrystalline olivine clasts (35%), pores (8%), and microcrystalline matrix (57%). Clasts and matrix have oxygen isotopic values and chemical compositions (major and trace elements) characteristic of the ureilite group. The matrix contains olivine (Fo83–90), low‐Ca pyroxene (En84–92Wo0–5), augite (En71–56Wo20–31), graphite, diamond, Fe‐metal, sulfides, chromite, and felsic glass. Pores are partly filled by secondary Fe‐oxihydroxide and desert alteration products. Pores are surrounded by strongly reduced silicates. Clasts consist of fine‐grained aggregates of polygonal olivine. These clasts have an approximately 250 μm wide reaction rim, in which olivine composition evolves progressively from the core composition (Fo79–81) to the matrix composition (Fo84–87). Veins crossing the clasts comprise pyroxene, Fe‐oxihydroxide, C‐phases, and chromite. Clasts contain Ca‐, Al‐, and Cr‐rich glass along olivine grain boundaries (<1 μm wide). We suggest that a significant portion of JaH 422, including olivine and all the pyroxenes, was molten as a result of an impact. In comparison with other impact‐melted ureilites, JaH 422 shows the highest melt portion. Based on textural and compositional considerations, clasts and matrix probably originated from the same protolith, with the clasts representing relict olivine that survived, but was recrystallized in the impact melt. During the melt stage, the high availability of FeO and elevated temperatures controlled oxygen fugacity at values high enough to stabilize olivine with Fo~83–87 and chromite. Along pores, high Mg# compositions of silicates indicate that in a late stage or after melt crystallization FeO became less available and fO2 conditions were controlled by C?CO + CO2.  相似文献   

7.
The Almahata Sitta strewn field is dominated by ureilites, but contains a large fraction of chondritic fragments of various types. We analyzed stable isotopes of He, Ne, Ar, Kr, and Xe, and the cosmogenic radionuclides 10Be, 26Al, and 36Cl in six chondritic Almahata Sitta fragments (EL6 breccia, EL6, EL3‐5, CB, LL4/5, R‐like). The cosmic‐ray exposure (CRE) ages of five of the six samples have an average of 19.2 ± 3.3 Ma, close to the average of 19.5 ± 2.5 Ma for four ureilites. The cosmogenic radionuclide concentrations in the chondrites indicate a preatmospheric size consistent with Almahata Sitta. This corroborates that Almahata Sitta chondrite samples were part of the same asteroid as the ureilites. However, MS‐179 has a lower CRE age of 11.0 ± 1.4 Ma. Further analysis of short‐lived radionuclides in fragment MS‐179 showed that it fell around the same time, and from an object of similar size as Almahata Sitta, making it almost certain that MS‐179 is an Almahata Sitta fragment. Instead, its low CRE age could be due to gas loss, chemical heterogeneity that may have led to an erroneous 21Ne production‐rate, or, perhaps most likely, MS‐179 could represent the true 4π exposure age of Almahata Sitta (or an upper limit thereof), while all other samples analyzed so far experienced exposure on the parent body of similar lengths. Finally, MS‐179 had an extraordinarily high activity of neutron‐capture 36Cl, ~600 dpm kg?1, the highest activity observed in any meteorite to date, related to a high abundance of the Cl‐bearing mineral lawrencite.  相似文献   

