首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Queen Alexandra Range (QUE) 93148 is a small (1.1 g) olivine‐rich achondrite (mg 86) that contains variable amounts of orthopyroxene (mg 87) and kamacite (6.7 wt% Ni), with minor augite. Olivine in QUE 93148 contains an unusual suite of inclusions: (1) 5 × 100 μm sized lamellae with a CaO‐ and Cr2O3‐rich (~10 and 22 wt%, respectively) composition that may represent a submicrometer‐scale intergrowth of chromite and pyroxene(s); (2) 75 × 500 μm sized lamellar symplectites composed of chromite and two pyroxenes, with minor metal; (3) 15–20 μm sized, irregularly‐shaped symplectites composed of chromite and pyroxene(s); (4) 100–150 μm sized, elliptical inclusions composed of chromite, two pyroxenes, metal, troilite, and rare whitlockite. Type 1, 2, and 3 inclusions probably formed by exsolution from the host olivine during slow cooling, whereas type 4 more likely resulted from early entrapment of silicate and metallic melts followed by closed‐system oxidation. Queen Alexandra Range 93148 can be distinguished from most other olivine‐rich achondrites (ureilites, winonaites, lodranites, acapulcoites, brachinites, Eagle‐Station‐type pallasites, and pyroxene pallasites), as well as from mesosiderites, by some or all of the following properties: O‐isotopic composition, Fe‐Mn‐Mg relations of olivine, CaO and Cr2O3 contents of olivine, orthopyroxene compositions, molar Cr/(Cr + Al) ratios of chromite, metal composition, texture, and the presence of the inclusions. In terms of many of these properties, it shows an affinity to main‐group pallasites. Nevertheless, it cannot be identified as belonging to this group. Meteorite QUE 93148 appears to be a unique achondrite. Possibly it should be considered to be a pyroxene pallasite that is genetically related to main‐group pallasites. Alternatively, it may be derived from the mantle of the pallasite (howardite‐eucrite‐diogenite?) parent body.  相似文献   

2.
3.
We report the results of a study of the Fukang pallasite that includes measurements of bulk composition, mineral chemistry, mineral structure, and petrology. Fukang is a Main‐group pallasite that consists of semiangular olivine grains (Fo 86.3) embedded in an Fe‐Ni matrix with 9–10 wt% Ni and low‐Ir (45 ppb). Olivine grains sometimes occur in large clusters up to 11 cm across. The Fe‐Ni phase is primarily kamacite with accessory taenite and plessite. Minor phases include schreibersite, chromite, merrillite, troilite, and low‐Ca pyroxene. We describe a variety of silicate inclusions enclosed in olivine that contain phases rarely or not previously reported in Main‐group pallasites, including clinopyroxene (augite), tridymite, K‐rich felsic glass, and an unknown Ca‐Cr silicate. Pressure constraints determined from tridymite (<0.4 GPa), two‐pyroxene barometry (0.39 ± 0.07 GPa), and geophysical calculations that assume pallasite formation at the core–mantle boundary (CMB), provide an upper estimate on the size of the Main‐group parent body from which Fukang originated. We conclude that Fukang originated at the CMB of a large differentiated planetesimal 400–680 km in radius.  相似文献   

4.
The Jiddat al Harasis (JaH) 422 ureilite was found in the Sultanate of Oman; it is classified as a ureilitic impact melt breccia. The meteorite consists of rounded polycrystalline olivine clasts (35%), pores (8%), and microcrystalline matrix (57%). Clasts and matrix have oxygen isotopic values and chemical compositions (major and trace elements) characteristic of the ureilite group. The matrix contains olivine (Fo83–90), low‐Ca pyroxene (En84–92Wo0–5), augite (En71–56Wo20–31), graphite, diamond, Fe‐metal, sulfides, chromite, and felsic glass. Pores are partly filled by secondary Fe‐oxihydroxide and desert alteration products. Pores are surrounded by strongly reduced silicates. Clasts consist of fine‐grained aggregates of polygonal olivine. These clasts have an approximately 250 μm wide reaction rim, in which olivine composition evolves progressively from the core composition (Fo79–81) to the matrix composition (Fo84–87). Veins crossing the clasts comprise pyroxene, Fe‐oxihydroxide, C‐phases, and chromite. Clasts contain Ca‐, Al‐, and Cr‐rich glass along olivine grain boundaries (<1 μm wide). We suggest that a significant portion of JaH 422, including olivine and all the pyroxenes, was molten as a result of an impact. In comparison with other impact‐melted ureilites, JaH 422 shows the highest melt portion. Based on textural and compositional considerations, clasts and matrix probably originated from the same protolith, with the clasts representing relict olivine that survived, but was recrystallized in the impact melt. During the melt stage, the high availability of FeO and elevated temperatures controlled oxygen fugacity at values high enough to stabilize olivine with Fo~83–87 and chromite. Along pores, high Mg# compositions of silicates indicate that in a late stage or after melt crystallization FeO became less available and fO2 conditions were controlled by C?CO + CO2.  相似文献   

