首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron microprobe analysis of Pb-Cu(Fe)-Sb-Bi sulfosalts from Bazoges and Les Chalanches (France), and Pedra Luz (Portugal), give new data about (Bi, Sb) solid-solution and incorporation of the minor elements Cu, Fe or Ag in jaskolskiite, and in izoklakeite-giessenite and kobellite-tintinaite series. Jaskolskiite from Pedra Luz has high Sb contents (from 17.9 to 20.7 wt.%), leading to the extended general formula: Cu x Pb2+x (Sb1–y Bi y )2–x S5, with 0.10 x 0.22 and 0.19 y 0.41. Fe-free, Bi-rich izoklakeite from Bazoges has high Ag contents (up to 2.2 wt. %), leading to the simplified formula Cu2Pb22Ag2(Bi, Sb)22S57; in Les Chalanches it contains less Ag content (1.2 wt.%), but has an excess of Cu that gives the formula: Cu2.00 (Cu0.49Ag1.18)=1.67Pb22.70(Bi12.63Sb8.99)=21.62S57.27.In tintinaite from Pedra Luz, the variation of the Fe/Cu ratio can be explained by the substitution: Cu + (Bi, Sb) Fe + Pb; Fe-free kobellite from Les Chalanches has a Cu-excess, corresponding to the formula Cu2.81Ag0.54Pb9.88(Bi10.37Sb5.21)=15.38S35.09. Eclarite from the type locality, structurally related to kobellite, shows a Cu excess too. In natural samples of the kobellite homologous series, Fe is positively correlated with Pb, and its contents never exceed that of Cu. Ag substitutes for Pb, together with (Bi, Sb). Taking into account the possibility of Cu excess, but excluding formal Cu2+ and Fe3+, general formulae can be written:  相似文献   

2.
This study investigates the values of pH, total dissolved solids (TDS), elevation, oxidative reduction potential (ORP), temperature, and depth, while the concentrations of Br, and potentially harmful metals (PHMs) such as Cr, Ni, Cd, Mn, Cu, Pb, Co, Zn, and Fe in the groundwater samples. Moreover, geographic information system (GIS), XLSTAT, and IBM SPSS Statistics 20 software were used for spatial distribution modeling, principal component analysis (PCA), cluster analysis (CA), and Quantile-Quantile (Q-Q) plotting to determine groundwater pollution sources, similarity index, and normal distribution reference line for the selected parameters. The mean values of pH, TDS, elevation, ORP, temperature, depth, and Br were 7.2, 322 mg/L, 364 m, 188 mV, 29.6 °C, 70 m, 0.20 mg/L, and PHMs like Cr, Ni, Cd, Mn, Cu, Pb, Co, Zn, and Fe were 0.38, 0.26, 0.08, 0.27, 0.36, 0.22, 0.04, 0.43 and 0.86 mg/L, respectively. PHMs including Cr (89%), Cd (43%), Mn (23%), Pb (79%), Co (20%), and Fe (91%) exceeded the guideline values set by the world health organization (WHO). The significant R2 values of PCA for selected parameters were also determined (0.62, 0.67, 0.78, 0.73, 0.60, 0.87, ?0.50, 0.69, 0.70, 0.74, ?0.50, 0.70, 0.67, 0.79, 0.59, and ?0.55, respectively). PCA revealed three geochemical processes such as geogenic, anthropogenic, and reducing conditions. The mineral phases of Cd(OH)2, Fe(OH)3, FeOOH, Mn3O4, Fe2O3, MnOOH, Pb(OH)2, Mn(OH)2, MnO2, and Zn(OH)2 (?3.7, 3.75, 9.7, ?5.8, 8.9, ?3.6, 2.2, ?4.6, ?7.7, ?0.9, and 0.003, respectively) showed super-saturation and under-saturation conditions. Health risk assessment (HRA) values for PHMs were also calculated and the values of hazard quotient (HQ), and hazard indices (HI) for the entire study area were increased in the following order: Cd>Ni>Cu>Pb>Mn>Zn>Cr. Relatively higher HQ and HI values of Ni, Cd, Pb, and Cu were greater than one showing unsuitability of groundwater for domestic, agriculture, and drinking purposes. The long-term ingestion of groundwater could also cause severe health concerns such as kidney, brain dysfunction, liver, stomach problems, and even cancer.  相似文献   