8.
We present noble gas data for 16 shergottites, 2 nakhlites (NWA 5790, NWA 10153), and 1 angrite (NWA 7812). Noble gas exposure ages of the shergottites fall in the 1–6 Ma range found in previous studies. Three depleted olivine‐phyric shergottites (Tissint, NWA 6162, NWA 7635) have exposure ages of ~1 Ma, in agreement with published data for similar specimens. The exposure age of NWA 10153 (~12.2 Ma) falls in the range of 9–13 Ma reported for other nakhlites. Our preferred age of ~7.3 Ma for NWA 5790 is lower than this range, and it is possible that NWA 5790 represents a distinct ejection event. A Tissint glass sample contains Xe from the Martian atmosphere. Several samples show a remarkably low (21Ne/22Ne)cos ratio < 0.80, as previously observed in a many shergottites and in various other rare achondrites. This was explained by solar cosmic ray‐produced Ne (SCR Ne) in addition to the commonly found galactic cosmic ray‐produced Ne, implying very low preatmospheric shielding and ablation loss. We revisit this by comparing measured (21Ne/22Ne)cos ratios with predictions by cosmogenic nuclide production models. Indeed, several shergottites, acalpulcoites/lodranites, angrites (including NWA 7812), and the Brachina‐like meteorite LEW 88763 likely contain SCR Ne, as previously postulated for many of them. The SCR contribution may influence the calculation of exposure ages. One likely reason that SCR nuclides are predominantly detected in meteorites from rare classes is because they usually are analyzed for cosmogenic nuclides even if they had a very small (preatmospheric) mass and hence low ablation loss.  相似文献   

9.
Abstract— This paper explores the possible origin of the light rare earth element (LREE) enrichments observed in some ureilites, a question that has both petrogenetic and chronologic implications for this group of achondritic meteorites. Rare earth element and other selected elemental abundances were measured in situ in 14 thin sections representing 11 different ureilites. The spatial microdistributions of REEs in C‐rich matrix areas of the three ureilites with the most striking V‐shaped whole‐rock REE patterns (Kenna, Goalpara, and Novo Urei) were investigated using the ion imaging capability of the ion microprobe. All olivines and clinopyroxenes measured have LREE‐depleted patterns with little variation in REE abundances, despite large differences in their major element compositions from ureilite to ureilite. Furthermore, we searched for but did not find any minor mineral phases that carry LREEs. The only exception is one Ti‐rich area (~20μm) in Lewis Cliff (LEW) 85400 with a major element composition similar to that of titanite; REE abundances in this area are high, ranging from La ? 400 × CI to Lu ? 40 × CI. In contrast, all ion microprobe analyses of C‐rich matrix in Kenna, Goalpara, and Novo Urei revealed large LREE enrichments. In addition, C‐rich matrix areas in the three polymict ureilites, Elephant Moraine (EET) 83309, EET 87720, and North Haig, which have less pronounced V‐shaped whole‐rock REE patterns, show smaller but distinct LREE‐enrichments. The C‐rich matrix in Antarctic ureilites tends to have much lower LREE concentrations than the matrix in non‐Antarctic ureilites. There is no obvious association of the LREEs with other major or minor elements in the C‐rich areas. Ion images further show that the LREE enrichments are homogeneously distributed on a microscale in most C‐rich matrix areas of Kenna, Goalpara, and Novo Urei. These observations suggest that the LREEs in ureilites most probably are absorbed on the surface of fine‐grained amorphous graphite in the C‐rich matrix. It is unlikely that the LREE enrichments are due to shock melts or are the products of metasomatism on the ureilite parent body. We favor LREE introduction by terrestrial contamination.  相似文献   