5.
Abstract— The outer portions of many type I chondrules (Fa and Fs <5 mol%) in CR chondrites (except Renazzo and Al Rais) consist of silica‐rich igneous rims (SIRs). The host chondrules are often layered and have a porphyritic core surrounded by a coarse‐grained igneous rim rich in low‐Ca pyroxene. The SIRs are sulfide‐free and consist of igneously‐zoned low‐Ca and high‐Ca pyroxenes, glassy mesostasis, Fe, Ni‐metal nodules, and a nearly pure SiO2 phase. The high‐Ca pyroxenes in these rims are enriched in Cr (up to 3.5 wt% Cr2O3) and Mn (up to 4.4 wt% MnO) and depleted in Al and Ti relative to those in the host chondrules, and contain detectable Na (up to 0.2 wt% Na2O). Mesostases show systematic compositional variations: Si, Na, K, and Mn contents increase, whereas Ca, Mg, Al, and Cr contents decrease from chondrule core, through pyroxene‐rich igneous rim (PIR), and to SIR; FeO content remains nearly constant. Glass melt inclusions in olivine phenocrysts in the chondrule cores have high Ca and Al, and low Si, with Na, K, and Mn contents that are below electron microprobe detection limits. Fe, Ni‐metal grains in SIRs are depleted in Ni and Co relative to those in the host chondrules. The presence of sulfide‐free, SIRs around sulfide‐free type I chondrules in CR chondrites may indicate that these chondrules formed at high (>800 K) ambient nebular temperatures and escaped remelting at lower ambient temperatures. We suggest that these rims formed either by gas‐solid condensation of silica‐normative materials onto chondrule surfaces and subsequent incomplete melting, or by direct SiO(gas) condensation into chondrule melts. In either case, the condensation occurred from a fractionated, nebular gas enriched in Si, Na, K, Mn, and Cr relative to Mg. The fractionation of these lithophile elements could be due to isolation (in the chondrules) of the higher temperature condensates from reaction with the nebular gas or to evaporation‐recondensation of these elements during chondrule formation. These mechanisms and the observed increase in pyroxene/olivine ratio toward the peripheries of most type I chondrules in CR, CV, and ordinary chondrites may explain the origin of olivine‐rich and pyroxene‐rich chondrules in general.  相似文献   

6.
Abstract– Northwest Africa (NWA) 4797 is an ultramafic Martian meteorite composed of olivine (40.3 vol%), pigeonite (22.2%), augite (11.9%), plagioclase (9.1%), vesicles (1.6%), and a shock vein (10.3%). Minor phases include chromite (3.4%), merrillite (0.8%), and magmatic inclusions (0.4%). Olivine and pyroxene compositions range from Fo66–72,En58–74Fs19–28Wo6–15, and En46–60Fs14–22Wo34–40, respectively. The rock is texturally similar to “lherzolitic” shergottites. The oxygen fugacity was QFM?2.9 near the liquidus, increasing to QFM?1.7 as crystallization proceeded. Shock effects in olivine and pyroxene include strong mosaicism, grain boundary melting, local recrystallization, and pervasive fracturing. Shock heating has completely melted and vesiculated igneous plagioclase, which upon cooling has quench‐crystallized plagioclase microlites in glass. A mm‐size shock melt vein transects the rock, containing phosphoran olivine (Fo69–79), pyroxene (En44–51Fs14–18Wo30–42), and chromite in a groundmass of alkali‐rich glass containing iron sulfide spheres. Trace element analysis reveals that (1) REE in plagioclase and the shock melt vein mimics the whole rock pattern; and (2) the reconstructed NWA 4797 whole rock is slightly enriched in LREE relative to other intermediate ultramafic shergottites, attributable to local mobilization of melt by shock. The shock melt vein represents bulk melting of NWA 4797 injected during pressure release. Calculated oxygen fugacity for NWA 4797 indicates that oxygen fugacity is decoupled from incompatible element concentrations. This is attributed to subsolidus re‐equilibration. We propose an alternative nomenclature for “lherzolitic” shergottites that removes genetic connotations. NWA 4797 is classified as an ultramafic poikilitic shergottite with intermediate trace element characteristics.  相似文献   