3.
The technique of diffusive gradients in thin films (DGT) was applied to obtain high-resolution vertical profiles of trace metals in sediment porewater of a eutrophic lake, Lake Chaohu. All sampling sediments were under anaerobic conditions with Eh values below 0, the redox potential profile in M4 was relatively stable, and higher Eh values in M4 than that in M1 were observed due to hydrodynamic effects. Fe, Mn and As exhibited closely corresponding profiles due to the co-release of Fe and Mn oxides and the reduction of As. Higher Fe and Mn concentrations and lower As concentrations were observed in M1 of the western half-lake than those in M4 of the eastern half-lake due to different sources and metal contamination levels in the two regions. Cu and Zn showed increasing concentrations similar to Mn and Fe at 1–2 cm depth of sediments, while DGT measured Co, Ni, Cd and Pb concentrations decreased down to 3–4 cm in the profiles. Co, Ni, Cu, Zn, Cd and Pb showed insignificant regional concentration variances in the western and eastern half-lakes. According to the R(C DGT/C centrifugation) values, the rank order of metal labilities decrease as follows: Fe (>1) > Cu, Pb, Zn (>0.9) > Co, Ni, Cd (>0.3) > Mn, As (>0.1).  相似文献   

4.
Ion chemistry of mine pit lake water reveals dominance of alkaline earths (Ca2+ and Mg2+) over total cation strength, while SO4 2? and Cl? constitute the majority of total anion load. Higher value of Ca2+?+?Mg2+/Na+?+?K+ (pre-monsoon 5.986, monsoon 8.866, post-monsoon 7.09) and Ca2+?+?Mg2+/HCO3 ??+?SO 4 2 (pre-monsoon 7.14, monsoon 9.57, post-monsoon 8.29) is explained by weathering of Ca?CMg silicates and dissolution of Ca2+-bearing minerals present in parent rocks and overburden materials. Silicate weathering supposed to be the major geological contributor, in contrast to bicarbonate weathering does a little. Distribution coefficient for dissolved metals and sorbed to surface sediments is in the order of Cd?>?Pb?>?Fe?>?Zn?>?Cu?>?Cr?>?Mn. Speciation study of monitored metals in surface sediments shows that Fe and Mn are dominantly fractionated in exchangeable-acid reducible form, whereas rest of the metals (Cr, Pb, Cd, Zn, and Cu) mostly in residual form. Cd, Pb, and Zn show relatively higher recalcitrant factor that indicates their higher retention in lake sediments. Factor loading of monitored physico-chemical parameters resembles contribution/influences from geological weathering, anthropogenic inputs as well as natural temporal factors. Ionic load/strength of lake water accounted for geochemical process and natural factors, while pollutant load (viz BOD, COD and metals, etc.) is associated with anthropogenic inputs through industrial discharge.  相似文献   