10.
Abstract— Magmatic inclusions occur in type II ureilite clasts (olivine‐orthopyroxene‐augite assemblages with essentially no carbon) and in a large isolated plagioclase clast in the Dar al Gani (DaG) 319 polymict ureilite. Type I ureilite clasts (olivine‐pigeonite assemblages with carbon), as well as other lithic and mineral clasts in this meteorite, are described in Ikeda et al.(2000). The magmatic inclusions in the type II ureilite clasts consist mainly of magnesian augite and glass. They metastably crystallized euhedral pyroxenes, resulting in feldspar component‐enriched glass. On the other hand, the magmatic inclusions in the large plagioclase clast consist mainly of pyroxene and plagioclase, with a mesostasis. They crystallized with a composition along the cotectic line between the pyroxene and plagioclase liquidus fields. DaG 319 also contains felsic lithic clasts that represent various types of igneous lithologies. These are the rare components not found in the common monomict ureilites. Porphyritic felsic clasts, the main type, contain phenocrysts of plagioclase and pyroxene, and their groundmass consists mainly of plagioclase, pyroxene, and minor phosphate, ilmenite, chromite, and/or glass. Crystallization of these porphyritic clasts took place along the cotectic line between the pyroxene and plagioclase fields. Pilotaxitic felsic clasts crystallized plagioclase laths and minor interstitial pyroxene under metastable conditions, and the mesostasis is extremely enriched in plagioclase component in spite of the ubiquitous crystallization of plagioclase laths in the clasts. We suggest that there are two crystallization trends, pyroxene‐metal and pyroxene‐plagioclase trends, for the magmatic inclusions and felsic lithic clasts in DaG 319. The pyroxene‐metal crystallization trend corresponds to the magmatic inclusions in the type II ureilite clasts and the pilotaxitic felsic clasts, where crystallization took place under reducing and metastable conditions, suppressing precipitation of plagioclase. The pyroxene‐plagioclase crystallization trend corresponds to the magmatic inclusions in the isolated plagioclase clast and the porphyritic felsic clasts. This trend developed under oxidizing conditions in magma chambers within the ureilite parent body. The felsic clasts may have formed mainly from albite component‐rich silicate melts produced by fractional partial melting of chondritic precursors. The common monomict ureilites, type I ureilites, may have formed by the fractional partial melting of alkali‐bearing chondritic precursors. However, type II ureilites may have formed as cumulates from a basaltic melt.  相似文献   

11.
Asteroid 2008 TC3 (approximately 4 m diameter) was tracked and studied in space for approximately 19 h before it impacted Earth's atmosphere, shattering at 44–36 km altitude. The recovered samples (>680 individual rocks) comprise the meteorite Almahata Sitta (AhS). Approximately 50–70% of these are ureilites (ultramafic achondrites). The rest are chondrites, mainly enstatite, ordinary, and Rumuruti types. The goal of this work is to understand how fragments of so many different types of parent bodies became mixed in the same asteroid. Almahata Sitta has been classified as a polymict ureilite with an anomalously high component of foreign clasts. However, we calculate that the mass of fallen material was ≤0.1% of the pre‐atmospheric mass of the asteroid. Based on published data for the reflectance spectrum of the asteroid and laboratory spectra of the samples, we infer that the lost material was mostly ureilitic. Therefore, 2008 TC3 probably contained only a few percent nonureilitic materials, similar to other polymict ureilites except less well consolidated. From available data for the AhS meteorite fragments, we conclude that 2008 TC3 samples essentially the same range of types of ureilitic and nonureilitic materials as other polymict ureilites. We therefore suggest that the immediate parent of 2008 TC3 was the immediate parent of all ureilitic material sampled on Earth. We trace critical stages in the evolution of that material through solar system history. Based on various types of new modeling and re‐evaluation of published data, we propose the following scenario. (1) The ureilite parent body (UPB) accreted 0.5–0.6 Ma after formation of calcium‐aluminum‐rich inclusions (CAI), beyond the ice line (outer asteroid belt). Differentiation began approximately 1 Ma after CAI. (2) The UPB was catastrophically disrupted by a major impact approximately 5 Ma after CAI, with selective subsets of the fragments reassembling into daughter bodies. (3) Either the UPB (before breakup), or one of its daughters (after breakup), migrated to the inner belt due to scattering by massive embryos. (4) One daughter (after forming in or migrating to the inner belt) became the parent of 2008 TC3. It developed a regolith, mostly ≥3.8 Ga ago. Clasts of enstatite, ordinary, and Rumuruti‐type chondrites were implanted by low‐velocity collisions. (5) Recently, the daughter was disrupted. Fragments were injected or drifted into Earth‐crossing orbits. 2008 TC3 comes from outer layers of regolith, other polymict ureilites from deeper regolith, and main group ureilites from the interior of this body. In contrast to other models that have been proposed, this model invokes a stochastic history to explain the unique diversity of foreign materials in 2008 TC3 and other polymict ureilites.  相似文献   