7.
Abstract– The Northwest Africa (NWA) 1500 meteorite is an olivine‐rich achondrite containing approximately 2–3 vol% augite, 1–2 vol% plagioclase, 1 vol% chromite, and minor orthopyroxene, Cl‐apatite, metal and sulfide. It was originally classified as a ureilite, but is currently ungrouped. We re‐examined the oxygen three‐isotope composition of NWA 1500. Results of ultra‐high precision (~0.03‰ for Δ17O) laser fluorination analyses of two bulk chips, and high precision (~0.3‰) secondary ion mass spectrometry (SIMS) analyses of olivine and plagioclase in a thin section, show that the oxygen isotope composition of NWA 1500 (Δ17O = ?0.22‰ from bulk samples and ?0.18 ± 0.06‰ from 16 mineral analyses) is within the range of brachinites. We compare petrologic and geochemical characteristics of NWA 1500 with those of brachinites and other olivine‐rich primitive achondrites, including new petrographic, mineral compositional and bulk compositional data for brachinites Hughes 026, Reid 013, NWA 5191, NWA 595, and Brachina. Modal mineral abundances, texture, olivine and pyroxene major and minor element compositions, plagioclase major element compositions, rare earth element abundances, and siderophile element abundances of NWA 1500 are within the range of those in brachinites and, in most cases, well distinguished from those of winonaites/IAB silicates, acapulcoites/lodranites, ureilites, and Divnoe. NWA 1500 shows evidence of internal reduction, in the form of reversely zoned olivine (Fo ~65–73 core to rim) and fine‐grained intergrowths of orthopyroxene + metal along olivine grain margins. The latter also occur in Reid 013, Hughes 026, NWA 5191, and NWA 595. We argue that reduction (olivine→enstatite + Fe0 + O2) is the best hypothesis for their origin in these samples as well. We suggest that NWA 1500 should be classified as a brachinite, which has implications for the petrogenesis of brachinites. Fe‐Mn‐Mg compositions of brachinite olivine provide evidence of redox processes among bulk samples. NWA 1500 provides evidence for redox processes on a smaller scale as well, which supports the interpretation that these processes occurred in a parent body setting. SIMS data for 26Al‐26Mg isotopes in plagioclase in NWA 1500 show no 26Mg excesses beyond analytical uncertainties (1–2‰). The calculated upper limit for the initial 26Al/27Al ratio of the plagioclase corresponds to an age younger than 7 Ma after CAI. Compared to 53Mn‐53Cr data for Brachina ( Wadhwa et al. 1998b ), this implies either a much younger formation age or a more protracted cooling history. However, Brachina is atypical and this comparison may not extend to other brachinites.  相似文献   