5.
Zusammenfassung Eclarit kommt in goldführenden Kupfererzen in Bärenbad westlich des Hollersbachtales in SH 1600 m ca. 1.5 km nördlich der Bleiglanz-Zinkblende-Flußspat-Lagerstätte der Achsel-Alm vor. Eclarit tritt in fächerförmigen Gruppierungen nadelförmiger Kristalle bis zu 1,5 cm Länge und in Aggregaten xenomorpher Körner rißausfüllend in kataklastischem Pyrit und Arsenkies in einer Quarzmatrix auf. Weitere Begleiterze sind: Kupferkies, Pyrrhotin, Sphalerit, Stannit s.str., ein joseitähnliches Mineral, ged. Wismut und ged. Gold. Mikrosonden-Analysen zeigen nur geringfügige Variation im Chemismus von Kom zu Kom. Die mittlere Zusammensetzung ist: Cu 0,9, Fe 0,6, Ag 0,3, Pb 34,5, Bi 45,8, Sb 1,5 und S 17,3 Gew.-% (Summe: 100,7). Die durchKupcik (1983) durchgeführte Strukturuntersuchung führte zu folgender Formel: (Cu,Fe)Pb9(Bi,Sb)12S28, oder idealisiert: (Cu,Fe)Pb9Bi12S28. Die empirische Formel auf der Basis S=28 lautet daher: (Cu0,73 Fe0,57 Ag0,16) 1,46 Pb8,61 (Bi11,36 Sb0,62) 11,98 S28. Die daraus errechnete Dichte ist 6,88 g·cm–3, somit in guter Übereinstimmung mit dem gemessenen Wert von 6,85 g·cm–3. Eclarit kristallisiert orthorhombisch, RaumgruppePnma, und hat die Gitterkonstanten:a=54,76(4),b=4,030(3),c=22.75(3) Å,Z=4. Die stärksten Linien des Pulverdiagrammes sind: 3.63 (30) (905), 3.49 (40) (10.0.5, 606), 3.41 (100) (16.0.0, 811, 513, 712, 706), 3.01 (60) (0.15, 11.0.6, 115, 18.0.1), 2.89 (70) (11.1.3, 914), 2.74 (40) (216, 11.1.4, 116, 20.0.0), 2,14(50) (21.0.6, 119, 19.0.7, 019), 2,04(45) (16.1.7, 18.1.6, 22.1.3, 4.0.11), 2.01 (80) (020, 23.1.2, 5.0.11, 23.0.6), 1.73(35) (16.2.0, 10.2.5, 726). Eclarit ist weißgrau (Luft) bzw. bläulichgrau (Öl) gegen Bleiglanz, der Reflexionspleochroismus ist mittel bis deutlich, die Anisotropie deutlich (Luft) bzw. stark (Öl). Das Reflexionsvermögen in Luft gemessen bei den vier Standard-Wellenlängen ist: 480 nm: 51,2–45,2; 546 nm: 47,2–42,9; 589 um: 46,1–42,0; 644 nm: 45,0–40,2%. Die Mikrohärte (VHN50) ist 87–191 kp·mm–2, im Durchschnitt 163 kp·mm–2.
Eclarite, (Cu, Fe) Pb9Bi12S28, a new sulfosalt from Bärenbad, Hollersbachtal, Salzburg Province, Austria
Summary Eclarite has been observed in gold-bearing copper ores at Bärenbad W of Hollersbachtal (ev. 1600 m), about 1.5 km north of the galena-sphalerite-fluorite deposit Achsel-Alm, Salzburg Province, Austria. It occurs as fan shaped aggregates of needle-like crystals up to 1.5 cm length, or as granular fracture-fillings of pyrite and arsenopyrite. Other associated minerals are chalcopyrite, pyrrhotite, sphalerite, stannite s.str., a joseite-type mineral, native bismuth and native gold, in a matrix of quartz. Microprobe analyses showed the mineral to be homogeneous, with only very limited variation in chemistry from grain to grain. The composition is (mean value of 16 analyses); Cu 0.9, Fe 0.6, Ag 0.3, Pb 34.3, Bi 45.8, Sb 1.5 and S 17.3 wt.-% (total 100.7). The structure analysis (Kupcik, 1983) showed the structural cell formula to be (Cu,Fe)Pb9(Bi,Sb)12S28 or ideally (Cu,Fe)Pb9Bi12S28. The empirical formula calculated on the basis of S=28 is: (Cu0,73 Fe0,57 Ag0,16) 1,46 Pb8,61 (Bi11,36 Sb0,62) 11,98 S28. This gives a calculated density of 6.88, which is in good agreement with the measured value of 6.85 g·cm–3. Eclarite is orthorhombic,Pnma,a=54.76(4),b=4.030(3),c=22.75(3) Å,Z=4. The strongest lines in the powder diffraction pattern are: 3.63(30) (905), 3.49(40) (10.0.5, 606), 3.41 (100) (16.0.0, 811, 513, 712, 706), 3.01 (60) (015, 11.0.6, 115, 18.0.1), 2.89 (70) (11.1.3, 914), 2.74 (40) (216, 11.1.4, 116, 20.0.0), 2.14 (50) (21.0.6, 119, 19.0.7, 019), 2.04 (45) (16.1.7, 18.1.6, 22.1.3, 4.0.11), 2.01 (80) (020, 23.1.2, 5.0.11, 23.0.6), 1.73 (35) (16.2.0, 10.2.5, 726). Eclarite is whitish-grey (air) and bluish-grey (oil) against galena, respectively; bireflectance is moderate to distinct, anisotropism distinct (air) and strong (oil), respectively. Reflectances in air are (wavelength,R max ,R min ): 480 nm: 51.2–45.2; 546 nm: 47.2–42.9; 589 nm: 46.1–42.0; 644 nm: 45.0–40.2%. Micro indentation hardness VHN50 is 87–191 (av. 163) kp·mm–2.