12.
A detailed mineralogical and chemical study of Almahata Sitta fine‐grained ureilites (MS‐20, MS‐165, MS‐168) was performed to shed light on the origin of these lithologies and their sulfide and metal. The Almahata Sitta fine‐grained ureilites (silicates <30 μm grain size) show textural and chemical evidence for severe impact smelting as described for other fine‐grained ureilites. Highly reduced areas in Almahata Sitta fine‐grained ureilites show large (up to ~1 mm) Si‐bearing metal grains (up to ~4.5 wt% Si) and niningerite [Mg>0.5,(Mn,Fe)<0.5S] with some similarities to the mineralogy of enstatite (E) chondrites. Overall, metal grains show a large compositional variability in Ni and Si concentrations. Niningerite grains probably formed as a by‐product of smelting via sulfidation. The large Si‐Ni variation in fine‐grained ureilite metal could be the result of variable degrees of reduction during impact smelting, inherited from coarse‐grained ureilite precursors, or a combination of both. Large Si‐bearing metal grains probably formed via coalescence of existing and newly formed metal during impact smelting. Bulk and in situ siderophile trace element abundances indicate three distinct populations of (1) metal crystallized from partial melts in MS‐20, (2) metal resembling bulk chondritic compositions in MS‐165, and (3) residual metal in MS‐168. Almahata Sitta fine‐grained ureilites developed their distinctive mineralogy due to severe reduction during smelting. Despite the presence of E chondrite and ureilite stones in the Almahata Sitta fall, a mixing relation of E chondrites or their constituents and ureilite material in Almahata Sitta can be ruled out based on isotopic, textural, and mineral‐chemical reasons.  相似文献   

13.
We have examined the magnetic characteristics of representative ureilites, with a view to identify the magnetic effects of shock and to isolate a primary component of the natural remanent magnetization (NRM). As a group, the ureilites show remarkably uniform patterns of magnetic behavior, attesting to a common genesis and history. However, a clearly observed gradation in magnetic properties of the ureilites studied with shock level, parallels their classification based on petrologic and chemical fractionation shock-related trends.The ureilite meteorites possess a strong and directionally stable NRM. Laboratory thermal modelling of this presumably primordial NRM preserved in Goalpara and Kenna produced reliable paleointensity estimates of order 1 Oe, thus providing evidence for strong early, nebular magnetic fields. This paleofield strength is compatible with values obtained previously from carbonaceous chondrites and supports isotopic evidence for a contemporary origin of these two groups of meteorites in the same nebular region. The mechanism for recording nebular fields, manifestly different in carbonaceous chondrite vs. ureilite meteorites, is thus relatively unimportant: violent collisional shock in ureilites seems to have only partially altered an original magnetization, by preferential removal of its least stable portion.  相似文献   

14.
We use cosmic‐ray exposure (CRE) ages of ureilites, combined with magnesium numbers of olivine, and oxygen isotopes, to search for evidence of specific source events initiating exposure for groups of ureilites. This technique can also be used to investigate the heterogeneity of the body from which the samples were derived. There are a total of 39 ureilites included in our work, which represents the largest collection of ureilite CRE age data used to date. Although we find some evidence of possible clusters, it is clear that most ureilites did not originate in one or two events on a homogeneous parent body.  相似文献   