8.
NWA 2737, the second known chassignite, mainly consists of cumulate olivine crystals of homogeneous composition (Fo = 78.7 ± 0.9). These brown colored olivine grains exhibit two sets of perpendicular planar defects due to shock. Two forms of trapped liquids, interstitial melts and magmatic inclusions, have been examined. Mineral assemblages within the olivine‐hosted magmatic inclusions include low‐Ca pyroxene, augite, kaersutite, fluorapatite, biotite, chromite, sulfide, and feldspathic glass. The reconstructed parental magma composition (A#) of the NWA 2737 is basaltic and resembles both the experimentally constrained parental melt composition of chassiginites and the Gusev basalt Humphrey, albeit with lower Al contents. A# also broadly resembles the average of shergottite parent magmas or LAR 06319. However, we suggest that the mantle source for the chassignite parental magmas was distinct from that of the shergottite meteorites, particularly in CaO/Al2O3 ratio. In addition, based on the analysis of the volatile contents of kaersutite, we derived a water content of 0.48–0.67 wt% for the parental melt. Finally, our MELTS calculations suggest that moderate pressure (approximately 6.8 kb) came closest to reproducing the crystallized melt‐inclusion assemblages.  相似文献   

9.
The Mineo pallasite is characterized here for the first time. The only 42 g still available worldwide is part of the collection of the Department of Physics and Geology, University of Perugia. A multianalytical approach was used, joining field-emission scanning electron microscopy, Raman analysis, X-ray powder diffraction, electron-probe microanalysis, and laser ablation inductively coupled plasma mass spectrometry. Results highlighted that (1) the Mineo pallasite belongs to the Main Group pallasites; (2) the silicate component is essentially olivine, with no pyroxene component; (3) the olivine chemical composition varies in terms of both iron and trace elements; (4) the metal phase is essentially kamacite with the taenite mainly found in the plessite structure; (5) phosphide phases are present as schreibersite and barringerite. The observed compositional variability in olivines as well as their occurrence as both angular and rounded crystals suggest that the Mineo pallasite could have been derived from a large impact of a differentiated parent body with a larger solid body. The resulting pallasite conglomerate consists of the compositionally different olivines, likely coming from different areas of the same differentiated parent body, and the residual molten Fe-Ni.  相似文献   

10.
An assemblage with FeNi metal, troilite, Fe‐Mn‐Na phosphate, and Al‐free chromite was identified in the metal‐troilite eutectic nodules in the shock‐produced chondritic melt of the Yanzhuang H6 meteorite. Electron microprobe and Raman spectroscopic analyses show that a few phosphate globules have the composition of Na‐bearing graftonite (Fe,Mn,Na)3(PO4)2, whereas most others correspond to Mn‐bearing galileiite Na(Fe,Mn)4(PO4)3 and a possible new phosphate phase of Na2(Fe,Mn)17(PO4)12 composition. The Yanzhuang meteorite was shocked to a peak pressure of 50 GPa and a peak temperature of approximately 2000 °C. All minerals were melted after pressure release to form a chondritic melt due to very high postshock heat that brought the chondrite material above its liquidus. The volatile elements P and Na released from whitlockite and plagioclase along with elements Cr and Mn released from chromite are concentrated into the shock‐produced Fe‐Ni‐S‐O melt at high temperatures. During cooling, microcrystalline olivine and pyroxene first crystallized from the chondritic melt, metal‐troilite eutectic intergrowths, and silicate melt glass finally solidified at about 950–1000 °C. On the other hand, P, Mn, and Na in the Fe‐Ni‐S‐O melt combined with Fe and crystallized as Fe‐Mn‐Na phosphates within troilite, while Cr combined with Fe and crystallized as Al‐free chromite also within troilite.  相似文献   

11.
Abstract— Activities of chromite in multicomponent spinels with compositions similar to those of H chondrites were experimentally determined by equilibrating Pt‐alloys with spinel at known temperature and fO2. Our results are consistent with predictions based on the spinel solid solution model incorporated into the MELTS program. Therefore, we combined literature formulations for the activities of components in spinel, the ferromagnesian silicates, and alloys with measured and literature (bulk alloy) compositions of the meteoritic phases to constrain T‐fO2 conditions for the H‐group chondrites Avanhandava (H4), Allegan (H5), and Guareña (H6). Log10fO2 values based on the assemblage of olivine + orthopyroxene + metal are 2.19–2.56 log units below the iron‐wüstite (IW) buffer for any equilibration temperature between 740 and 990 °C, regardless of petrographic type. Only lower limits on fO2 could be determined from spinel + metal equilibria because of the extremely low concentrations of Cr in the alloys of equilibrated H chondrites (≤3 ppb). Log10fO2 values required by spinel + metal equilibria are inconsistent with those for olivine + orthopyroxene + metal if equilibration temperatures were at or above those inferred from olivine‐spinel thermometry. This probably indicates that the closure for spinel + metal equilibria occurred under retrograde conditions at temperatures below ~625 °C for Allegan and Guareña and below ~660 °C for Avanhandava.  相似文献   