Mit 3 Abbildungen

Herrn Professor Dr.Josef Zemann zum 60. Geburtstag gewidmet.  相似文献   

6.
Concentration and distribution of heavy metals (Cd, Cu, Pb and Zn) in urban soils of Hangzhou, China, were measured based on different land uses. The contamination degree of heavy metals was assessed on the basis of pollution index (PI), integrated pollution index (IPI) and geoaccumulation index (I geo). The 0.1 mol l−1 HCl extraction procedure and gastric juice simulation test (GJST) were used to evaluate the potential mobility and environmental risk of heavy metals in urban soils. The average concentration of Cd, Cu, Pb and Zn in urban soils was measured at 1.2 (with a range of 0.7–4.6), 52.0 (7.4–177.3), 88.2 (15.0–492.1) and 206.9 (19.3–1,249.2) mg kg−1, respectively. The degree of contamination increased in the order of industrial area (IA) > roadside (RS) > residential and commercial areas (RC) > public park and green areas (PG). The PIs for heavy metals indicated that there is a considerable Cd, Cu, Pb and Zn pollution, which originate from traffic and industrial activities. The IPI of these four metals ranged from 1.6 to 11.8 with a mean of 3.5, with the highest IPI in the industrial area. The assessment results of I geo also supported that urban soil were moderately contaminated with Cd and to a lesser extent also with Cu, Pb and Zn. The IP and I geo values reveal the pollution degree of heavy metal was the order of Cd > Pb > Zn ≈ Cu. It was shown that mobility and bioavailability of the heavy metals in urban soils increased in the order of Cd > Cu > Zn ≈ Pb. Owing to high mobility of Cd and Cu in the urban soils, further investigations are needed to understand their effect on the urban environment and human health. It is concluded that industrial activities and emissions from vehicles may be the major source of heavy metals in urban contamination. Results of this study present a rough guide about the distribution and potential environmental and health risk of heavy metals in the urban soils.  相似文献   

7.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

8.
Heavy metal profiles below a 15-year old sanitary landfill overlying a 30 m thick natural clay deposit are presented. Results indicate that unlike soluble species such as Cl and Na+ which have migrated distances up to 130 cm, Cu, Zn and Pb have migrated only up to 10 cm. The extent of Fe migration is estimated to be 20 cm. Highly reducing conditions at the interface (Eh= −130mV), coupled with the alkaline nature of the clay pore waters, have resulted in the precipitation of migrated heavy metals as carbonates. At the clay/waste interface, 88, 84 and 80% of the excess Fe, Zn and Pb, respectively, are present as secondary carbonates. This is confirmed by selective chemical dissolution analyses which also show that Fe, Zn, Pb and, to a greater extent, Cu are present in solid organic forms at the interface. Batch equilibrium studies clearly show that Cu and Pb removal from leachate is significantly increased by the presence of carbonates in the soil. For example, 75% more Pb is removed by the carbonate-rich bulk soil than the carbonate-free soil. The batch studies also show that when thepH> 5.2, removal of metal increases significantly due to precipitation as carbonates. From the results it is concluded that the presence of metal sludges in landfills lined naturally or artifically by a carbonate-rich clayey barrier reduces the rate of migration of numerous toxic transition metals and may also decrease the barrier porosity by precipitation. The decreases in porosity will be beneficial to the performance of the barrier due to reductions in both advection and diffusion.  相似文献   