15.
Abstract— The petrogenesis of four lunar highlands meteorites, Dhofar 025 (Dho 025), Dhofar 081 (Dho 081), Dar al Gani 262 (DaG 262), and Dar al Gani 400 (DaG 400) were studied. For Dho 025, measured oxygen isotopic values and Fe‐Mn ratios for mafic minerals provide corroboratory evidence that it originated on the Moon. Similarly, Fe‐Mn ratios in the mafic minerals of Dho 081 indicate lunar origin. Lithologies in Dho 025 and Dho 081 include lithic clasts, granulites, and mineral fragments. A large number of lithic clasts have plagioclase AN# and coexisting mafic mineral Mg# that plot within the “gap” separating ferroan anorthosite suite (FAN) and high‐magnesium suite (HMS) rocks. This is consistent with whole rock Ti‐Sm ratios for Dho 025, Dho 081, and DaG 262, which are also intermediate compared to FAN and HMS lithologies. Although ion microprobe analyses performed on Dho 025, Dho 081, DaG 262, and DaG 400 clasts and minerals show far stronger FAN affinities than whole rock data suggest, most clasts indicate admixture of ≤12% HMS component based on geochemical modeling. In addition, coexisting plagioclase‐pyroxene REE concentration ratios in several clasts were compared to experimentally determined plagioclase‐pyroxene REE distribution coefficient ratios. Two Dho 025 clasts have concordant plagioclase‐pyroxene profiles, indicating that equilibrium between these minerals has been sustained despite shock metamorphism. One clast has an intermediate FAN‐HMS composition. These lunar meteorites appear to represent a type of highland terrain that differs substantially from the KREEP‐signatured impact breccias that dominate the lunar database. From remote sensing data, it is inferred that the lunar far side appears to have appropriate geochemical signatures and lithologies to be the source regions for these rocks; although, the near side cannot be completely excluded as a possibility. If these rocks are, indeed, from the far side, their geochemical characteristics may have far‐reaching implications for our current scientific understanding of the Moon.  相似文献   

16.
Abstract— We measured the concentrations of noble gases in 32 ordinary chondrites from the Dar al Gani (DaG) region, Libya, as well as concentrations of the cosmogenic radionuclides 14C, 10Be, 26Al, 36Cl, and 41Ca in 18 of these samples. Although the trapped noble gases in five DaG samples show ratios typical of solar or planetary gases, in all other DaG samples, they are dominated by atmospheric contamination, which increases with the degree of weathering. Cosmic ray exposure (CRE) ages of DaG chondrites range from ?1 Myr to 53 Myr. The CRE age distribution of 10 DaG L chondrites shows a cluster around 40 Myr due to four members of a large L6 chondrite shower. The CRE age distribution of 19 DaG H chondrites shows only three ages coinciding with the main H chondrite peak at ?7 Myr, while seven ages are <5 Myr. Two of these H chondrites with short CRE ages (DaG 904 and 908) show evidence of a complex exposure history. Five of the H chondrites show evidence of high shielding conditions, including low 22Ne/21Ne ratios and large contributions of neutron‐capture 36Cl and 41Ca. These samples represent fragments of two or more large pre‐atmospheric objects, which supports the hypothesis that the high H/L chondrite ratio at DaG is due to one or more large unrecognized showers. The 14C concentrations correspond to terrestrial ages <35 kyr, similar to terrestrial ages of chondrites from other regions in the Sahara but younger than two DaG achondrites. Despite the loss of cosmogenic 36Cl and 41Ca during oxidation of metal and troilite, concentrations of 36Cl and 41Ca in the silicates are also consistent with 14C ages <35 kyr. The only exception is DaG 343 (H4), which has a 41Ca terrestrial age of 150 ± 40 kyr. This old age shows that not only iron meteorites and achondrites but also chondrites can survive the hot desert environment for more than 50 kyr. A possible explanation is that older meteorites were covered by soils during wetter periods and were recently exhumed by removal of these soils due to deflation during more arid periods, such as the current one, which started ?3000 years ago. Finally, based on the 26Al/21Ne and 10Be/21Ne systematics in 16 DaG meteorites, we derived more reliable estimates of the 10Be/21Ne production rate ratio, which seems more sensitive to shielding than was predicted by the semi‐empirical model of Graf et al. (1990) but less sensitive than was predicted by the purely physical model of Leya et al. (2000).  相似文献   