12.
The Martian meteorites comprise mantle‐derived mafic to ultramafic rocks that formed in shallow intrusions and/or lava flows. This study reports the first in situ platinum‐group element data on chromite and ulvöspinel from a series of dunitic chassignites and olivine‐phyric shergottites, determined using laser‐ablation ICP‐MS. As recent studies have shown that Ru has strongly contrasting affinities for coexisting sulfide and spinel phases, the precise in situ analysis of this element in spinel can provide important insights into the sulfide saturation history of Martian mantle‐derived melts. The new data reveal distinctive differences between the two meteorite groups. Chromite from the chassignites Northwest Africa 2737 (NWA 2737) and Chassigny contained detectable concentrations of Ru (up to ~160 ppb Ru) in solid solution, whereas chromite and ulvöspinel from the olivine‐phyric shergottites Yamato‐980459 (Y‐980459), Tissint, and Dhofar 019 displayed Ru concentrations consistently below detection limit (<42 ppb). The relatively elevated Ru signatures of chromite from the chassignites suggest a Ru‐rich (~1–4 ppb) parental melt for this meteorite group, which presumably did not experience segregation of immiscible sulfide liquids over the interval of mantle melting, melt ascent, and chromite crystallization. The relatively Ru‐depleted signature of chromite and ulvöspinel from the olivine‐phyric shergottites may be the consequence of relatively lower Ru contents (<1 ppb) in the parental melts, and/or the presence of sulfides during the crystallization of the spinel phases. The results of this study illustrate the significance of platinum‐group element in situ analysis on spinel phases to decipher the sulfide saturation history of magmatic systems.  相似文献   

13.
Mason Gully, the second meteorite recovered using the Desert Fireball Network (DFN), is characterized using petrography, mineralogy, oxygen isotopes, bulk chemistry, and physical properties. Geochemical data are consistent with its classification as an H5 ordinary chondrite. Several properties distinguish it from most other H chondrites. Its 10.7% porosity is predominantly macroscopic, present as intergranular void spaces rather than microscopic cracks. Modal mineralogy (determined via PS‐XRD, element mapping via energy dispersive spectroscopy [EDS], and X‐ray tomography [for sulfide, metal, and porosity volume fractions]) consistently gives an unusually low olivine/orthopyroxene ratio (0.67?0.76 for Mason Gully versus ~1.3 for typical H5 ordinary chondrites). Widespread “silicate darkening” is observed. In addition, it contains a bright green crystalline object at the surface of the recovered stone (diameter ≈ 1.5 mm), which has a tridymite core with minor α‐quartz and a rim of both low‐ and high‐Ca pyroxene. The mineralogy allows the calculation of the temperatures and ?(O2) characterizing thermal metamorphism on the parent body using both the two‐pyroxene and the olivine‐chromite geo‐oxybarometers. These indicate that MG experienced a peak metamorphic temperature of ~900 °C and had a similar ?(O2) to Kernouvé (H6) that was buffered by the reaction between olivine, metal, and pyroxene. There is no evidence for shock, consistent with the observed porosity structure. Thus, while Mason Gully has some unique properties, its geochemistry indicates a similar thermal evolution to other H chondrites. The presence of tridymite, while rare, is seen in other OCs and likely exogenous; however, the green object itself may result from metamorphism.  相似文献   

14.
Precise microprobe determinations of minor elements in olivine from Marjalahti show averages of 0.067% CaO; 0.0211% Cr2O3; less than 0.0045% TiO2; 0.288% MnO; and 30 ppm Ni. The calcium is as high as in some terrestrial plutonic olivines (e.g. Stillwater) but lower than in terrestrial nodule (high-temperature mantle?) olivines, consistent with very slow cooling to low temperatures. The chromium is discrepant with some earlier determinations, and possibly chromium is zoned in most pallasitic olivines. The Ti, Mn, and Ni data are consistent with previous determinations.  相似文献   