9.
《Applied Geochemistry》2006,21(8):1259-1273
Grains of naturally oxidized arsenopyrite [FeAsS] collected from the oxidation zone in W-mine tailings were investigated, primarily using transmission electron microscopy. The grains are severely pitted and are surrounded by secondary minerals. The pitted nature of the grains is related to mechanisms governing the electrochemical oxidation of sulfide minerals, with prominent cusp-like features occurring at cathodic regions of the surface, and pits occurring at anodic regions. In general, the oxidation of arsenopyrite leads to the formation of an amorphous (or nanocrystalline) Fe–As–O-rich coating that contains small amounts of Si, Ca, Cu, Zn, Pb and Bi; nanoscale variation in the As, Pb, Bi and Zn contents of the coating was noted. Secondary Cu sulfides, thought to be chalcocite [Cu2S] and (or) djurleite [Cu31S16], occur as a layer (generally <500 nm thick) along the arsenopyrite grain boundary, and also within the coating as aggregates, and as layers that parallel the grain boundary. Although the precipitation of secondary Cu minerals along the grain boundary is a nanoscale feature, the process of formation is thought to be analogous to the supergene enrichment that occurs in weathered sulfide deposits. As the oxidation of arsenopyrite proceeds, layers and clusters of secondary Cu sulfides become isolated in the Fe–As–O coating. Secondary wulfenite [PbMoO4] and an unidentified crystalline Bi–Pb–As–O mineral occur in voids within the coating, suggesting that these minerals precipitated from the local pore-water. Small and variable amounts of W, Ca, Bi, As and Zn are associated with the wulfenite, and Zn, Fe and Ca are associated with the Bi–Pb–As–O mineral. Some of the wulfenite is in contact with inclusions of molybdenite [MoS2], suggesting that the oxidation of molybdenite in the presence of aqueous Pb(II) led to the formation of wulfenite. Mineralogical analyses at the nanoscale have improved the understanding of geochemical sources and sinks at this location. The results of this study indicate that the mineralogical controls on aqueous elemental concentrations at this tailings site are complex and are not predicted by thermodynamic calculations.  相似文献   

10.
This study examines the removal of dissolved metals during the oxidation and neutralization of five acid mine drainage (AMD) waters from La Zarza, Lomero, Esperanza, Corta Atalaya and Poderosa mines (Iberian Pyrite Belt, Huelva, Spain). These waters were selected to cover the spectrum of pH (2.2–3.5) and chemical composition (e.g., 319–2,103 mg/L Fe; 2.85–33.3 g/L SO4=) of the IPB mine waters. The experiments were conducted in the laboratory to simulate the geochemical evolution previously recognized in the field. This evolution includes two stages: (1) oxidation of dissolved Fe(II) followed by hydrolysis and precipitation of Fe(III), and (2) progressive pH increase during mixing with fresh waters. Fe(III) precipitates at pH < 3.5 (stages 1 and 2) in the form of schwertmannite, whereas Al precipitates during stage 2 at pH 5.0 in the form of several hydroxysulphates of variable composition (hydrobasaluminite, basaluminite, aluminite). During these stages, trace elements are totally or partially sorbed and/or coprecipitated at different rates depending basically on pH, as well as on the activity of the SO4= anion (which determines the speciation of metals). The general trend for the metals which are chiefly present as aqueous free cations (Pb2+, Zn2+, Cu2+, Cd2+, Mn2+, Co2+, Ni2+) is a progressive sorption at increasing pH. On the other hand, As and V (mainly present as anionic species) are completely scavenged during the oxidation stage at pH < 3.5. In waters with high activities (> 10−1) of the SO 4= ion, some elements like Al, Zn, Cd, Pb and U can also form anionic bisulphate complexes and be significantly sorbed at pH < 5. The removal rates at pH 7.0 range from around 100% for As, V, Cu and U, and 60–80% for Pb, to less than 20% for Zn, Co, Ni and Mn. These processes of metal removal represent a significant mechanism of natural attenuation in the IPB.  相似文献   

11.
The competitive adsorption and the release of selected heavy metals and their speciation distribution before and after adsorption in the Yellow River sediments are discussed. The adsorption of metals onto sediments increases with increasing pH value and decreases with increasing ionic strength. The competitive coefficient K c and the distribution coefficient K d are obtained to analyze the competitive abilities of selected heavy metals, which are ranked as Pb > Cu >> Zn > Cd. The competition among selected heavy metals becomes more impetuous with increasing ion concentration in water. Speciation analysis was done by an improved analytical procedure involving five steps of sequential extraction. Cu, Pb and Zn were mainly transformed into the carbonate-bound form (50.8–87.7%) in adsorption. Most of (60.7–77.3%) Cd was transformed into the exchangeable form, and the percentage of carbonate-bound Cd was 19.7–30.4%. The release reaction was so quick that the release capacity of selected heavy metals from sediments to aqueous solution reached half of the maximum value only in 30 s. As opposed to adsorption, the release capacities of selected heavy metals were ranked as Cd > Zn >> Cu > Pb. In this study, Cd produces the most severe environmental hazards, because its concentration in the release solution is 85.8 times more than the human health criteria of US EPA.  相似文献   