17.
We measured the He, Ne, and Ar isotopic concentrations and the 10Be, 26Al, 36Cl, and 41Ca concentrations in 56 iron meteorites of groups IIIAB, IIAB, IVA, IC, IIA, IIB, and one ungrouped. From 41Ca and 36Cl data, we calculated terrestrial ages indistinguishable from zero for six samples, indicating recent falls, up to 562 ± 86 ka. Three of the studied meteorites are falls. The data for the other 47 irons confirm that terrestrial ages for iron meteorites can be as long as a few hundred thousand years even in relatively humid conditions. The 36Cl‐36Ar cosmic ray exposure (CRE) ages range from 4.3 ± 0.4 Ma to 652 ± 99 Ma. By including literature data, we established a consistent and reliable CRE age database for 67 iron meteorites. The high quality of the CRE ages enables us to study structures in the CRE age histogram more reliably. At first sight, the CRE age histogram shows peaks at about 400 and 630 Ma. After correction for pairing, the updated CRE age histogram comprises 41 individual samples and shows no indications of temporal periodicity, especially not if one considers each iron meteorite group separately. Our study contradicts the hypothesis of periodic GCR intensity variations (Shaviv 2002, 2003), confirming other studies indicating that there are no periodic structures in the CRE age histogram (e.g., Rahmstorf et al. 2004; Jahnke 2005). The data contradict the hypothesis that periodic GCR intensity variations might have triggered periodic Earth climate changes. The 36Cl‐36Ar CRE ages are on average 40% lower than the 41K‐K CRE ages (e.g., Voshage 1967). This offset can either be due to an offset in the 41K‐K dating system or due to a significantly lower GCR intensity in the time interval 195–656 Ma compared to the recent past. A 40% lower GCR intensity, however, would have increased the Earth temperature by up to 2 °C, which seems unrealistic and leaves an ill‐defined 41K‐K CRE age system the most likely explanation. Finally, we present new 26Al/21Ne and 10Be/21Ne production rate ratios of 0.32 ± 0.01 and 0.44 ± 0.03, respectively.  相似文献   

18.
Ureilites are carbon‐rich ultramafic achondrites that have been heated above the silicate solidus, do not contain plagioclase, and represent the melting residues of an unknown planetesimal (i.e., the ureilite parent body, UPB). Melting residues identical to pigeonite‐olivine ureilites (representing 80% of ureilites) have been produced in batch melting experiments of chondritic materials not depleted in alkali elements relative to the Sun’s photosphere (e.g., CI, H, LL chondrites), but only in a relatively narrow range of temperature (1120 ºC–1180 ºC). However, many ureilites are thought to have formed at higher temperature (1200 ºC–1280 ºC). New experiments, described in this study, show that pigeonite can persist at higher temperature (up to 1280 ºC) when CI and LL chondrites are melted incrementally and while partial melts are progressively extracted. The melt productivity decreases dramatically after the exhaustion of plagioclase with only 5–9 wt% melt being generated between 1120 ºC and 1280 ºC. The relative proportion of pyroxene and olivine in experiments is compared to 12 ureilites, analyzed for this study, together with ureilites described in the literature to constrain the initial Mg/Si ratio of the UPB (0.98–1.05). Experiments are also used to develop a new thermometer based on the partitioning of Cr between olivine and low‐Ca pyroxene that is applicable to all ureilites. The equilibration temperature of ureilites increases with decreasing Al2O3 and Wo contents of pyroxene and decreasing bulk REE concentrations. The UPB melted incrementally, at different fO2, and did not cool significantly (0 ºC–30 ºC) prior to its disruption. It remained isotopically heterogenous, but the initial concentration of major elements (SiO2, MgO, CaO, Al2O3, alkali elements) was similar in the different mantle reservoirs.  相似文献   