15.
Ureilites are carbon‐rich ultramafic achondrites that have been heated above the silicate solidus, do not contain plagioclase, and represent the melting residues of an unknown planetesimal (i.e., the ureilite parent body, UPB). Melting residues identical to pigeonite‐olivine ureilites (representing 80% of ureilites) have been produced in batch melting experiments of chondritic materials not depleted in alkali elements relative to the Sun’s photosphere (e.g., CI, H, LL chondrites), but only in a relatively narrow range of temperature (1120 ºC–1180 ºC). However, many ureilites are thought to have formed at higher temperature (1200 ºC–1280 ºC). New experiments, described in this study, show that pigeonite can persist at higher temperature (up to 1280 ºC) when CI and LL chondrites are melted incrementally and while partial melts are progressively extracted. The melt productivity decreases dramatically after the exhaustion of plagioclase with only 5–9 wt% melt being generated between 1120 ºC and 1280 ºC. The relative proportion of pyroxene and olivine in experiments is compared to 12 ureilites, analyzed for this study, together with ureilites described in the literature to constrain the initial Mg/Si ratio of the UPB (0.98–1.05). Experiments are also used to develop a new thermometer based on the partitioning of Cr between olivine and low‐Ca pyroxene that is applicable to all ureilites. The equilibration temperature of ureilites increases with decreasing Al2O3 and Wo contents of pyroxene and decreasing bulk REE concentrations. The UPB melted incrementally, at different fO2, and did not cool significantly (0 ºC–30 ºC) prior to its disruption. It remained isotopically heterogenous, but the initial concentration of major elements (SiO2, MgO, CaO, Al2O3, alkali elements) was similar in the different mantle reservoirs.  相似文献   

16.
Abstract– High pressure phases majorite, possibly majorite‐pyropess, wadsleyite, and coesite are present in the matrix and in barred olivine fragments in the Gujba CB chondrite. Grossular‐pyrope was also observed in some small inclusions. The CB chondrites are metal‐rich meteorites with characteristics that sharply distinguish them from other chondrite groups. All of the CB chondrites contain impact melt regions interstitial to their chondrules, fragments and metal and a major impact event (or events), on the CB chondrite parent body is clearly a significant stage in its history. We studied three areas interstitial to chondrules and metal in the Gujba CBa chondrite. From Raman spectra, the barred olivine fragments and matrix in these regions have various combinations of olivine and low‐Ca pyroxene, as well as majorite garnet (Mg4Si4O12), a phase that forms by high‐pressure transformation of low‐Ca pyroxene and wadsleyite, a high pressure product of olivine. Compositions of the majorite suggest both majorite and majorite‐pyrope solid solution may be present. The mineral assemblage of majorite and wadsleyite suggest minimum shock pressures and temperatures of ~19 GPa and ~2000 °C, respectively. The occurrences of high pressure phases are variable from one area to another, on the scale of millimeters or less, suggesting heterogeneous distribution of shock and/or back transformation to low pressure polymorphs throughout the meteorite. The high pressure phases record a high temperature–pressure impact event that is superimposed onto, and thus postdates formation of, the chondrules and other components in the CB chondrites. The barred chondrules and metal in the CB chondrites are primary materials formed prior to the impact event either generated in an earlier planetesimal scale impact event or in the nebula.  相似文献   