12.
Assessing the influence of CO2 on soil and aquifer geochemistry is a task of increasing interest when considering risk assessment for geologic carbon sequestration. Leakage and CO2 ascent can lead to soil acidification and mobilization of potentially toxic metals and metalloids due to desorption or dissolution reactions. We studied the CO2 influence on an Fe(III) (oxyhydr)oxide rich, gleyic Fluvisol sampled in close vicinity to a Czech mofette site and compared the short-term CO2 influence in laboratory experiments with observations on long-term influence at the natural site. Six week batch experiments with/without CO2 gas flow at 3 different temperatures and monitoring of liquid phase metal(loid) concentrations revealed two main short-term mobilization processes. Within 1 h to 1 d after CO2 addition, mobilization of weakly adsorbed metal cations occurred due to surface protonation, most pronounced for Mn (2.5–3.3 fold concentration increase, mobilization rates up to 278 ± 18 μg Mn kgsoil−1 d−1) and strongest at low temperatures. However, total metal(loid) mobilization by abiotic desorption was low. After 1–3 d significant Fe mobilization due to microbially-triggered Fe(III) (oxyhydr)oxide dissolution began and continued throughout the experiment (up to 111 ± 24 fold increase or up to 1.9 ± 0.6 mg Fe kgsoil−1 d−1). Rates increased at higher temperature and with a higher content of organic matter. The Fe(III) mineral dissolution was coupled to co-release of incorporated metal(loid)s, shown for As (up to 16 ± 7 fold, 11 ± 8 μg As kgsoil−1 d−1). At high organic matter content, re-immobilization due to resorption reactions could be observed for Cu. The already low pH (4.5–5.0) did not change significantly during Fe(III) reduction due to buffering from sorption and dissolution reactions, but a drop in redox potential (from > +500 mV to minimum +340 ± 20 mV) occurred due to oxygen depletion. We conclude that microbial processes following CO2 induction into a soil can contribute significantly to metal(loid) mobilization, especially at optimal microbial growth conditions (moderate temperature, high organic carbon content) and should be considered for carbon sequestration monitoring and risk assessment.  相似文献   

13.
Soils, rocks, altered rocks, hot and cold waters, and hot spring precipitates were sampled within and on the outskirts of geothermal fields in China. The contents of thirty trace elements in soils and rocks show that Hg, As, Sb, Bi, Li, Rb, Cs, Au, Ag, B, W, Sn, Pb, Zn, Mn, Ni and Co can serve as direct and indirect indicators for geothermal field exploration. Large amounts of data indicate that Hg, As and Sb are the best indicators of hot water sources. Altered rocks contain higher Hg, As, Sb, Bi and Be than unaltered rocks. Based on their abundances in hot waters, it is suggested that the following elements may be used as hydrochemical indicators of high-temperature hot-water geothermal systems: K+, Na+, Ca2+, Mg2+, SO2−4, HCO3, F, Cl, SiO2, HBO2, CO2, pH, total dissolved solids and hydrochemical types, as well as Hg, As, Sb, Be, Li, Rb and Cs. Modern precipitates associated with hot springs have high contents of Ba, Be, Fe, Ti, Hg, As, Sb and Bi. Using these geochemical data, the authors have had much success in locating hot water drill sites within geothermal fields. Case histories are described for five geothermal areas.  相似文献   

14.
The total concentrations and oral bioaccessibility of heavy metals in surface-exposed lawn soils from 28 urban parks in Guangzhou were investigated, and the health risks posed to humans were evaluated. The descending order of total heavy metal concentrations was Fe > Mn > Pb > Zn > Cu > Cr > Ni > Cd, but Cd showed the highest percentage bioaccessibility (75.96%). Principal component analysis showed that Grouped Cd, Pb, Cr, Ni, Cu and Zn, and grouped Cr and Mn could be controlled two different types of human sources. Whereas, Ni and Fe were controlled by both anthropogenic and natural sources. The carcinogenic risk probabilities for Pb and Cr to children and adults were under the acceptable level (<1 × 10−4). Hazard Quotient value for each metal and Hazard Index values for all metals studied indicated no significant risk of non-carcinogenic effects to children and adults in Guangzhou urban park soils.  相似文献   