19.
Abstract— Ureilites are coarse-grained ultramafic rocks whose petrography, mineral chemistry, lithophile element bulk chemistry, and Sm-Nd isotopic systematics suggest that they are highly fractionated igneous rocks and thus are products of common planetary differentiation processes. However, they also have primitive characteristics that are difficult to reconcile with extensive igneous processing. These include high abundances of siderophile elements, planetary-type noble gases, and the oxygen isotopic signature of unequilibrated solar system materials. The incongruity between igneous and primitive features constitutes the most important problem in understanding ureilite petrogenesis. In this review the petrographic, chemical, and isotopic characteristics of ureilites are summarized, and the petrogenetic implications of these characteristics are discussed. The most important constraints on ureilite petrogenesis are: 1) Ureilites have lost a basaltic complement; 2) Ureilites had a two-stage cooling history; 3) Ureilites are probably residues but partly crystallized from melts; 4) Ureilites are derived from a minimum of six reservoirs which were distinct in oxygen isotopic composition and did not equilibrate with one another; 5) A correlation between oxygen isotopic composition and mg ratio was established in ureilite parent material in the solar nebula; 6) If carbon-metal-silicate-CO/CO2 equilibrium was maintained then the mg ratios of ureilites were pressure/depth-dependent; however, if the pressure was sufficiently high (> 100–200 bars) that a CO/CO2 gas phase was not present then carbon and metal could have been at equilibrium with all ureilite mg ratios at the same pressure; 7) Ureilites either lost a low-melting temperature metal fraction or gained a refractory-rich metal component; 8) Primordial noble gases were retained in carbon in ureilites; 9) The ultramafic ureilite assemblage formed at ~4.55 Ga, but Sm-Nd and Rb-Sr isotopic systematics have been subsequently disturbed. Recently proposed models for ureilite petrogenesis are evaluated in terms of how well they satisfy these constraints; no models unequivocally satisfy all of them. Reconciling constraints 5 and 6 requires a large ureilite parent body.  相似文献   

20.
Abstract— The laser 40Ar‐39Ar dating technique has been applied to the Dar al Gani (DaG) 262 lunar meteorite, a polymict highland regolith breccia, to determine the crystallisation age and timing of shock events experienced by this meteorite. Laser stepped‐heating analyses of three dominantly feldspathic fragments (DaG‐1, DaG‐2, and DaG‐3) revealed the presence of trapped Ar, mostly released at intermediate and high temperatures, with an 40Ar/36Ar value of ~2.8. Trapped Ar is most likely released from melt glass present as small veins within the fragments. The 40Ar‐39Ar ages determined for the three fragments are ~3.0 Ga for DaG‐1 and DaG‐2 and 2.0 Ga for DaG‐3 and probably relate to major impact events. Laser spot analyses were performed on a feldspathic clast, an impact crystalline melt basalt (ICMB), and the matrix in a polished section of DaG 262. The feldspathic and ICMB clasts have low contents of trapped Ar compared with that in the matrix. The feldspathic clast shows a wide range of ages from 3.0 to 1.7 Ga similar to those obtained by stepped heating. The younger age is interpreted as a minimum age for the last major event that assembled this meteorite. The ICMB shows two age clusters at 3.37 and 3.07 Ga, where the older age may be that of the impact event that formed the impact melt. Several cosmic‐ray exposure (CRE) ages were obtained as expected for a polymict regolith breccia. The CRE ages are 106 and 141 Ma for the feldspathic clast and the ICMB, respectively. One of the feldspathic fragments, DaG‐2, shows a range between 200–400 Ma. These CRE ages, which are similar to those determined for returned samples of the lunar regolith, indicate that the different components of DaG 262 experienced preexposure prior to assemblage of the meteorite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号