17.
MIL 11207 (R6) and LAP 04840 (R6) contain hornblende and phlogopite; MIL 07440 (R6) contains accessory titan‐phlogopite and no hornblende. All three meteorites have been shocked: MIL 11207 contains extensive sulfide veins, pyroxene that formed from dehydrated hornblende, and an extensive network of plagioclase glass; MIL 07440 contains chromite‐plagioclase assemblages, chromite veinlets and blebs, pincer‐shaped plagioclase patches, but no sulfide veins; LAP 04840 contains olivine grains with chromite‐bleb‐laden cores and opaque‐free rims, rare grains of pyroxene that formed from dehydrated hornblende, and no sulfide veins. These meteorites appear to have been heated to maximum temperatures of approximately 700–900 °C under conditions of moderately high PH2O (perhaps 250–500 bars). All three samples underwent postshock annealing. During this process, olivine crystal lattices healed (giving the rocks the appearance of shock‐stage S1), and diffusion of Fe and S from thin sulfide veins to coarse sulfide grains caused the veins to disappear in MIL 07440 and LAP 04840. This latter process apparently also occurred in most S1–S2 ordinary chondrites of high petrologic type. The pressure–temperature conditions responsible for forming the amphibole and mica in these rocks may have been present at depths of a few tens of kilometers (as suggested in the literature). A giant impact or a series of smaller impacts would then have been required to excavate the hornblende‐ and biotite‐bearing rocks and bring them closer to the surface. It was in that latter location where the samples were shocked, deposited in a hot ejecta blanket of low thermal diffusivity, and annealed.  相似文献   

18.
Miller Range (MIL) 090340 and MIL 090206 are olivine‐rich achondrites originally classified as ureilites. We investigate their petrography, mineral compositions, olivine Cr valences, equilibration temperatures, and (for MIL 090340) oxygen isotope compositions, and compare them with ureilites and other olivine‐rich achondrites. We conclude that they are brachinite‐like achondrites that provide new insights into the petrogenesis of brachinite clan meteorites. MIL 090340,6 has a granoblastic texture and consists of ~97 modal % by area olivine (Fo = molar Mg/[Mg+Fe] = 71.3 ± 0.6). It also contains minor to trace augite, chromite, chlorapatite, orthopyroxene, metal, troilite, and terrestrial Fe‐oxides. Approximately 80% by area of MIL 090206,5 has a granoblastic texture of olivine (Fo 72.3 ± 0.1) plus minor augite and chromite, similar to MIL 090340 but also containing minor plagioclase. The rest of the section consists of a single crystal of orthopyroxene (~11 × 3 mm), poikilitically enclosing rounded grains of olivine (Fo = 76.1 ± 0.6), augite, chromite, metal, and sulfide. Equilibration temperatures for MIL 090340 and MIL 090206, calculated from olivine‐spinel, olivine‐augite, and two‐pyroxene thermometry range from ~800 to 930 °C. In both samples, symplectic intergrowths of Ca‐poor orthopyroxene + opaque phases (Fe‐oxides, sulfide, metal) occur as rims on and veins/patches within olivine. Before terrestrial weathering, the opaques were probably mostly sulfide, with minor metal. All petrologic properties of MIL 090340 and MIL 090206 are consistent with those of brachinite clan meteorites, and largely distinct from those of ureilites. Oxygen isotope compositions of olivine in MIL 090340 (δ18O = 5.08 ± 0.30‰, δ17O = 2.44 ± 0.21‰, and Δ17O = ?0.20 ± 0.12‰) are also within the range of brachinite clan meteorites, and well distinguished from ureilites. Olivine Cr valences in MIL 090340 and the granoblastic area of MIL 090206 are 2.57 ± 0.06 and 2.59 ± 0.07, respectively, similar to those of three brachinites also analyzed here (Brachina, Hughes 026, Nova 003). They are higher than those of olivine in ureilites, even those containing chromite. The valence systematics of MIL 090340, MIL 090206, and the three analyzed brachinites (lower Fo = more oxidized Cr) are consistent with previous evidence that brachinite‐like parent bodies were inherently more oxidized than the ureilite parent body. The symplectic orthopyroxene + sulfide/metal assemblages in MIL 090340, MIL 090206, and many brachinite clan meteorites have superficial similarities to characteristic “reduction rims” in ureilites. However, they differ significantly in detail. They likely formed by reaction of olivine with S‐rich fluids, with only minor reduction. MIL 090340 and the granoblastic area of MIL 090206 are similar in modal mineralogy and texture to most brachinites, but have higher Fo values typical of brachinite‐like achondrites. The poikilitic pyroxene area of MIL 090206 is more typical of brachinite‐like achondrites. The majority of their properties suggest that MIL 090340 and MIL 090206 are residues of low‐degree partial melting. The poikilitic area of MIL 090206 could be a result of limited melt migration, with trapping and recrystallization of a small volume of melt in the residual matrix. These two samples are so similar in mineral compositions, Cr valence, and cosmic ray exposure ages that they could be derived from the same lithologic unit on a common parent body.  相似文献   