15.
The instability of transition metal dolomites [CaR2+(CO3)2 where R2+ is Fe, Co, Ni, Cu, or Zn] and the limited substitution of transition metal cations for Mg in the dolomite structure can be accounted for by the effect of octahedral distortion. For example, trigonal elongation of the Fe octahedron, due to the Jahn-Teller effect, observed in siderite and ankerite, results in elongation of the Ca octahedron which is sensitive to distortion because the radius of Ca2+ is close to the upper limit for octahedral coordination. Co, Ni, Cu, Zn octahedra are also thought to be deformed, relative to Mg octahedra, in carbonates.The free energy of formation (ΔGof) of R2+CO3 becomes more positive with increasing octahedral distortion. Estimated ΔGof(dolomite) as well as stabilities and solubility limits of R2+ in natural and synthetic dolomites suggest a series in order of decreasing stability: Mg >Mn >Zn >Fe >Co >Ni >Cu.ΔGof(est.) for the terminal Fe-dolomite solid solution [72 mol% CaFe(CO3)2] in the system CaCO3-MgCO3-FeCO3 may represent an empirical threshold value for dolomite stability which lies between ΔGof for Mn- and Zn-dolomites. While Zn-dolomite is probably not a stable phase, very extensive solid solution toward CaZn(CO3)2 is to be expected in the system CaCO3-MgCO3-ZnCO3. The tendency for transition metal dolomites to contain excess CaCO3 can also be accounted for in terms of octahedral distortion and AGof.  相似文献   

16.
Multivariate statistical analysis has been used for detailed examination of the relationship between the magnetic properties of Xuzhou urban topsoil, for example concentration-dependent properties (mass magnetic susceptibility (χ), susceptibility of anhysteretic remanent magnetization (χ ARM), saturation isothermal remanent magnetization (SIRM), soft remanent magnetization (SOFT), and frequency-dependent magnetic susceptibility (χ FD)) and feature-dependent properties (S −100 mT ratio, SIRM/χ ratio and F 300 mT ratio), and the concentrations of metals (Ti, Fe, Cr, Al, Ga, Pb, Sc, Ba, Li, Cd, Be, Co, Cu, Mn, Ni, V, Zn, Mo, Pt, Pd, Au, As, Sb, Se, Hg, Bi, Ag, and Sn), S, and Br in the soil. The results show that SIRM/χ ratios correlate best with the heavy metals (Hg, Cr, Sb, As, and Bi) which are mainly derived from coal-combustion emissions whereas χ FD correlates best with the metals (Al, Ti, V, Be, Co, Ga, Mn, and Li) which principally originate from soil parents. Concentration-dependent magnetic properties (χ ARM, χ, SIRM, and SOFT) correlate well with elements (Se, Pb, Cu, Zn, Fe, Ag, Sc, Ba, Mo, Br, S, Cd, Ni, etc.) which are mainly derived from road-traffic emissions. For the same chemical element, χ ARM, SIRM, and SOFT values are frequently better correlated than χ values, and χ ARM values are the best indicators of the concentrations of these elements associated with traffic emissions in this study area. In addition, S −100 mT ratios significantly correlate positively with Se, Sc, Pb, Cu, Zn, Mo, and S whereas F 300 mT ratios only correlate positively with Pt and negatively with Fe. These results confirm the suitability of different magnetic properties for characterizing the concentrations of heavy metals, S, and Br in Xuzhou urban topsoil.  相似文献   

17.
Simultaneous competitive adsorption behavior of Cd, Cu, Pb and Zn onto nine soils with a wide physical–chemical characteristics from Eastern China was measured in batch experiments to assess the mobility and retention of these metals in soils. In the competitive adsorption system, adsorption isotherms for these metals on the soils exhibited significant differences in shape and in the amount adsorbed. As the applied concentration increased, Cu and Pb adsorption increased, while Cd and Zn adsorption decreased. Competition among heavy metals is very strong in acid soils with lower capacity to adsorb metal cations. Distribution coefficients (K dmedium) for each metal and soil were calculated. The highest K dmedium value was found for Pb and followed by Cu. However, low K dmedium values were shown for Zn and Cd. On the basis of the K dmedium values, the selectivity sequence of the metal adsorption is Pb > Cu > Zn > Cd and Pb > Cu > Cd > Zn. The adsorption sequence of nine soils was deduced from the joint distribution coefficients (K dΣmedium). This indicated that acid soils with low pH value had lower adsorption capacity for heavy metals, resulting in much higher risk of heavy metal pollution. The sum of adsorbed heavy metals on the soils could well described using the Langmuir equation. The maximum adsorption capacity (Q m) of soils ranged from 32.57 to 90.09 mmol kg−1. Highly significant positive correlations were found between the K dΣmedium and Q m of the metals and pH value and cation exchange capacity (CEC) of soil, suggesting that soil pH and CEC were key factors controlling the solubility and mobility of the metals in soils.  相似文献   