19.
Abstract— Chondrule D8n in LL3.0 Semarkona is a porphyritic olivine (PO) chondrule, 1300 times 1900 μm in size, with a complicated thermal history. The oldest recognizable portion of D8n is a moderately high‐FeO, PO chondrule that is modeled as having become enmeshed in a dust ball containing a small, intact, low‐FeO porphyritic chondrule and fine‐grained material consisting of forsterite, kamacite, troilite, and possibly reduced C. The final chondrule melting event may have been a heat pulse that preferentially melted the low‐FeO material and produced a low‐FeO, opaque‐rich, exterior region, 45–140 μm in thickness, around the original chondrule. At one end of the exterior region, a kamacite‐ and troilite‐rich lump 960 μm in length formed. During the final melting event, the coarse, moderately ferroan olivine phenocrysts within the original chondrule appear to have been partly resorbed (These relict phenocrysts have the highest concentrations of FeO, MnO, and Cr2O3—7.5, 0.20, and 0.61 wt%, respectively—in D8n.). Narrow olivine overgrowths crystallized around the phenocrysts following final chondrule melting; their compositions seem to reflect mixing between melt derived from the exterior region and the resorbed margins of the phenocrysts. During the melting event, FeO in the relict phenocrysts was reduced, producing numerous small blebs of Ni‐poor metallic Fe along preexisting curvilinear fractures. The reduced olivine flanking the trails of metal blebs has lower FeO than the phenocrysts but virtually identical MnO and Cr2O3 contents. Subsequent parent‐body aqueous alteration in the exterior region of the chondrule formed pentlandite and abundant magnetite.  相似文献   

20.
Abstract— The CV (Vigarano‐type) chondrites are a petrologically diverse group of meteorites that are divided into the reduced and the Bali‐like and Allende‐like oxidized subgroups largely based on secondary mineralogy (Weisberg et al., 1997; Krot et al., 1998b). Some chondrules and calcium‐aluminum‐rich inclusions (CAIs) in the reduced CV chondrite Vigarano show alteration features similar to those in Allende: metal is oxidized to magnetite; low‐Ca pyroxene, forsterite, and magnetite are rimmed and veined by ferrous olivine (Fs40–50); and plagioclase mesostases and melilite are replaced by nepheline and sodalite (Sylvester et al., 1993; Kimura and Ikeda, 1996, 1997, 1998). Our petrographic observations indicate that Vigarano also contains individual chondrules, chondrule fragments, and lithic clasts of the Bali‐like oxidized CV materials. The largest lithic clast (about 1 times 2 cm in size) is composed of opaque matrix, type‐I chondrules (400–2000 μm in apparent diameter) surrounded by coarse‐grained and fine‐grained rims, and rare CAIs. The matrix‐chondrule ratio is about 1.1. Opaque nodules in chondrules in the clast consist of Cr‐poor and Cr‐rich magnetite, Ni‐ and Co‐rich metal, Ni‐poor and Ni‐rich sulfide; low‐Ni metal nodules occur only inside chondrule phenocrysts. Chromium‐poor magnetite is preferentially replaced by fayalite. Chondrule mesostases are replaced by phyllosilicates; low‐Ca pyroxene and olivine phenocrysts appear to be unaltered. Matrix in the clast consists of very fine‐grained (<1 μm) ferrous olivine, anhedral fayalite grains (Fa80–100), rounded objects of porous Ca‐Fe‐rich pyroxenes (Fs10–50Wo50), Ni‐poor sulfide, Ni‐ and Co‐rich metal, and phyllosilicates; magnetite is rare. On the basis of the presence of the Bali‐like lithified chondritic clast—in addition to individual chondrules and CAIs of both Bali‐like and Allende‐like materials—in the reduced CV chondrite Vigarano, we infer that (1) all three types of materials were mixed during regolith gardening on the CV asteroidal body, and (2) the reduced and oxidized CV materials may have originated from a single, heterogeneously altered asteroid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号