18.
Groundwater from 73 municipal and 21 private wells were analyzed for Ag, Al, As, B, Ba, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Ni, Pb, Sr and Zn over a 3 year monitoring program in the Gaza Strip. The results show that the trace elements of the groundwater of the Gaza Strip do not generally pose any health or environmental hazard. In spite of that, only 10% of the municipal wells meet the WHO standards. Cl-, NO 3 and F- concentrations exceeded 2–9 times the WHO standards in 90% of the wells tested with maximum concentrations of 3,000, 450 and 1.6 mg/l, respectively. Several private wells should not be used for drinking purposes as the average of Zn, Cd, Pb, Fe and As was 58, 30, 270, 468 and 10 μg/l, respectively. A severe water dilemma will appear in the near future from both quality and quantity aspects.  相似文献   

19.
The study area covers two geologically different regions which have intensively been carpeted by tea plants in the eastern Black Sea. The rocks exposed in the region contain considerable amount of trace metals due to Upper Cretaceous massive sulfide formations and tertiary epithermal mineralizations. Tea plants that grow in soils derived from such mineralized rocks contain different concentrations of Cu, Pb, Zn, Fe, Cd, P, Al, Na, K, and S. The content ratios of most of the analyzed elements except Al are higher in basaltic and sedimentary rocks. To describe the transfer of metals from soil to tea leaf, the Freundlich-type model (log c plant = ac soil + log b) is used. The metal concentrations in leaves of tea plant in the studied soils are ranked as Zn > Cu > Pb > Al > Cd > Fe. The capacity of the plant to affect the metal accumulation decreased as follows: Fe > Cd > Pb > Cu > Zn > Al. Negative correlations were found between pH and availability of Cu, Pb, Zn, Mn, and Al elements by the tea plant. Experimental applications indicated that tea plant leaves growing on soils with high metal contents show some signs of toxicity. In soils where, particularly, ammonium sulfate fertilizer is used, metal uptake by the tea plant was found to be significantly higher as a result of extremely acidic character of the soil.  相似文献   

20.
《Applied Geochemistry》2002,17(4):353-365
Surprisingly little is known about the relationship between the labile phases removed by sequential extraction procedures and those liberated by single leaches that minimally impact the alumino-silicate matrix of solids. This investigation examines the relationship between the summed concentrations of Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by an optimized 3-step standardized sequential extraction procedure and those released by a single 0.5 M HCl leach. Thirty-nine representative soil and road deposited sediment samples were examined from an urban watershed, in Honolulu, Hawaii, which has been shown to have a high degree of traffic-associated pollution. Properties of samples analyzed varied widely and exhibited a range in cation exchange capacities from 7 to 59 cmolc/kg, pH values from 3.5 to 7.9, and organic C contents from 1 to 29%. Results indicate that the dilute HCl leach was slightly more aggressive than the sequential procedure as it removed significantly more Al, Cu, Fe, Mn and Ni; though no significant differences were observed between Co, Pb and Zn concentrations liberated by the two approaches. Both approaches showed limited dissolution of the crystal lattice with ⩽9% of the total Al liberated. Regardless of approach, element mobility was the same with the order being: Pb>Mn>Zn>Co≈Cu>Ni>Fe ∼ Al. Regression analysis indicated highly significant (P<0.0001) logarithmic relationships between the two digestion procedures, with coefficients of determination (r2) ⩾92% for all elements except Fe (54%) and Ni (64%). Further support for the strong relationships between elements liberated by both digestions was gained from geochemical contrasts between anomalous and background levels and concentration enrichment ratios. This was particularly true for Pb and Zn, the most anthropogenically enhanced trace metals in the watershed. All data indicated that a dilute HCl leach was a valuable, rapid, and cost-effective analytical tool in contamination assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号